Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



DIFFERENTIATION PROPERTIES AND MULTIPLIERS OF BERG-
DIMOVSKI CONVOLUTION FOR THE DIFFERENTIATION OPERATOR

NIKOLAI S. BOZINOV

The paper deals with the Berg-Dimovski convolution f+ (g for the continuous right in-
verse ly of d/dt connected to the problem y'=f, N(y)=0, where N is an arbitrary continuous
linear functional in the space of continuous functions C. This convolution is extended in

the spaces L' or L,'Oc and the properties of %, in some of their subspaces are studied. On the
basis of these properties a representation formula for the continuous operators commuting with
/o on some subspaces of L' or Ll'oc is found. It happens that these operators are all multipliers

of o Also all continuous convolutions for the operator [, by means of the Berg-Dimovski
convolution are expressed. A Titchmarsh type theorem for all continuous convolutions of Iy is
proved. In particular every continuous convolution for the integration operator Iif= {éf in the

spaces ([0, ) and L

locl0s ) has no divisors of zero.

0. Introduction and notations. Let A be an interval which contains the
point 0. When 4 is the compact interval [a, &] let L7, 1--p= + oo denote the
space L”{4, m} (m is the Lebesgue measure in R') provided with the usual
norm || !, With C, C%, 1= k<4 oo we denote the Banach spaces C(4), Cx4),
with their usual norms 'l and | |/c* Let also BV, AC denote the spaces of func-
tion with bounded variation and the space of absolutely continuous functions

b
provided with the norms |!f |gy=| |+ Vf, | flac=|fl=+!f"|, respectively.

a
When 1 is noncompact, L! denotes the space of locally integrable functions.
I1 is a Frechet space with respect to the inductive topology which is given
by the countable family oi seminorms Puf)= |[| ,n=1,2,.... Also Lf_
Aan|—n, n)
denotes the space of integrable functions with locally integrable p-power. Now
the spaces C, C*, 1= k<= +oo are Frechet spaces relative to the usual induc-
tive topology. Especially C is provided with the topology of the almost uni-
form convergence, and BV denotes the space of functions with bounded va-
riation inevery compact subinterval of 4.
Definition (Dimovski [15)). Let X be a linear space, and let M:
X X be a linear operator. A bilinear, commutative and associative opera-
tor « in X is said to be a convolution of M iff

(0.1) M(f =g =Mf+g=f+Mg holds for all f, gcX.
When an operator M satisfies (0.1) we say that M is a multiplier of

SERDIKA Bulgaricae mathematicae publicationes Vol. 6, 1990, p. 219—239.



220) N. S. BOZINOV

lLet / be the integration operator

t
(0.2) lf*f{f(mdu, ke, fel
and let

14
(0.3) f* g:off(t—-u) g(u)du; f, gel!

be its convolution which represents / by the function {1}- Mikusinski and
Rill-Nardzewski [1] have studied this convolution in details. The opera-
tor / is a right inverse of the operator d/df such that the function y=If is
the solution of the Cauchy problem y'=f, y(0)=0 when ftL'.

Let now N be an arbitrary continuous linear functional in C, i.e. N be-
longs to the adjoint space C*. It is known (see [8, 284]) that now N have
compact support including in 4. Let also [, denotes the right inverse of d/dt
so that the function y=1/,f is the solution of the more general problem

(0.1) v=f N)=0 for feL

It is clear that this problem has unique solution for every fc/' or /!  iff

N(1)=0, and without loss of generality we assume that NM(1)= —1. Now [,
has the representation

(0.5) Lo f = If + N(If).

The problem for existence of convolutions for an arbitrary continuous
right inverse operator of d/dt is considered independently from L. Berg [2]
and I. Dimovski [3; 4]. L. Berg has considered a convolution of the ope-
rator (0.5) in C. His convolution is a continuous bilinear operator CXC — C,
which represents by

(0.6) Frog— N ff(x+t u)g(u)du)

for all f, #¢C. In the above formula the index x of N shows that the func-
tional NV is applied fo the variable x. I Dimovski has considered a convolu-
tion for the general continuous right inverse of d/dt:Ilf-+d( f), ®-C*. His con-
volution exists in C', and it is identical to (0.6) when @(f)=N(/f), N(1)= —1.
In this special case (0.5) is a continuation of Dimovski’s convolution in C. We
consider the general Dimovski’= convolution in section 5.

In the present paper f+,g denotes the operation (0.6) with an arbitrary
continuous linear functional MV in C, especially it is possible that M(1)==0. In
the present paper is proved that the Berg-Dimovski convolution (0.3) can be
continuated as continuous convolution of [, in L' or L] _in the compact or
noncompact case for 4 respectively. In section 1, 2 (where the main proper-
ties of #, are proved) for simplicity we consider the compact case A-|a, b).
The noncompact case follows from these results if we consider the interval
[a, b] as an arbitrary compact subinterval of noncompact interval A. In this
case in the formulations of the statements of sections 1, 2 L7 must be replac-
ed by L7 . The properties of f#,g in some subspaces of L! are studied in
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section 1. Section 2 is devoted to the question of differentiability of f=, g
The main properties of f=,g are collected in tables 1, 2. An analogous table
for the convolution f«g (a special case of (0.6) when N(f)= —f(0)) is obtain-
ed by Mikusinski and Rill-Nardzewki in [1]. Based on the properties of f=,g
in section 3 representation formulas for classes of =,-multipliers and commut-
ing operators with /, are found. In section 4 a representation formula for an
arbitrary continuous convolution of /, by means of the convolution (0.6) is
obtained and some statements about description of their divisors and nondivi-
sors of zero are proved. In particular, a Titchmarsh type theorem for anarbit-
rary continuous convolution of integration operator / in C[0, <o) or L! [0, c0)

loc
is obtained. It is proved that every continuous convolution of [ in C[0, o) of

L] [0, ) has not divisors of zero. The isomorphism is also proved betweep

the Mikusinski’s rings for arbitrary continuous convolutions of [, in classes

of subspaces of L! or L] .

The general Dimovski convolution for the-operator lf+ @(f), @cC* is ex-
tended to the space BV in section 5.

The symbol=, . denotes equality almost everywhere.

1. Continuation of the convolution f=,g in L'.L” properties. Let us
consider the bilinear expression

(1.1 fog(x, )= j f(x+ t —u)g(w)da.

Obviously it exists if f, gcC and then fog(x,f) is a continuous function of
two variables. However, it is not sure if feg(x, £) exists when f, g¢L'. This problem
will be solved in theorem 1.7. The question about the continuation of fs,g in
L' depends on the possibility to apply the functional N on the variable x in
fog(x, £), since now it is not always a continuous function of x for a fixed &
Let now A=|a, b] bea compact segment.

