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ON A MAZURKIEWICZ THEOREM
VLADIMIR T. TODOROV

In the first part for each metric space X an example of zero-dimensional subset M of
X is constructed, such that X\ M does not contain an arc. In the second part the structure
is studied of the sets of type /"\ M, where /=[—1,1] and M is a subset of /" with dimen-
sion k=n—2. 1t is shown that every two points of /"\ M are connected in /"\ M by a streng-
thened Cantor (7—k—-1)-dimensional manifold in the sense of Alexandroff.

A classical theorem of Mazurkiewicz siates, that if M is a subset of n-dimensjonal
cube /"=[- 1,1]%,suchthat dimM-n—2, then the set /*\ M is a semicontinuum
(see [4]). This result is completed by an example due to.Vitushkin [3] of
such an O-dimensional set Mc /%, that for every two points p;=(x; y; 2);
i—1, 2 of P\ M with z,52,, there is not an arc, containing p, and p, and
lying in A\ M (an arc is a set, which is homeomorphic to a closed interval).

Section I of this paper is ageneralization of Vitushkin’s example (see theo-

rem 1). There, a O-dimensionalsu bset M of the Hilbert cube IRO is constructed, such

that INO\M does rot contain arcs. We shall 1ote, that if M is a F -subset of
/" and dimM-—-n—2 that /"\M is a linearly connected (see [7]).

Section Il is a reinforcement of the result of Hadjiivanov [6] It is
shown, that if Mc /" and dim M<k, where k<n—2 then any two points
of /"\\M can be connected with a (V,—,_,)-continuum (see Definition 2.), which
lies in I'™\\M.

1. We shall use the following theorem of Bing [2, Theorem 3.

If F and H are two disjoint continua in Ixo, there is a hereditarily
indecomposable continuum which has exactly two complementary domains
and which is irreducible with respect to separating F from H. ~

The main result of this section is

Theorem 1. There exists . zero-dimensional subsec M of IR“,the com-

plement IRONM of which does not contain an are.

Proof. Let 8={U, i=1, 2,...} be a countable base of INU consisting  of
open balls. We shall say thal the pair y-- (L, U,), where {/, and {/; belong

to @8 is normal, if [U;jc U; and Ixo\U, is connected. Denote with A the
set of all normal pairs. Apparently 4| =N, From the theorem of Bing it fol-
lows, that for every y¢ o, y=(U,, U)), there exists a hereditarily indecompos-

. . X
able continuum K,, which separates / .U, from U,. Let Ixo\K, V,u W,
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A MAZURKIEWICS THEOREM 241

and [U;)c V,. We shall show that the set {V, y ¢ A& is a base of Ixo. Let G

be an open set of 1ko and x ¢ G. Since & is a base of IRO, there isa U; ¢,
such that x ¢ U,cG. Let Obe an open set, for which x¢ Oc [O]c U,;. We may
choose a member U; of & such that x¢ U;cO. Itis clear that the pair »

=(U;, Uy) is normal. But x¢ U,;c V,clx°\ W,c L ;c G and therefore {V,|y¢I}
is a base of /N° Hence, for the set M- IR°\U {Kyl7 € 4} it is true, that
ind M=0 because Fc V,cK, and, thereiore,dim M= 0. Suppose that 1R°\M

contains the arc /7, and let ¢:|0, 1] - I'C Ix°"\M is a homeomorphism. Then
0, 1l U{eg (KynI')|y¢€ A} and from the inequality £ =x, and the {heo-
rem of Baire, it follows that there exists a member », of & {for which
Int (¢7Y(K,, N £))=D. Let, for example,|a, bjc¢—' (K, NT"). Then ¢ ([ab])
cK,,, which is a contradiction to the fact that K, is hereditarily irdecom-
posable.

[t is easy to check, that from Theorem | follows

Corollary 1. Every metric space X contains a zero-dimensional subset
My, the complement X\ My of which does no! contain an arc.

Proof. Let ¢: X— X0 be a uniformly zero-dimensional map form X to

Ro (such a map exisis; see for example [5]). Then if My=jf 1(M) we obtain
that dim My=dim M=0. If I'c X\ My is an arc then dimf(/)=1 and there-
fore /(") is not a point. From the least it follows, that f(/°) contains an arc,
but it is impossible.

2. In that section we recall some definitions and facts which are necessa-
ry in the sequel.

Further on, by space we understand a compact metric space, which is
contained in the m-dimensional Euclidean space R™.

