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EXTENSIONS OF ADDITIVE SET-FUNCTIONS
PANAGIOTIS D. STRATIGOS

We work with two arbitrary o-topological spaces and we deal with the problem of restric-
tion-extension, and uniqueness of extenston, of regular, bounded, finitely additive set-func-
tions associated with these o-topologicil spaces. The main result is a restriction-extension theo-
rem which generalizes a theorem of A. D. Alexandroff on additive set functions in
o-topological spaces (1940 -41), and also the theorem of Marik on the Baire and Borel
measures.

1. Terminoiogy and notation. In this paper, we will adhere to the follow-
ing terminology and notation (mainly as in [1]). N will denote the set of
natural numbers, and C the set of complex numbers. A space is defined to be
an ordered pair, whose first component is an arbitrary set X and whose second
component is an arbitrary collection of subsets of X, called the collection of
closed sets and denoted by F(X), such that

(1) for every subset /7 of F(X), if H is finite, then U(H)¢ FX), and

(2) for every subset H of F(X), if H is countable, then N(H)¢ F(X).

Note: F(X) is a d-lattice.

We will refer to the space (X, F(X)) as the space X.

It is important to note that a space is a generalization of a topological
space. Some authors refer to a space as a o-topological space; for example,
see [4] and the references given there.

The complement of a closed set is called open, and the collection of open
sets is denoted by G(X). The general element of F(X) is denoted by F, and
the general element of G(X) is denotad by G.

The collection F(X)U G; is denoted by F,(X). The collection of compact
subsets is denoted by K(X), and the collection K(X)U G, is denoted by K,(X).

The algebra of subsets of X generated by F(X) is denoted by A(X) (the
general element of A(X) is denoted by E), the o-ring of subsets of X gene-
rated by F(X) is denoted by S(X), the o-algebra of subsets of X generated
by F(X) is called the Borel algebra of X and is denoted by B(X), the set of
all scallar functions on A(X), which are (finitely) additive, bounded, and regu-
lar is denoted by rba(X) and the set of all scalar functions on B(X'), which
are countably additive, bounded, and regular is denoted by M(X).

A function f of a space, X, into a space, X, is said to be continuous, if
and only if, for every F :f~'(F,) ¢ F(X). The set of all elements of CX, which
are bounded and continuous is donoted by C(X), and the conjugate space of
C(X) is denoted by C(X).

An F is said to be totally closed, if and only if, there exists an element
f of C(X), such that F=/f='({0}). The collection of all totally closed sets ig
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198 P. D. STRATIGOS

denoted by F*(X). The statement “(X, F*(.X')) is a space” is true. This space
is denoted by X*

2. The following theorem consists of two parts.

Theorem. Part I. Given

(1) any set X;

(2) any two o-lattices of subsets F,, F, of X, such that

(i) F,c F, and

(i) for any F,, Gy: F,C Gy implies there exists an Fy, such that F,c F,c G,.
(Note: Condition (ii) is equivalent to. for any F,, F,:F.NF, @.);

(3) the spaces X, Xy and any element u, of rba(Xy). Then, i, ax,crba(X)).

For the proof of Part I we need the following lemmas:

Lemma 1 [1, I, p. 569, Theorem 1|. Consider any space X and any
element u of rba(X) such that u=0. Then for every E: u(E)—sup{u(F)Fc E)}.

Lemma 2 [1, I, p. 584, Lemma 1]|. Consider any space, X, and any
function u from A(X) to C, such that un is additive and for every G:
w(G)y=sup{u(F) Fc G}. Then w¢rba(X) and n -0.

Lemma 3. If u€rba(X), then for any F,G:FcG implies for every
positive number «: there exists a G such that FcGc G and for cvery E:
Fc Ec U implies w(F)—u(E)|<e.

Proof. Consider any F, G, such that Fc G, and any positive number, .
Then by [1, II, p. 572, Theorem 4), there exist F,, G, such that F,c Fc G, and
for every E, the inclusions Fyc Ec G, imply |wu(F)—un(E) < e Consider GNG,.
Note GN G, ¢ G(X). Denote Gn G, by G. Note: Fc G G and for every E, the

relation FC Ec G implies | u(F)- u(E) <e.

Lemma 4. Given

(a) any set, X;

(8) any two 6-lattices of subsets F,, F, of X, such that (1)F,C Fy and
(2) condition (ii) of the theorem is satisfied;

(y) any element ., of rba(X,).

Then for any F,, G,:F,c G, implies the existence of an F,, such that Fyc F,
c G, and for every E,:F,C E,CF, implies uyF,)= u,(Es).

Proof. Consider any F,, G, such that F,c (G,. Donote any element of N
by n. Since u,¢rba(X,), for every n, by Lemma 3, there exists a G,,, such
that Fyc G,,C G, and for every E,, the inclusions F,c E,C G,, imply u,(Fy)
—ug(E,) < 1/n. For every n, by condition (ii) of the theorem, there exists an
Fin such that F,c F,,c G,, Consequently, for every n, one has Fyc F ,cG,.