Theorem 1.1. If fele, gel? with 1<p= +coo, 1/p+1/g=1 then
fog(x, t) belongs to C(A?) and

(1.2) sup | fog(x, &) SIS llo| &lle-
(x,0)ea*

Proof. If (x, £) is a fixed point of 4? it is clear that the function of &,
reg)=f(x+t—u) belongs to L7 in the segment with endpoints x, £ which is
contained in 4. Then the function r.(2)g(u) is Lebesgue integrable in the same
segment, i.e. fog(x, f) exists. Let 2, & be such numbers that (x4, {4+ k)ca%
From Holder’s inequality one has |fog(x+ &, t+k)—fog(x, f)

x+hik t+h+k x
<llglgt S, 2t ISPt || fat kot k)~ fw) |# [ Veda)
X+ R 1+ t

and we obtain the continuity of fog(x, f) by the fact that if f¢ L'[c, d| then
J2 f(u+8)—f(u)|du tends to O when # — 0. Thus (1.2) becomes evident.

The above theorem shows that if fcL?, gel? then fxg(f) exists for each
té4 and it is a continuous function of £.

Theorem 1.2. a) f«g is a continuous bilinear operation L°X<L% — C
when 1 =p=-+co, 1/p+1/g=1 and

(1.3) | feaglesIN| || flip |l & llgs
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b) /+.gis a continuous bilinear operation LPXLP — C when 2 p=+co
and | fr.g c=m(A) PP N| | flp [&p

Proof. a) is evident. b) follows from the fact that /7c /v when p g
since 4 is compact. Then | @ o= m(A)»=2P | g, for gelr.

For the following considerations we need some facis from complex mea-
sure theory. It is known by the Riesz theorem that the functional NV with
compact support can be represented by the Riemann-Stieltjes integral

(1.4) N(fi=(R. S)j'f(x)dn(x), neBV.

We shall consider the complex-valued function n(f) extended as n(a) in
(-~ >, a) and as n(b) in (b, + o). The function n defines a complex regular
Borel measure » which support is compact, containing in .i. The construction
of » may be different with respect to the approach of the integration theory.
For our considerations the Hewitt and Ross aproach [5, ch. 3] or Ed-
wards approach |8, ch. 4] are most convenient. In their approach the mea-
sure » is defined by a continuation of the functional M(f)=(R.S)/ = f(x)dn(x),

where f¢C(R'). Let |»| denote the total variation of the complex measure ».
The functional N extends to the space L'[.1, » } as Lebesgue-Stieltjes in-

tegral [,/dv and |N||—|» (4). For this continuation we shalluse also the no-
tation NV(f). If 4 and « are complex measures, then the 12> « denotes their product.
Itis known that | A><u - |< | [5,236]. We shall oiten use the notation [¢d «

defined as/|cqfduwhen a-<c--d=b and by — [(j4fdu whena d<C ~b.

LLemma 1.3. Let v and . are arbitrary full regular complex Borel mae-
sures in R, let m be the lLebesgue measure, and let )-—-v>Xuxm. Then the
function F(x, t, u)=f(x-+t—u) is |1 |-measurable when fcL'.

The lemma can be proved in a similar way as the analogous statements
about the w<m-measurability of the function f(x—u), see [5, 367| and [6, 17].

Lemma 1.4. Let fclr, held where 1—p—=-+oc 1/p+1/q-—1. Then the
functions [“f(x-+t—u)h(t)dt and [%[f(x+t—-u)h(t)dt are continuous in the sets
i(x, u): xt|a, b), ucla, x|} and {(x, u):xt[a, b), ut|x, b} respectively.

The proof is as in theorem 1.1 and will be omitted.

Lemma 1.5. Let fel' and | [4fh =K |h 4 for each hcl?, 1 =g<+ co.
Then fcL? with 1/p+1/q=1 and ||f!,=k.

For a simple proof see [6, 24].

Theorem 1.6. Let u be an arbitrary regular complex Borel measure
in R'. Then for each fcl' the function

(1.5) M(2) n.f',{fff(x+/—u)¢u(u> }

exists m-almost everywhere in A and belongs to L'. The operator M is a
continuous linear operator from LP to L”, 1 -p—-+-o from BV to BV and
(1.6) \Mf|lp=| NI |u| (D] f]p [EL,

(1.7) \Mfllav==2 | NI w|(d) |f|sv, [eBV.

Proof. There are some differences between the cases p=1 and |<p
+ oo, but we shall prove the theorem in both cases simultaneousy. Let us intro-
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duce the function ~# where #=1 when p=1 and /% is an arbitrary function
of L9, 1/p +1/g=1 when 1<p=+cc i.e. 1=g<+ . Let

Dy ={(x, t): x¢[a, b), te[a, x|}, Ds={(x,t): x¢|a, b], te(x, b}
Let us consider the integrals

L= fdlvi(0) ] dt [ fo )| d]w@) = [T A ud v <,
Ly [d|vix) [ dt [ |fix+t—a)h(t)|d|u|(u)=[[Ax,w)d v X u,
4 (b (6.1 D

where Aj(x, u) = [“ f(x+t—u)h(t) dt, Ayx,u)=[|f(x+t—u)h(t)|dt by lemma
1.4 are continuous functions in the compact sets D,, D,. Hence the last integ-
rals in the formulas for /,, /, exist. Tonneli’s theorem shows that f(x
+t—u)h(t) is|» XmX u|-integrablein the Borel sets S,={(x,¢, u):(x, t)cD;,,
uelx, ¢}, Sy—{(x, ¢, u):(x, t)eDs, utlt, x]. Now from the complex measure Fu-
bini’s theorem [5, 237] we obtain that the functions

Fio =) [ fott—udulw), Fyx = k) [ [+ t—udu)

are |»| X m-integrable in D,, D, respectively. Hence the function

A 0= - 0 55

is | » X m-integrable in 42 It follows now that the function 2(¢)Mf(£) = | 4F(x, t)d»(x)
is m-integrable. Since #=1 when p=1 then Mf¢/L! holds. Then it is easy to
see that | Mf|, =L, +L=|N| |u(4)||f ;- When 1<p=+occ we have that
Aix, t) = fllpll kg and | [sa(OOMf(2)dt | =h+L=|N| [u (4) |f |, | 2], hold
for each 4¢L9, hence by lemma 1.5 Mf¢L? and (1.6) hold.