Let X be as above. By an n-dimensional chain lying in X over an abeli-
an group 9 we understand the linear form x=a,0,+ ...+ a,os where the
coefficients ay,...,a, belong to 9, and o,,...,0, are n-dimensional oriented
simplexes in X, i. e. systems of n+1 points (vertices) of X, given in a defi-
nite order modulo an even permutations. If the diameter of the vertices of
the simplex o is less than ¢ then o is said to be an e-simplex. If each simplex
of the chain » is an e-simplex, then x is said to be an echain. The boun-
dary O0x of x is defined as wusual. Two echains %, and x, in X are
é-homologous in X if there exists a d-chain x in X such that dx=z,
—x, (notation: x5, in X). As usually if for an e-chain », we have 0x=0
(respectively, if the carrier of dx is @®CT X, i. e. all vertices of 0x are elements
of &), then x is called ¢=cycle in X (resp. e-cycle in X rel @). By an n-di-
mensional true chain in X we understand the sequence x= {x;} of n-dimension-
al ¢.-chains x; such that lim;,.. &=0. If x={%;} and »’'={x/} are two ture chains,
then we define x-+4x'={x;+x/} and 0x={0x;}. If, for some closed ®c X, @ is
a carrier of every x;, then & is called a carrier of » The true chain x={x,} is
said to be a true cycle relative to @, if @ is the carrier of 0x(® may be
empty). The true cycle z={z,;} is a convergent true cycle if the true cycle
{z; ~z,4,} is homologous to zero in X.

16 Cepanka, 3
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Let XcR™. By an n-dimensional polyhedral chain x, lying in U--R"™\ X
(or in U~ B™\ X, where B™ is an open cube in R™ for which Xc|[B™]) we
understand a chain over a group of all integers, the polyhedron of which lies
in U and contains x.

In the sequel by a cycle lying in the compactum X (rel ¢) we under-
stand a convergent true cycle over the group of the rational numbers. For
the proof of the following results see, for example [1].

Let X=X'U X" be a sum of two closed subsets X’ and X’ and 2" be
a convergent true cycle in X. Denote by 2z the part of 2" which lies in
X’ (27 consists of all simplecses of 2", everyone of which contains a vertice, belong-
ing to X’) and let z"—'=0z}.

Lemma 1 [1, p. 208). If 2"~0 in X=X'UX" then 2" '~0 in X,
— Xr n X”.

Definition 1. Let X be a metric space. The n-dimensional diameter
a'X of X is the infimum of all 8>0, such that there exists a continuous
8-map from X in an n-dimensional polyhedron.

Definition 2. The compact metric space X is called a (V,)-continuum
if dim X=n and for every two disjoint closed subsets F and G of X, such
that Int F= & and Int G= &, there is an ¢>0, such that for every partition
C in X between F and G we have a"2C=e.

A compactum XcR” and a cycle 2% lying in R"\ X (or in B"\ X) are
said (as usually) to be linked if z* is not homologous to zero in R™\ X (in B™\ X).
If X is the minimal in the sense of Zorn compactum with this condition, then
X and z* are said to be irreducibly linked.

Lemma 2 [, p. 241). Every k-dimensional compacium XCR", which
is irreducibly linked with certain cycle z° (p=n—k—1) in certain (topolo-
gical) ball, is a(Vy)-continuum.

3. Denote with /7, the opposite faces {x ¢ /"|x;=+1}; i=1,...,n0f the
n-dimensional cube /"

Take some number a¢ (0, 1) and let i, ;' ¢ {l,...,n}; i#j’. Denote by

7', ; the map r]"ij:I" — [" satisfied the following conditions :

(i) the restriction of #/ , on the set /*™\/% 6 is a homeomorphism and

nhy Ui ) =1y,
(ii) for H={x¢€ I ,| | x;|=a}, nl ,(H)={x ¢ I, x;=0}

(i) #',, (x)=x i e(x, 1%,)=a.
It is easy to check that such a map exists; get for example
1 )= (X e s X1y ¥ B0 (X, X0y Xipisee s %)y
where 0., (x)=e(x, 11,); v(9,):][0, 1] X/ —1 is a function defined by
@(d, ) for 0=d=a

v, { t for a<d=1

and ¢:[0, 1] X/ -1 is obtained by the formula
tdla for 0= |f =sa

p(s, )= : - . . .
|£(1—8)+signt.(0—a))/(1—a)for a< t|=1.
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Consider the space R* as a subset of R"(n>k); R {xeR"|xpq,
- ...=x,-0). Denote by z* ! the (k— 1)-dimensional cycle, the carrier of
which is the (k—1)-dimensional sphere S* '=R*n [". Let for i=1, 2,...,k

