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ON THE BOUNDARY PROBLEMS IN A HALF-SPACE FOR A CLASS
OF NONHYPOELLIPTIC EQUATIONS WITH CONSTANT STRENGTH

ILIJA D. ILIEV

In this paper a parametrix is constructed and an a priori inequality of the coercive type
is proved for a class of boundary problems in a half-space. The class under consideration con-
tains both hypoelliptic (e. g. the quasielliptic) equations, as well as some nonhypoelliptic
equations.

1, Basic definitions and formulation of the results.

We consider a closed convex polyhedron P in R?, satisfying the follow-
ing conditions:

(Al) The vertices of P are vectors with components — non-negative integers.

(A2) P possesses a vertex at the origin and on each one of the coordinate
axes.

(A3) All the vertices of P except one lie on the hyperplane x,=0.

(A4) If a¢ P and 0<p<a, then B¢ P (as usual, given two vectors a, B €R",

we write a=p if ax>ps, £=1,...,n, and a>p, if a=p and a=4).

We dencte by A4 the set of non-zero vertices of P and put u(g)

Ylgel, £¢ R" From (A2) and (A3) it follows that
a € A
(1) u (S)E,u 5” Sn):lén lr+ﬂ(6’1 0)’
with some natural r.

An n—1-dimensional face of P is called the main one, if it does not lie
on some of the coordinate planes. For convenience we shall assume throughout
this paper, that the (n—1)-dimensional faces of P are closed sets.

We denote by S the set of the main points of P, i. e. the set of those
points, which lie at least on one main face.

To each point a¢ R", a=0 corresponds the unique number (a) with the
property at (a) S={{(a).0:0¢ S}. It follows immediately, that the function
(a) has the properties:

1) {a)=0; (a)=0 <> a=0,
2) {ta)=t{a), t=0,

3) (a+B)y<{(a)+(B)

4) (a)y<l<atP,

5) (a)=1l<a¢S.

Given a fixed number m>0 and a polyhedron P, satisfying conditions
(A1) — (A4), we deal with differential operators of the type

A(x, D)u=( 2 a,(x)Deu, where D=(D,,...,D,),
a)ysm

Dy -z;,g}, @, (%) €C=(R), R" ={x ¢ R": x,20),
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246 I. D. ILIEV

We denote by A(xX, &)=iymm @uX) & (X € R", $¢ R") the principal
symbol of A(x, D). As in [1], the operator A(x, D) is called P-elliptic, if for
some constant ¢>0 the inequality

(2) A(-\,r S) 'C‘,'.l‘s))mv X ¢ R’;’y &€ R”v
holds.

It is well-known [1], that every P-elliptic operator is an operator with
constant strength and moreover that the P-elliptic equations are hypoelliptic
iff P satisfies the following condition:

(A4%) If a ¢ P and 0=<8<a, then ¢ P\ S.

When n =3, & =0, it follows from inequality (2) that the equation

with respect to 7

(3) A(x, &,2) 0

has an invariable number of roots A=14(x, &) with a positive imaginary part,
say d. From now on, superfluous stipulations to be avoided, we shall suppose
that n=3, d=1.

lLet m,,...,ma be non-negative numbers. We consider the following boun-
dary problem in R7":

A(x, Dyu Y a,(x)D u=f(x), x¢R"

(m

(1)

BI(X, D)llx”r 0= 3 b,'ﬂ(_\’)Ddll X, =0 g,(x’), X' R 1 _/ d.

Here the operator A(x, D) satisties (2), and B,(x, D) are connected with A
by a condition of the Shapiro-Lopatinsky type. Namely, let i’ (x, &), 1<j--d
be the roots of (3) with positive imaginary parts. Introduce the notations

Z+(X, &, 1) [n] (4 17- (x, &),
j=1
By (x, =2 b,;(x) &, 1<j-.d, and suppose that
By=m,
By (x, 0, & )= B (x, & 1) (mod A*(x, 0, &, 1)

as polynomials ini. Let us write B[ (x’, &, 1) in the form

d
Br(x, &, 1) b (X, Yyl 1 jed
/ k=1 "