Let now g¢BV. Then the function F(x, )= [%f(x+¢—u)du(u) exists for
each (x,f)c4? (see remark | after theorem 2.2). Let x, be an arbitrary point
in [a, b and a—=(f, ..., t,) be an arbitrary subdivision of [a, b]. Let

b b
S. F(Xoy£)—aer 2773 | F(Xo, tr+1)—F(xo, ta)|. We shall prove that S, F(x,, 1)

=||fllev |V |u|(4) for each xytd. Let @’ be the subdivision of [a,ab] obtained
from a by addition of the point x,. It is clear that

b b b 1]
S. Fl(xo, £)=SuF(xq, t)= Sz F(xo, £)+ S, F(x,, ),
a a a a

where B=(&o, ..., &), =< ... <&=X, and y=(ng. .., Ns)y Xo=1Mo< ...
< ns=b.Whenx,=aor x,—b we consider the corresponding g or y empty and
their sums equal to 0. By usual but tedious considerations it can be proved

Xo b
that S;F(xo )= Vif. wl()+]flle 1| [a,%e) and S, F(xot) = V2 f . u|(d)

+[|f loo | 22| (%0, O]. Nowv itis clear that ESIMf(tH,,)—qu(t,)'gl N|| | u|()f!lav
hence Mf¢BV and VEMf=| f|lav||N| |u|(4). The theorem is proved.

It is true also that M:C —- C when « is a continuous measure but we
shall not need this fact.
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Theorem 1.7. a) Let f, gcl'. Then fog(x, t)<LYA% v <m!, [ ,g exists
m-almost everywhere in | and

D) If fel7, p oo and gL' then fxgclP.

c)lj f, g L p= - o then f[=g:LP.

d) Ir féL”,gJ_‘/ and | p,q,r——+~with 1 'p+1/g=1+1/r, then =g L" and

(1.8) W frollr=| NI | f 5 |8l

€) fof is a continuous bilinear operation L'XLP — L7, [7<[7 — [ and
LP X L3> L"), when 1/p+1/g=1+1/r

Proof. Let «, be the complex measure defined by the absolutely conti-
nuous function a(f)= [g. Let us apply theorem 1.6 to the operator M/
= Nl T f(x+t—u)duu)} = Net [7 flx-+t ~u)g(u)du}. Then we obtain a), b) c) By
(1.6) it is not diificult to prove the mequalmes [ fecgllp==I|N I |'flp| g, for
fel?, gelt and | frog p-m(A)- V7 [N | fllp | &llp for f geL?. On the basis of
the first inequality d) can be proved by the Riesz Thorin theorem as
for the usual convolutions in [10, 142]; e) is evident.

Theorem 1.8. The operation f+,y is bilinear, commutative and associa-
tive in L. If fog(x, t)cLY1*, v|x|v|} (this is true jor example when fogt
C(42) as in theorem 1.1 or when N is as in theorem 2.7), then

(1.9) .V(f*(g):i()-
If N(1)= —1 then a f¢ is a convolution for [, (0.2) and
(1.10) Lof = 1xof.

Proof. The commutativity can be easily obtained by change of variable.
Now we shall prove that for all f, g, A¢L! a.e. holds

(1.11) (f*o&)xoh — [*o(8*oh).

Let «, B are different complex numbers. It is easy to see that e« e
=(a— )" N jexx #t—ehx+at} and [elixyein! |« el — eftts [eint o] for all pairwise dif-
ferent real numbers 5, 5, ;. From the continuity of the operation = : /L'
L= — C it follows that the above formula holds everywhere when certain
pairs of 5, », ¢ are equaltoo. Since the linear span of the set {e/:R!'} is dense
in L? and =, :L?*X}L* — C is continuous bilinear operation then it follows that
(1.11) holds everywhere for functions of L% Now if we use the density of L2
in L' and the continuity =,:L'>X L' — L' we obtain that (1.11) holds a.e. for
f, & h:L.

When fog(x, £)cLY 4% |»| X |v }, from the obvious equality fog(x, ¢)

-fog(t, x) and Fubini’s theorem, it follows that

N(f#8) ~ NeNxlfog(x, 8); -~ NN foglt, x)j - —N(f+8g).

Hence N( f#g)=0. The idea oi the last proof is due to I. Dimovski. Now
when MN(1) = —1 we have

e of - Nel[f) - Nllf )= 1)) = NQY(O)+ NUf = Lef.

Remark. The equality (1.11) holds everywhere when fcL”, gele, 1/p
b 1/g— 1, hell.
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2. Differential properties of [fx.g.
Theorem 2.1. If fceAC, g¢l' then [+ gcAC and

(2.1) (f#8) = a.e. f o€ — N(f)&,

(2.2) | f*0& | ac=KI||fllac ||1& x-
The operation =, is continuous ACXL' — AC.

Proof. Let ftAC and N(1)=—1. Then f=If+f(0)=[,f--N(f) and from
(1.10) it follows that feg=1I[ f=.g— N(f)gl], i. e. f#g€AC and (2.1) holds. For
the special case N(f)= —f(0) it follows that (2.1) is true for the convolution
f:g. When N is an arbitrary continuous linear functional then AN(f)

N(D+H[14ND]f(0), where Nif)=N(f)—[1+MN1)]f(0) and N(1)=—1.There-
fore f- g@=frog@—[1+ N(1)]fsg, where fx.g@=Nfog(x, t)]. Now we can apply
(2.1) on f#,gand f:g. Hence (2.1) holds and in the general case; (2.2) can
be proved directly by (2.1) and the definition of || - [,

It isalso true thatif f¢L!and g¢BV the convolutlon f*ogcAC but this fact is
not evident. It is useful for our considerations to define Riemann-Stieltjes in-
tegral when its upper limit is less or equal to the lower limit. Let f, g be
two functions so that (R.S)[9fdg exists (for the definition see [7]). We use
the notations

(l{.Sthfdg-:.de,(R-S):fofdg and (R.S)ffdg=—(R.S)jfdg when d<e.

By this definition the formula for integration by parts holds when d==c. It is
a well-known fact that if fcC, gcBV then

(R.S)f gdf~0 and (R.S)] fdg~/(e)|g(e+0)—g(O)

From (2.1) it follows that if f€AC and geBV then feog= [i( f'+o&)(v)dv
-~ N(?)[tg +~ N(f+g). The last formula becomes

23) feag =] NA(R.S)] g(x+v—wd fw)} - Nf)f g+ N(f-g).

Theorem 22. Let fcC and ge¢BV, then f«,g is represented by the for-
mula (2.3) and f+ g¢AC. The fanction N {(R.S)[* g(x+t—u)df(u)} belongs to

C and (f«g) exists except may be in the countable set of the points of
discontinuity of the function g; further on we have

(2.4) (J+0B) = Nol(R. S)] g(x-+1— wpdfi)}— N(/)g(0)

The derivative ( f«g)' belongs to C+BV.
Proofi. Let Fx, t)= [*g(x+t—u)df(u). If feC' it is clear that F=fogand

by theorem 1.1 FeC(d?). Let now f¢C, f,C', fa— f  and  Fyx, &)= [*g(x
-+t u)dfa(u). Then for a fixed (x, £)c4?% x=¢ the relations

15 Cepauxas, xu. 3
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Fox, £) = g(8) folx) ~-g(x>fn(t>+jf~(x+t w)dg(u) and

Flx, t)- g(t)f(X)—g(x)f(t)+ff(x+t» w)dg(u)

hold.
However F,(x, x) - F(x, x)=0, hence for each (x, ¢)cA4%:

b
F(x,t)—Flx, )|<2ig|le'fa—fllc+VE&.IIfa—flc.