Consider kﬂNF,,. Note that kﬂ F,,€ F,. Denote anF”' by F,. Note:

(3 €

B
F,c F,c G,. Also, for every n, one has F,c F,c G,,. Hence, forevery E,, the
inclusions Fy,c E,c F, imply for every n: |u)(F,) —ug(E,) <1/n. Hence, for
every Fy, if Foc EyCF, then ug(F,)= uE,).

Corollary [1,II, p. 586, Lemma 2]. Given any space X which is nor-
mal, the space X*, and any element u of rba(X), then for any F, G: Fc G
implies the existence of an F*, such that Fc F*c G and for every E: FC Ec F*
implies wu(F)=u(E).

Proof. (omitted).

Lemma 5 (1, II, p. 586, Lemma 3| Consider the setting of Lemma 4
and assume u,=0. Then for every G,: u,G,)=sup{uyF,) | F,c G,}.
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Proot. By Lemma 1, uy(G,)--sup{u,(F;)|F,C G,}. By Lemma 4, for every
F,:Fyc G, implies the existence of an F,, such that FocF,c G, and uy(£)
— ug(F,). Consequently, uy(Gs)=supiu, (Fy)| F,c Gy

Proof of Part I. Note: ug=uf— ui. Consider u|ax, and s awx),. Note:
15 1 A(X,) and uj ax, are additive. Moreover, by Lemma 5, for every G;:
,ug(G,)_-—-sup{,ug(F')fF,CG,} and u(G)) = sup {n3(F,)| F,c G,}. Consequently, by
Lemma 2, u8 ax,€rba(X,) and uf ax,€rba(X,). Hence u, axy € rba (X))

Part Il. Consider items (1) and (2)of Part l,assuming F, is normal, the
spaces X,, X,, and also the following:

(4) any element u, of rba(X;);

(5) the function ®,, which is such that Dg —C(X,) and for every ele-
ment f, of C(Xy):®,(f)= [xfidu,; (Note: D, ¢ C(X,).)

(6) any element @, of C(Xy,), suckh that @, |cx,=P,;

(Note the existence of such a ®y is guaranteed by the Hahn-Banach Theo-
rem.)

(7) the element uy of rba(X,) whih corresponds to ¥, by means of
Alexandroff’s Representation Theorem.

(Note the condition of normality is needed in Alexandroff's Representation
Theorem.)

Then the following statements are true: (i) wmo ax)=mn, and (i) u, is
unique.

Proof. Consider u, 4, and denote it by u,. By the result of Part I,
€ rba(X).

(i) Denote the general element of C(X;) by f;. Note for every f1:D(f1)
- @,(f,). Hence, for every f,:[xf;dug=[xfidu;. By the definition of the
Lebesgue-Radon integral, for every f,: [xf,dus=[xf, duy.

Consequently, for every f,: [xfidu,= [xfydw,. Hence, by [I, II, p. 583,
Lemma II}, u, = u, Consequently, us axy=un,.

(ii) Consider any F,, and the direction of all 7, which are such that
F,c F,, and denote it by D(Fy).

By Lemma 4, there exists an element F, of D(F,), such that for every
F.:F,¢ D(F,) and F,cF, implies u,(F,)= u,(F,). Hence, uy(F,)=limr, e o) us(F)).
Hence, 1y 1s unique.

Thus, the theorem is proved.

Remark 1. Note the Hahn-Banach Theorem asserts the existence of @,,
but it does not indicate how to obtain it.

Remark 2. To obtain A. D. Alexandroff's theorem [I, I, p. 584,
Theorem 1], from our theorem, assume F,—F(X) and F,-—F*X).

(Note in the first part of Alaxandroff’s theorem the normality of F is not
needed.)

Corollary. Consider the function ®, which is such that Dg =rba(X,)
and for ~very element u, of rba(X,), ®(u,)=uy (the u, which corresponds to
ny by means of Part Il of the theorem). The ® is a 1—1 correspondence
between rba (X)) and rba (X).

3. Example 1. Consider any topological space X such that X is normal.
Denote Fo(X') by F, and F(X) by F,.

(a) Note F,cCF..
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(b) Since X is normal, condition (ii) of the theorem is satisfied. Consider
any element u, of rba(X,) such that u, is countably additive, and u, ax,).

By Part | of the theorem, u, ax,€rba(X)).

Note uy acx, is countably additive. Denote ug|ax,) by u,.Since u,is count-
ably additive, there exists an element p, of M(X,), such that g, acx)=p,
and oy is unique [1, Il, p. 587, Theorem 1]. Since u, is countably additive,
there exists an element », of M(X,), such that », ax,=u, and » is unique.
Show @y B(x, — »,. Denote g, 5x, by e

Lemma. Consider any set, X, and any collection of subsets E of X,
such that (i) 2 ¢ E and (ii) for any two elements A,, Ay of E: AJUA,¢E
and A,NA,¢E. Consider any two measure t, v, on S(E), such that r,|g
and v, g are finite, and v, p=1,|.. Then t;=rt,.