k
¢, be a partition in /" between /" and /* 6 and C=N C.
i=1

Lemma 3. 25 ' is not homologous to zero in ["\C.
Proof.Letd ! min ({g(q, I, i, R U{Q(C, G .ul:,)) ‘)
2 ! =1 ! J
and @ 1--o. For the number a we may choose the mappings ' , i, j¢{l, 2,
..., k! in such a way that the conditions (i) — (iii) hold. Denote 5/ =n' on’,
and ky=nio...0n4. It is easy to check that C/=h;(C,;) is a partition between

k
(L, and /"5 hi(x)  x if o(x, T") -a, where 7- U ({#,u ")) and the restric-
i=1 :

k k
tion of 4, the set /"~ T is a homeomorphism. Therefore ) /= [ C,=C.
1

. = i=1
Suppose that, 2z '~0 in /*\C. Then there exists ¢>0 such that z*¥ '~0 in
& I'NJx €l o(x, C)<el. We may assume that z¢—' is a comvergent true
cycle in @ with carrier S*-1c @. Because Cy’ is a partition in /7, then Cy is
a partition in #and @ - P UE”;9'NP"=C,/ N P-—P,. Let x*~! be the part of
z# 1 which lies in ®'. Denote dx* 1=2z*—2 [t is easy to check that the carri-
er of 22 is the set S*—1nC,. According to lemma 1. 2*~2~0 in @,. By in-
k
duction we obtain for 1 -i<k,the cycle z*x 1 lying in®,_,— n C/Nn&

i=R—i+1

and such that z¢—"—1~0in &, _,. The refore, the cycle 2° is homologous to zero in
k k

&, ,=[) C/N@ and the carrier of 2° is the set set &, NS '=NC/ N !
i=2 =2

=2

(+1,0,...,0),(--1,0,...0)}. It is easy to check that &, _, is not connected between,
R

(1,0,...,0)and (- 1,0,...,0) (because C= [ C;/ n C,’ is partition between (1,0
i=2

...,0)and (- 1,0,...,0) in @, ,),and therefore z°is not homologous to zero in
&, _,, which is a contradiction.

Theorem 2. Let McI" and dim M-k, where k=n 2. For every (wo
different points py and p_ of I"™\M there exists a (V,—,_,)-continuum K,
such that {py, p—}c KC "™\ M.

Proof. Denote with p,; and p_; the coordinates of points p4 and p—,
respectively. Since p;=+p_ then there is suchan integer i, for which py,; - p ;.
Without loss of generality we may assume that i,—n. Denote &-—(p4,+pP—n)/2
and let P be an (n 1)-dimensional hyperplane K- {x ¢ /" x, &} in [". Let Q
be the sum of two connes over K with vertices py and p_, respectively. Con-
sider the map @ :/" — Q, defined by the formula

‘P(X)=|-\'n|17-+(1* 'vni’('\'lt"',xﬂ—l: s:)t
where &= sig nx,. The restriction of ¢ on the set /"\ (/" uU/" ) is a homeomor-
phism and ¢ (/7,)~p .. Then the set M =¢ " (QNnM) is homeomorphic to
QN M and, therefore, dim M, k. It should be noted that we consider two

different copies of the n-dimensional cube /*, which are contained in the dia-
gram ¢ :I" - Q c I
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Since dim M, —k there are partitions C, between /7 and /" for i=1, 2,
1

R+
...,k+1 and such that M,N C=¢; C=[) C. It follows from lemma 3 that the
=1

cycle z® with carrier §* R+ Frl” is not homologous lemma to zero in /"\ C.
Since the restriction of @ on the set /™\(/* ,J/",) is a homeomorphism, the re-
lation @ (2%)=2*+0 in Q\ @ (C) holds. Let Kcg¢(C) be a compactum which is
irreducibly linked with 2} in Q (by means of Zorn’s lemma it is easy to,
check that such a compactum exists; see also [I,p. 210]). According to lemma 2
K is a (V,_z ,)-continuum.

Let usshow that{py, p_}c K. Suppose the contrary and let, for instance, p+§K.
Take the conne L over |2f|=S8*1 with vertice py. It is clear that LN K= g.
Since L is homeomorphic to /**1, we have 2%¥~0 in L and therefore 2f~0 in
QN\ K, which is a contradiction,

Since every (V,)-continuumis an n-dimensional Cantor manifold, the above
theorem gives the following result, belonging to Hadjiivanov [f]:

Corollary 2. Let McI"anddimM<=k=n—2. Then for every two points
p and q of I" /M there is an (n—k—1)-dimensional Cantor manifold K,
such that {p, g}c K I'\M.

The author thanks N. Hadjiivanov for his encouragement and sugges-
tions and R.Duda for his remark concerning the final part of the proof of
theorem 2.
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