Therefore, F, tends uniformly to F, i.e. FeC(4*) and (2.3) holds for f¢C. We
note that the right and the left derivative of [!g exist at a point of disconti-
nuity #, of g and they are equal to g(f{, 0) and g({,+0), respectively. The
theorem is proved.

Remark 1. It is easy to see that if geBV then ge¢lY4, » } for each
complex regular Borel measure, and the functions of ¢: [, ngdv and [, gdv
belong to BV. We note that the first statement can be easily proved for the
jump functions.

Remark 2. We need also the connection between Riemann-Stieltjes and
Lebesgue-Stieltjes integral.Let f¢C,geBV andlet u, be the complex measure in
R defined by g. It is clear that (R.S)/%fdg= |(as fdu, since g is extended
as gla) in (—oc,a) and as 2(b) in (b, +oo) (for details see (8, 261—263,
275—278)). The above formula is not true in general when g is discontinuous
and |a, b] is replaced by a proper subsegment [c,d]. We shall note that now
the formula

(25)  (R-S)[fdg- ] fdug=|eld+0)—g@)fd) L&) gl ~O)/(e)

is true.
Lemma 23. If f¢C and ycBV then for each (x, t)cA?

(2.6) (R.S) fg(x+t —w)d flu)— ff(x+t—u)d,u,(u) L U(x, 0)

holds, where
G(X, t): g(t-—O)f(x)—g(x+0)f(t), a=t=x<b.
&(t+0) f(x)—g(x—0) f(#), a=x<t=b.

If felt, geBV then G(x,t)eL'{A42, |v| X m}.
Proof. Through integration by parts when x=¢ we obtain

[ote-t £ u)dfu) = g(0) fox) — g0 [(0)+ [ fioe +t—w)dgw),

which together with (2.5) settles the cases x<f and {< x. If £ x then the
left hand side of (2.6) is 0. The right hand side is also 0, since now [%f(2¢
—u)dug(un) = f(t)g(t+0)—g(t-—0)]. Now it iseasy to see that if fc/!, gcBV then
the  functions  F(x, £)=g(t—0)f(x)—g(x+0)f(f), Fix,t)= gt + 0)f(x)
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g(x —0) f(t) belong to LY.42, » < m).For example g(x+ Oyl ., »|} by Re-
mark |, fi£)eLX{4, m}, hence g(x+0) f(¢)¢L'{4* »|>Xmj. Then the function G(x,?)

F,(x, t) ior (x, t)éDl, U(x, )= Fy(x, ¢) for (x, t)602 is of LY A%, |v|X m} since
F, and F, are » < m-integrable in 1), D, respectively (for the definition of
Dl, D, see theorem 1.6).

Theorem 2.4. If feL', geBV, then f«gcAC and

@7) foog = [Nl 1 -+0 — u)du )} do

=/ f('v){[al;) g(x—0)d¥(x) + ]"Jb'j g(x+0)dr(x)jdv+N(f+g).

The formula

(2.8) (f+8) -Nx{r:‘r"ﬂx-'»t—u)dug(u)} -~f(t){“.f") g(x—0)dv(x)+ .,-5; ] g(x+0)dr(x)|

holds almost everywhere. The convolution f+g is a continuous bilinear ope-
ration [*XBV — AC and |f* glac=K|N| || fl1| &|lzv. When the functions
& and n (in the representation of N (1.4)) have no common points of discon-
tinuity then

(2.9) N(g)=jgdr= | g(x—0)r(x)+ | g(x+0)dr(x).
4 (a, ¢) [,6)
Proof. First let f¢C. From (2.3) and (2.6) it follows:

f»-og’-‘ J‘Nx{jf(X‘f“U—u) d#g(u) '_ (i(x» 'U)}d‘U—N(f)o;g-f‘N(f'g)

t

= [Nolf fort v—wdug@)lde+ | F@)do+N(fg),

v
where

Fit)= NG, 0} —gON()~ | [8l6-+0)f(x)—g(x—0) ()
+ ] (BE=0) /) —gx-+0) fldv(x) (6 [ fixkdrx)—g(e) | fox)n(x)
=|g(£+0)—g(?)] | fdv+[g(t—0)—g(®)] [ far
a,2) 2,8)
AL ] g -0+ [ glx+O)dv(o)L

However, ¢(¢—0)-—g(f) - g(£+0) m-almost everywhere, hence (2.7) holds for
feC. Since the operators of the type (1.5) are continuous in L' we obtain that
(2.7) holds for f¢L'. If ¢ and n have no common points of discontinuity, then
the countable set of discontinuity points of g has  » -measure 0. Hence
2(t—0) g() - g(t+0),|» |-almost everywhere and (2.9) holds.

Remark. It is clear that theorems 2.2, 2.4 are also true when g¢l! and
¢ is identical a.e. to geBV. Indeed now f«u@ = fe,g. However, in the formulas
(2.4), (2.8) we must replace g with g.
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As immediate consequence of theorem 2.4 we obtain a result for the usual
convolution fxg. It happens that this result is a generalization of the theorem
for differentiation of f+g proved by Mikusinski and Rill-Nardzewski
[1] when fcC, geBV.

Corollary 25. Let felL', gcBV. Then:

a) If A=|a, b], a<0<b then

2.10) fxg = Oft { 6{3‘('0 —u)dug(n)ldo+ Ujl f(v)H(v)dv,

where H(t)=g(0+) in [a,0) and H(t)=g(0 ) in [0, b].
b) If 4=[0, b] then

@.11) (Fo@) = s ] ft—u)duaglt)+2(0) fi).

Prooi. It is clear that fxg=fr,g with N(f)=—f(0)= —3,( f) hence now
N(f+g)=0. Using (2.7) and the obvious equality

g(0+), a=t=0,
g(0—) 0<t=b,

we obtain (2.10), where /7 is replaced by /. Since H=,.H (2.10) holds.

From the theorems 1.1 —1.8 and 2.1 —2.4 many consequences can be obtained.
In Table 1 (on p. 229) we formulate the properties of f#,g, when NV is an ar-
bitrary continuous linear functional in C. In this table Lip denotes the space
of Lipschitz functions.

When some of the spaces C, BV, AC, Lip hasindex N it means, that the
functions f of the corresponding space satisfy the condition N(f)=0. We de-
note C{—=aed fEC*:N(f)= ...=N(f*1)=0}and C}  =qer{fcC*:N(f)= ... =
N(f*=1)}=0, 0=p=k. Obviously C%=C} .