(a) Note S(F))=B(X,); (b) Note o, r, and v, |r, are finite; (c) note for
every Fiioy(Fy)=o, (F\)= uoFy)=u,(F;)=»,(F,); hence, ¢, r,=» F,.

Consequently, by the lemma, o,=»,. Hence, o, px, =»,. The following dia-
gram illustrates the relationship between the various sets and between the
various set-functions involved in the above discussion.

Example 2. Consider any topological space X such that X is Hausdorff
and compact. Denote K(AX") by F, and K(X) by F, (a) Note F,CF,. (b)
Since X is Hausdorff and locally compact, condition (ii) of the theorem is
satisfied. (c) Since X is Hausdorff and compact, F, is normal.

Fy AXy) T By
12 Q2
Hy "
F] - A(xl) - le)
Fig. 1
%! A(Xp) B(Xz)aﬂz{’,)
" C2
£ — AXY

/ \ S(X)) - B(X))

()=

“)

Fig. 2

Consider any element u, of rba(X,). By Part II of the theorem, there
exists an element u, of rba(X,), such that u, ax,—=u, and u, is unique.

Note Part II of the theorem asserts the existence of uy but it does not
indicate how to obtain it. We shall develop a procedure for obtaining u,. Since
X is compact, X, is compact. Hence, u, is countably additive [1, II, 590, Theo-
rem 5. Hence, there exists an element o, of M(X)), such that ¢, 4x,=u, and
o, is unique [I, II, p. 587, Theorem 1|. Since X is compact and G, X¢F,.
Hence, B(X,) -S(X,). Since ¢, is a Baire measure, there exists a regular Borel
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measure, g,, such that g, sx,)= 0, and g, is unique [2, p. 238]. Since g, is a
Borel measure and X is compact, o, is bounded. Hence, g, ¢ M(X,). Since X is
compact, X, is compact. Hence, u, is countably additive. Hence, there exists
an element », of M(Xj,), such that », 4x,— u, and », is unique. Show rg=g,.

Consider »ylsx,, and danote it by (»y), Show (»,)s=—=0,. Consider any
element K, of Ky(X). Note: (v9),(Ky) = ra(Kp) = us(Ky) = 11(K,) — 0,(K,). Hence,
by the lemma of Example 1, (»),=e¢,. Since », is a regular Borel measure and
vg |s(x,) =03 s(x,, by the uniqueness of g,, »9=0,. Hence, ug=», ax,,— 0, 'ax.)

The above discussion dictates the following procedure for obtaining
Wyl — 0 —> 03 =V, — Vg ax., - My The following diagram illustrates the rela-
tionship between the various sets and between the various set-functionsinvolv-
ed in the above discussion. ‘

Example 3. Given

(1) any set, X;

(2) any two J-lattices of subsets F,, F, of X, such that (a) Fic F, and
(f) condition (ii) of the theorem is satisfied and (y) F, is normal and (8) F; is
countably paracompact.

(3) for each element i of {lI, 2}, the subsel of rba(X;), whose general
element is o-smooth, and denote it by I(X;). Then & px, (see Corollary for
the definition of @) is a 1—1 correspondence between D(X)) and D(X)).

Proof. (a) Consider any element u;, of D(X)). Show @ (i)¢€ (D (Xy).
Denote @(u;) by u, Show u, is e-smooth. ;

Consider any sequence in F,, (F3,) suchthatF,, | #. Since F, is countab-
ly paracompact and condition (ii) of the theorem is satisfied, there exists a
sequence in F,, (F ), such that (for every n: F;,cFi,) and F,,| . Since
wy is g-smooth, liMaoe uy(F1,,)=0. Since ;= uy ax,y, limMyoe uy(F2,,)=0. Hence,
w is o-smooth. Consequently, @ (u,)€ D(X5).

(b) Consider any element ug of D(Xj). Show @71 (ug) € D(X,).

Note: @1 (u,)=u, axy and ug ax, is o-smooth. Hence, &—1 (u,) € D(Xj).

(c) Consequently, @ /px, is a 1—1 correspondence between (X)) and
D (X,).

Example 4 (the extension theorem of Marik [3]). Given any topological
space (X, (X)) such that F(X) is normal and countably paracompact, (denote
FYX) by F, and F(X) by F,), given any element u, of M(X,), there exists an
element uy, of M(Xjp), such that u, mx,=u, and u, is unique.

Prooif. Consider u, ax,, and denote it by g,. Note o,¢D(X)). Note:
(¢) FyC F, and (B) condition (ii) of the theorem is satisfied, since F(AX) is nor-
mal, and (y)F, is normal and (8) F, is countably paracompact. Hence, by
part (a) of Example 3, &(g,) ¢ D(Xy). Denote &(g,) by g,. Then there exists an
element «, of M(X,), such that wu,|sx,=0s and u, is unique [1, lI, p. 589,
Theorem 1]. To show u, |sx, = u, use the lemma of Example 1.
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