The conditions imposed on the functions f, g in theorem 2.1—2.4 are suf-
ficient, but not necessary for the differentiability of fx,g (see theorem 2.7).
We can give some necessary conditions for the differentiability of fx,g when
the functional NV is of the form N(f)==~kf(x,)+ [%f(x)a(x)dx with an arbitrary
atBV, k=0, x4, (theorem 2.9). THere exist functionals N for which fx,g is
differentiable always when f, g¢L'. In the following considerations a class of
such functionals is given.

Lemma 26. The functional N is of the type N(f)= [ f(x)a(x)dx with
atBV iff N(f)=F(lf) where F is a continuous linear functional in C. A func-
tional representing N is

(2.12) FA/)=al®) f(8) ~ (@) fa) ~ | fda,  Fo(1)=0.

Both functionals F,, F, for which F\(If)=F(lf) are connected with the iden-
tity F\(f) =fO)F\(1)=F1)]+Fyf) for each feC.

The proof of the lemma is trivial and will be omitted.

Theorem 2.7. Let N be of the type N(f)= [°f(x)a(x)dx, atBV, i.e.
N(f)=F(lf) with F given by Lemma 2.6. Now if f, gel' then f«,gcAC, and

Aly=ai— [ gx—0)ddyx)— | g(x+0)dao(x)={
(a,?) (£,8]
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Table 1
N is an arbitrary continuous linear functional C
s e e | ume | s | e | sne | dner
| |
L AN A L AC AC L
|
Lr L 24 L= AC C! c
— |
P 17 7 AC AC c AC
i
2 £ . AC ACy (o] Ct
! B —
] |
1p + 1/g =1 1 A Lipn (o] Cy
17 )72 c L cy Ch
p=2 ‘ 1 =k=+4+ =
12N £ L c* C*k ‘ c*
I —]
P+ Vg =1+ U ilsks-}-m
L BV AC L . » nae | C
L? BV AC Lr l r=min(m+n, m+q+1, m+p+1)
|
c BV AC C+BV
Cy BV Ct Cy
c | BVnC c c l
‘ BV BV AC BV
'[ Ac | BV AC BV
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(2.13) (%8~ a.e.Fxl fog(x, O)}+F(1) fxg —f. N(& ~ g . N()),
where F denotes also the Lebesgue continuation applied on the variable x
Proof. Let fcC', gC. Now 0/0t[fog(xt)] = — f()g(x)—f(x)g(t)

+0/0x] fog(x, t)]. By an elementary theorem for differentiation under the integral
sign [11, p. 663]) and lemma 2.6 we obtain

b b
(fool) o | fog(x, Ha(x)d-x = [a(x) o fog(x, tydx

b
— [a(x) ~ftig(x) &) f(x)+ o fog(x, Hldx— A( £,
where A(f, &)= qer —f(OON(2) —g(E)N( f)+ Fel fog(x, )} F(1) f+g, hence
t
(2.14) f*o& =‘.)f A(f, @u)du+ N(f+g).

Now if F denotes the Lebesgue continuation, then by theorem 1.7 A(f,g).
exists for f, gfL!, and it is continuous bilinear operation L' /L' L'. By an
approximation we conclude that (2.14) holds in L'. The theorem is proved.

Corollary 28. Let the functional N be as in the previous theorem.
Now if f, gcC, then f+gtC'" and (f#g) is given by (2.13).

Many conclusions from (2.13) are given in table 2.

Theorem 29. Let N(f)=kf(x,)+ [?f(x)a(x)dx with at BV, x| and a
constant k+0. Then

a) If gel' and f#g€AC jor each fclL' then g- ,.g¢BV.

b) If g¢l' and fr.gcl' for each fcC then g=a.gcBVNC. R

) If a=0 and if gil' and fxgcC' for each [¢Cy, then - 1.g¢BV and
NI(f#08)]=0. :

Proof. In the case N(f)- —f(0) the proof can be found in [9]. In the
more general case, when N(f)=—f(x,) it is easy to see that fsog T "T,f+
T.g), where T, :L'a, b] —~ L'la—x, b—x,| is the shiit operator T, f(¢)

f(xo-1-£), and the problem can be reduced to the case x,=0. Thus the theo-
rem is established for the functionals of Dirak type N=4,.. Now to obtain a)

in the case when N(f)=f(x,)+ F(If) we note that now f«,g=f+.g+ f:ng where

f#08 = Fullc fog(x, £)}¢ AC by theorem 2.7, and hence f g - qerds, of foz(x, H}AC
for each fcL'. Therefore g ...g¢BV.
The case b) is similar one, but now corollary 2.8 can be used.
Theorem 2.10. a) If N is an arbitrary continuous linear functional in
C, then the operation

(2.15) frog— 3 (foo)

is a continuous convolution with a unit element —the function {\} for the ope*
rator ly in the spaces BV, AC, C* 1< k= co.
by /f Nis of the type N(f)- [f(x)a(x)dx, with acBV, i.e. if NUf)
F(lf), F:C* then(2.15)is a continuous convolution for l, with a unit element—
the function {1} in the spaces L', 17, 1 -p-.co, C and BV, and it can be
expressed by (2.13).
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3. Classes of multipliers of :, and operators commuting with /,. In
this section we find classes continuous operators, commuting with /, in some
subspaces of L' or L] in the compact or noncompact case for A, respec-
tively.

)ll,emma 3.1. a) The linear span of the set S—{li(1)}y_, is dense in C.

b) Lety,=I%1)for afixed 1-~k<+ co. Then the linear span of the set S,
={{lwp)}s>, is dense in C},.

c) The space C), is dense in Cy relative the topology of C.

d) If M:Cy — C is a continuous operator commuting with 1, in Cy then
/”(CN)C CN.

Proof. a) holds since the linear span of S is the set of all polynomials.
To prove b) we note that f is of the linear span of S, iff f=I}(p), where p
is a polynomial. Also the functions of C% are in the form lX(g), gcC. The
proof of the last statement can be obtained by induction. Let now f€Cxy. There

exists a sequence of polynomials P2, —C>f. Then Q, ;fp,,~N('p,.)—c'f—— N(f) =f
and Q,¢ C), since MQ,)—0 and c) is proved; d) follows from the density of
Cl in Cy, and from the fact that Mf—Ml.g=I[Mg for fcC}, i.e. N(Mf)=0
for feC),.

The main purpose of the next considerations is to find representation for-
mulas for classes of operators commuting with /,. The main theorem is proved
by many assumptions, but it is an useful instrument to find a series represen-
tation theorem in some subspaces of /' and L] . We shall consider only the
compact case. The noncompact case can be delt with in the same way.

Let Xc Y be subalgebras of L!(+,#,. and let X and Y be Banach or
Fréchet spaces relative to the linear operations. The identity of the functions
in these spaces is understood in the sense of identity almost everywhere. Let
X be an ideal in Y, and let f+,g be a continuous bilinear operation XX X—X
and X< Y — X relative to the topologies of X and Y. We shall assume for
simplicity that AV(1)=—1.

Theorem 3.1. Lel A contain all polynomials and let they be dense in X.
Then M: X — Y is a continuous linear operator commuting with l, in X iff
for all f, gcX:

(3]) M(f*og):n.e.Mf*og:a.e.f*nMr
Let my= M(1).Then for each fcX we have my+fcACy, (myx,f)¢ Y and
(3.2) Mf = a..d/dt [mg=, f].

Conversely, each mY with the properties mysfcACy, (mo, f)'¢Y for each

feX, defines by (3.2) a continuous linear operator M:X — Y, commuting
with 1,

An equivalent form of the representation (3.2) is
(3.3) Mf = a.e.d*1/dt* m,x, f),

wherem, ~ MIX(1), k=1, 2,.... If Y is subalgebra of C then (3.1)—(3.3) kold

everywhere. If Y is subalgebra of BV then (3.1)—(3.3) hold everywhere except
may be on countable set.
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Table 2
|
! N is of the type N (f) = F (If), FeC*.
! ‘| 2 | S*e 7 % 8)' ‘ f %) H / l g :/‘»gi (f % g) ‘(/‘g)"
: | AR
L L AC o | c ' c Lo c |
SR B i R R
Lr rr | AC N | C ; BV ! AC | BV+C
I— s — i l} H— SN T N
L7, Lt AC JZ Il Cyn BV .| C c
—] e i " NPT KALTTNE A ki o4
v, |1 e c | " c | svy ! i | BV
M BN A | !
i \ | i —‘v_wﬁ —_— RN
| Ve + 1g =1 | ‘ ; Cy | BVy | C | AC |BViC
L3, .l L5 c c Cy |BVynC! C2 l o c
e L%
r=2 c a ol ¢
AN SO S BeSis ) ‘i- gre . L) e
L [ 2 ! c c c ACy | © | AC L
| Sl F—

L BV, ! AC BV L BV | AC ! c | BV L
N ESS— -INER i,Aa.l—.—.—. TS
A AC c AC L BV | ACy, | C | AC BV
L\, | BV, | AC i |lac | ac | ¢ | ac L
L% BV, c AC L? ACy| 4ACy | O | AC

_ i
BV BV | AC BV L BV, | BV, ’ ct | AC BV

First we shall make the following remarks: The algebras L!, X, Y do not
ha"e unit elements relative to the convolution =, since if l=of=f for each fc.X
th n [(e)=1#l=1, hence e=[1}'=0. Now the operator [of =1#f is a conti-
p .ous one from X to X and from Y to X. Also [(X)c X.

As usual we consider the spaces X, Y, C, BV, AC,... as subspaces of
/' consisting of the classes of functions which are identical a.e. to the func-
tions of X, ¥, C, BV, AC, ..., respectively. When we use the notation f* for
a class of integrable functions f:L' it means that f/ has a differentiable element

with integrable /7, determining the class f'¢/'. This is the sense in which we use
he derivative in (3.2),since as we shall see from the proof, my=,f is equal a.e. to
the absolutely continuous function [,Mf. We can avoid this complication if we
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use the representation (3.3) for k=1 since now ZMf=Ilmg.f= m*.f every-
where. As we shall see also from the proofif X+ Yc C then/ Mf=my=,f every-
where.

Proof. Let M be continuous linear operator commuting with /, in X.
From the obvious identity Mls,1=1%,M1 it follows that  Min(1):Im(1)
= jA(D=MI(1) for n, m=0, 1,..., hence

(2-4\ Mfxog =fxoMg,

when f, g are polynomials. By approximation we obtain that (3.4) holds in X.
let y=M(f+,2) —f+Mg, then by the remark after theorem 1.8 it follows that [y
= TeoM(lofio@)— 10l (M fzo€) 0 is true everywhere since /,f is continuous func-
tion. Hence yp=,.0. Conversely if M is an operator from X to Y which
satisfies (3.4) from the above formula it follows that M satisfies (3.1). In a
similar way as in [12, p. 20—21] it can be proved that M is a linear closed
operator from X to Y. Hence M is continuous.

From (3.1) we obtain that [ Mf= l=Mf=a.M(l)f and (3.2) holds in
the sense of the remark to the proof of the present theorem. The last equa-
lity holds everywhere when X+,Y < C. Obviously if YcC then(3.2) holds every-
where. Conversely if mY so that mgf{ACy, (my=1)¢Y for each fcA and
M is defined by (3.2), then we can obtain directly that [, Mf=mg=,f= Ml.f and
by the closed graph theorem we can conclude that M:X — ¥ is continuous.

The above theorem is convenient for applications in the cases when A
and Y are some of the spaces L!, L7, C, BV, AC, or when A=Y-=C*% 1
<k= +oco. By theorems 2.6 and 2.8 we can obtain a complete description of
commuting operators, for example in the cases X=VY =L!, C, Cxy when N(f)
=kf(x,)+ [2f .a with a¢ BV, x4, k=-0,0rin the cases X=Y = L', C when N(f)
=[tf.a, acBV.

For the general case with an arbitrary functional NV¢C* we obtain by
theorem 2.4 a complete description of the commuting operators and #,-multi-
pliers, for example in the cases X=Y=BV; X=BV, Y=L, l<p=-+4oo;
X —y=L' M(X)c BV. Also other results can be obtained. In all above cases
of complete description, the commuting operators can be represented by (3.2)
and (3.3) in the forms (2.1), (2.4) or (2.8). See also tables 3, 4.

Representation formulas can also be obtained for the commuting opera-
tors in the case when it is not sure that X contains all polynomials, but
Ck cC for some 1 ~ k< +occ. We note that there are spaces (for example C*)
which contain all polynomials but do not contain C%. Now it is clear that the
operator 5 'f= I}(1)#%f is continuous from X to X and from Y to X.

Theorem 3.2. Let C’:(chor a fixed k and l(X)c X. Then M: X-Y
is a continuous linear operator commuting with l, in X iff (3.1) holds. Let
m, - MIX1). Then for each fc X we have m gz, fcCk,, (marof JPEACN, (masof ) **V¢Y
and (3.3) holds. Conversely, each m. Y satisfying the above properties de-
fines by (3.3) a continuous linear operator from X to Y commuting with L,

The proof is similar as in theorem 3.1. First using lemma 3.1 b) from the
obvious identity Moy, =y,*oMyx we prove that (3.4) holds in C%. Then we
form the function y =Mfsg— fseMg and prove that [2#+%y=0, hence (3.4)
dolds. The other part of the theorem we prove as in theorem 3.2, but now
we must use [} instead of [,
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Table 3
N is an arbitrary functional of C*
! ]‘ To be M : X —» V (defined by (3.2)) contiinuous
| operator, ccmmuting with £, it is
b'e l ¥ ; S B - | Now (3.%) can be
enough m,=M (1) | necessary and sufficient | expressed by
J ! to be in | my, = (1) to be in
| | PR R
:l L | Lt BV unknown i
2 A BV ' unknown 1
[ ;
Lr L? BV i unknown I
C L BV ; unknown
C C BvVnC | unknown |
|
Cy E (o BV | unknown
Cy BV ’ unknown j
“N ‘ |
BV L Lt { L } (28)
] |
BV | L? Lr ' Lr \ (2.8)
BV BV BV ‘ BV 1 (2.8)
AC L L ; L 2.1) 1
1c ¢ | c ‘ c | 2.1
| |
AC BV | BV | BV [ (2.1)
‘ | \
ct | v | et 1 c* , 2.1)

The idea to represent the multipliers in this way is due to I. Dimov-
ski [12]. The results of the present section can be formulated in the form of
the representation of the operators, commuting with d/df in invariant a hyper-
plane N(f)=0 as it is done in [14].

Remark. If 1¢X and X is as in theorem 3.2 or 3.3, then [, is conti-
nuous operator from X to X, from VY to X and {ftAC:f¢Y|c X since f

lof +N(f). In the case ¥~/ when 1¢X then ACcCJX, hence C\,c X and X

satisfies at least the condition of theorem 3.3. We note that now X contains
all polynomials, but their density relative the topology of X is not sure. When
V=1 and I%(1)<X for some k:1sk<co then it is easy to see that CA}f'c X
hence X satisfies also the condition of theorem 3.3.

By theorems 32, 3.3 using table 1, 2 and the results in sections I, 2
we can obtain many facts about the representation of the multipliers of fs,g for
series subspaces of /! or L!

loc*

4. Representation of the continuous convolutions for the operator [,
We shall consider simultaneously the compact and noncompact case for 4,
Let X be a Banach or Frechet subalgebra of L'(+, +, ) or L] (+, %, ). Let
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Table 4

b
N is of the form N(f) = [f (x) a (x) dx withae BV, i.e. N(f) = F(if), Fe C*
a

X ' v M : X - Y is a continuous linear operator commuting I Now (3.2) {
i with 4, iff m,= M (1) belongs to | transforms by |
- - — I
u ! |
nooow L i1 q218) |
I L» L @13 1
| | H
by € o€ | i e SeRg€r g caren B LY o@D ]
b
N is of the form N (f)=kf (xg)+ [f(x) a(x) dx withae BV, xo¢ 1230, i.c.
a
N (f) = &f (xo) + F(If), Fe C*
. I . ' M : X - Y is a continuous linear operator commuting ! Now (3.2)
X ¥ with £, iff my = M (1) belongs to | transforms by
o B i
AN A BV (2.8) and (2.13)|
i

C ‘ C BVnC (2.4) and (2.13){
; 5 |
Cy | C BV (2.4) l
when a=0 i
| ! r
| Cv | Cn -1 (2.4) }
| wehen a=0 E
ool s v | !

the space of the polynomials be dense in X relative to the topology of X, orlet
Chec X and [x)c X. Let also the convolution =, be acontinuous operation
Xx X — X. N

Lemma 4.1. Let = be another continuous convolution of I, in X. Then
for all f, g, heX is true

(4.1) fe(groht) ~ (fe@)roh =[+o(gwh).

Proof. Let the operator 7, be defined by 7/(g)=f+g for a fixed feX.
Since = is convolution of [, we have l(f«g) =fsl,g, i.e. [,Ts=Ty, then Ty is a
multiplier of = by theorems 3.2,3.3. Hence T/(g=oh) = (T sg)%oh, i. e. the first identity
of (4.1)is established. This identity and the Eommutatj‘vity of #, igp]y for aibitrary
a, b, ctX: an(bs,€) = (@eh)r ¢ — (bra)eo€ — bH(@s€) = br(@so€) = balcxga)=(b+C) #4a
- a*o(b:c).
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Detfinition We say that the element fcX, f~ =0 is an anihilator for
the operation « iff fig—=0 for each gcX. The fact that = has no anihilators
we denote shortly as + is w. a. (without anihilators).

It is clear that », is w.a. in X since neither {1} nor /(1) are divisors of
0in the caseswhen X contains the set of all polynomials or Cr = X, respectively. We
shall use the notations Hy(X) for the nonempty set of nontrivial nondivisors
of 0 for », in X.

Theorem 4.2. Every continuous convolution w. a. * for I, in A has
the same set of nontrivial nondivisors of zero as #,. The convolutions =, and
= have one and the same set of multipliers.

Proof. Let H(x) be the set of nontrivial nondivisors of 0 for = in X, and
let feHy(X) and feg—0 for some g6 X. Then (f+g)=, h=fi( geo h)= f*o(gar k) =0
holds for each k¢X. Hence g*h -0 for each k¢X and g=0 since = is w.a,i.e
feH(X). This means H(X)CHX), hence F(X)==(@. Now we can proceed in
the same way and prove that A(X)c Hy(X). Let now M be a multiplier for =,
and let 4 be an arbitrary element of X. Then

(M(2) -~ Mf-Rlen h=M|(Fegleoh|— [ MFeglvoh=M] foo(goh)] =| Mf-gleoh O,

hence M(f+g)-- Mf#g, i. e. M is a multiplier for = The converse stalement is
evident.

As corollary we can formulate a theorem proved by I. Dimovski [13]
when X=C.

Theorem 4.3. The rings of Mikusinski for all continuous convolulions
w. a. for the operator l, in X are isomorphical.

Proof. Let the first convolution be =, and the second + is an arbitrary
continuous convolution of /, in X. The ring of Mikusinski M,(X) for =, con-
sists of the fractions f/g, where fcX, gtH(X) and f /g, =fo/g2 1if fi%.8q
—fq*ogl Smce +is w. a, then H,(X)=H(X), therefore the ring of Mikusirski

M(X) for = consists also of the fractions f/g, fcX, gtH(X)=H(A) and f1/&:

~fa/ga i1f f 1282 =f" «rgl It is easy to see using (4.1) that f,/g,=f,/g, in ‘JR.,(X)
iff f,/g,=fa/gs in M(X). Then the sets Moy(X) and M(X) coincide, and it is
easy to see that the identical operator is an algebraic isomorphism between
Mo(X) and M(X).

Theorem 4.4. Let there exist acH(L') so that ax,)L'c X. Then the rings
of Mikusinski Mo(L") and IN(X) are isomophical. The assertion is true in
particular when X contains one of the spaces C, BV, AC, L', Ck, 1<k
< + oo.

Proof. By the assumption of the existence of the element a it is easy
to prove the relations H(X)=H,/(L)NnX, a+H,(L')c Hy(X). Now it is clear
that, if f/geMis(X), (i. e. feX, gEHW(X)C Hy(LY)), then f/geMo(LY) and if f, /g,
=/5/8 10 M(X), (i. €1 %0~ fa*cg)) then f,/g,=f,/g, in M,(L"), therefore My(X)C
W (L'). Now it is clear that the identical embedding /: M(X) — Mo(L?) is an
injective homomorphism. However / is surjective since if f/g¢,(L') then f/g

ax,flax.g, where ax,f¢.X and ax,gcH(X). Hence / is an isomorphism between
Wlo(L") and My(X).
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We note that such an element ac¢Hy(L), axL'c X exists always when X
is an ideal in L! and Hy(X)= g. The existence of a is possible also in the
case when X is not an ideal, but X contains an ideal in L' which has at
least one nontrivial nondivisor of zero. For example X=C* is not an ideal in
LY but a=1I%1) has the above properties.

Theorem 4.5. Let 1¢X. Every continuous conwvolution « for ly in X can
be expressed by means of =, with the formula

(4.2) frg=ad[dto%o f=o8)-

Proof. Let f, g¢X. Then using (4.1) we obtain: 0o fre@= (1% 1) %o f%,8
=1xol%o(f * g) = lj] f+g]. Hence (4.2) holds.
We can prove also the formula of the type

(4.3) frg=d+2/dt+ g, frog]
with g=/4[1]=,/4[1] when [*[1}cX, i.e. (4.3) holds always when C% C X.

Theorem 4.6. Let 1¢X. A nontrivial continuous convolution = for ly is
w. a. in X iff the function o= 1= 1is nogtrivial nondivisor of O for =, or equi-
valently iff {1} is a nondivisor of 0 for =.

Proof. It is clear from (4.2) that o= 1%1 -0 iff « is the trivial convolution
f:gEO. Let now = be w.a. and let g=,f—0. Then for each gcX we have
oo fr = 1%,1%,(f+€) =0 and f#g=0 for each g¢X, i.e. f=0. That means gt
Hy(X). Conversely, let o= 1#1¢H,(X) and let f+g—0 for each gcX. Then 0%of o8 =
1,15, fog) =0 for each gcX. Hence gzf=0, i.e. f=0. That means+ is w. a,

Now if o¢Hy(X) then + is w.a. and {1}¢H(X) by theorem 4.3. Couversely,
it 1¢H(X)and g#f—=0 we have 1*0(1If)=(ﬁ1)*of=g*of:0. Hence 1sf = 0,
i.e. f=0. That means gtHy(X).

An analogous statement relative to the functions o:lg[l];lg[l), {1} in the
case [%[1JcX can be formulated.

The above statements show that if ¢ is divisor of zero then = has annihi-
lators. All continuous convolutions with anihilators are expressed by (4.2) or
(4.3), where o is a divisor of zero. The anihilators for = are all elements / of
X with 15f=0 when {1}¢X or /A1}+f=0 when [1]cX. Now H(X)=¢&.

A theorem of Titchmarsh type follows.

Theorem 4.7. If ¢, has no divisors of 0 in X, then every nontrivial

continuous conwvolution for l, iz X has no divisors of 0. In particular every
continuous convolution for the integration operator If = [if in the space C|0,
+ o) and L} [0, +co) has no divisors of 0.

5. The general Dimovski’s convolution in BV. From the theorems in
sections 1, 2 some results about the general Dimovski’s convolution for the

operator I f = getlf + @(f) PEC* can be obtained. It is known [3], [4] that

(5.1) foo ~ auf++ Pulyy | flx-+1—uwiglupdu)

is a convolution for [, in C', so that [,f= l%,f. The convolution which we
have considered in the previous sections is a special case of (5.1) when @(f)
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N(If), N(1)= —1.We aim toextend (5.1) in BV. From theorem 2.3 applied to
the variable x of fog(x, f)— —fog(x, ) for afixed £ we obtain that if fcC, g¢
BV N C then tor each (x, t)c4? the partial derivative d/ox|fogl exists, belongs
to C(4®) and

J i -
(5.2) 5o Jo8(x = (R $)J g(x +1 uMd f) + Jg(x)
Hence the expression (5.1) exists for f¢C, geBVNC and the operation
(5.3) [+ = et fr8+ P(R. 5),J;g(x Ht—u)df(u)|+ /(1)

is an extension of (5.1), so that #,: CXBVNC — C. 1 f¢C, geBV it is clear by
theorem 2.2 that (5.3) exists too, since [¥g(x+¢ w)df(u)cC(1?) and gel'{a,
¢ |, where ¢ is the complex measure defined by ¢. Hence (5.3) defines an
operation CX BV - C. However by lemma 2.3 we obtain for fcC, gcBV that
(R.S) [ig(x+t—u)df(u) - [T flx-+t u)dug(u)+ K(Z, x), where

Kit, x) {g(‘ 0)f(x) + [8(x)—g(x+O0)lfie), a=t x<b
0 let 0 f0+Hg) g 01D, a- x<t=b.

Let now f#t/L', g¢BV then [¥f(x+t—u)dug(u)el{A*m < , || by theorem 1.6
As in lemma 2.3 it can be shown that Ke¢LY4% mx ¢ |, when felYa, ¢ P
geBV. Therefore the operation

(54 J#e8 — aet f+4+ Px {tjxf(x+t—u)d,4‘(u)} + @KL, x),

exists for f¢L'NLY @), gcBV and fxgtL!, i.e. (5.4) is a bilinear operation
LNL'(@)<XBV — L' It can be verified that

(5.5) DKL, x| —g(t+ O)Iaf’ ) S(x)dop(x) + g(t—O)” jb' ] Sf(x)dop(x)
IO S (80— x—0)da((x) - [ [£() ~gix +0)ldx)}

In particular if g and the function of BV, representing by the Riesz theorem
the functional @, have no common points of discontinuity then

(56) DKL, x)} 81+ O)Iaj") Slx)do(x)+g(t— 0)| ,{, J(x)dg(x).

It f, g¢BV then from (5.5) it is clear that f#,g¢BV and by theorem 1.6
we obtain the following

Theorem 5.1. For each continuous linear functional @ in C the gene-
ral Dimovuski’s convolution (5.1) extendsby the formula (5.4) as continuous bi-
linear operation BV X BV — BV and l,f=1+,f too.

The proof follows immediately from theorem 1.6.

Acknowledgements are due to . Dimovski for his suggestions.
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