We require the following condition to be fulfilled: there exists a constant
¢,>0, such that for every x’' ¢ R" ', & ¢ R\ 0
(5) (det {5 (X!, )} = (! (5)

d
where = X (my- (k—=1)/r), 2’ (&)= pu (&, 0).
k==1
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When the conditions (2), (5) are fulfilled, we call the boundary problem
(4) P-elliptic in R and also shall say that the system of operators B; co-

vers A.
Example 1. The system of Dirichlet operators B,=D/~', |=j=d, co-

vers every -elliptic operator A.
Example 2. Denote by P the convex polyhedron in R® whose vertices
are (0, 0, 0), (2, 0, 0), (0, 2,0), (2, 2, 0), (0, O, 4). Then the problem

A(x, DYt —= Gz (x) D} 8+ gso(x) D3t + agno(x)D} D3
+@oos (X)Diu+ay,,(x) Dy Dy Dyu=f(x) in ey
B, (x, D)ttlx,-0 =Dgtt x,-0=g, (X'),

By(x, DYt |x,~0= (Dju+boyy (x) DaD3 i+ 0140 (%) Dy ) | x,=0=8>(x"),
where x = (X1, Xg X3)= (X, X3),ReQa00 = @°, ReAg30™>@° ReQgeq = a°, Ggoy =a° fOr X ¢ RS
(a*>0), is P-elliptic in R3. In this case, as it is easy to be seen, we have
m=1, my—1/4, my=23/4, d=2.

Given a fixed real s we denote by AH*~(R" the space of those temperate
distributions u« ¢ &', whose Fourier transformation u is a function and

Lul}, =@n 0 +a )*u(®) PdE< ,

Hs#(R") is Hilbert space with norm |- .

It can be checked that the condition (A4) is equivalent to the assertion:
there exist constants ¢, N so that 1 +u(E4+n)=c(+ |E)V(1+u(y) for all &
n € R". Consequently Fs#(R") is a special case of the spaces, studied in [2].

For s=>0 we define the space FH*~(R"), following the general scheme [2]:

Hen(R)={n ¢ 8 (Ri):que H(R"), aln =u).
The norm in AHs* (R:_) will be noted by || -|ls. (R})-

After all, let for s=s,=max(m, m,+1/r,...,ma+ 1/r) by ¥*#(R?) be de-
noted the space

o (R TL HEmy =1l (RA=1) (uf = (&)= (€', O)

Jes» (R%) is Hilbert space with norm
d
((fy @2, =Iflimu(RD +/_2‘ (Y73 - /_,,,,_,,(R"—l).

where g=(8,,- - - ,&a)-
To the boundary problem (4) corresponds the operator A(x, D), defined

by the equality
£(x, Dyu={A(x, D)u, B,(x, D)n,,n-o,.. ., Ba(x, D)u|,n.,,}.
Theorem 1. Suppose that the coefficients a,(x), b;;(x) in (4) are infi-
nitely smooth functions in R?, bounded together with all their derivatives.
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Then for §= S A(x, [y is a continuous operator from H*»(R") into

TCtu(Rk) Aﬁu " \C u’_y‘,(R_,_)

One of our main aims in this paper is to prove, that if some additional
assumptions are made, then the contrary (in some special sence) inequality is
valid.

Let x (x/, &), X' =(xy,...,Xp), X" =(Xpy1,...,Xn) De a fixed partition
of the variables. We formulate the following condition for P:

(A5) If »=(»', ") is an exterior normal to a main face of P then »” is a vec-
tor with positive comporents.

For the coefficients in (4) we make the fo'lown*g assumptions:

(Cl) The coefficients in the principal parts a, ‘a)=m, by, (3 =my |-—j- d,
are infinitely smooth functions, independent of x’, which become stable for

x" large enough.

(C2) The coefficientes a,(x), (a<<m, b;;(x). (B)<<m, 1 j d, are infinitely
smoofh functions, bounded in R" together with their derivatives.
Theorem 2. Suppose thet P satls ies in addition the condition (A5)

and let (4) be a P-elliptic problem in R", whose coefficients catisfy (C1) —

C2). Then for s -s, the following a priori inequality is valid

() o (RE)=2€ (A (x, DY@ et g (RY)), ¢ Ho (RY).

In the following theorem we construct a parametrix for A (v, D).

Theorem 3. Under the assumptions of theorem 2, there exists a num-
her 6>>0, so that for an arbitrary s, s, there exist operators R and T with.
the properties:

(i) ! is a continuous operator from ¥&s-»(R?) into H*" (R"), s, <8s<s$+o.
(ii) 7 is a continuous operator from Hs—cw(R") into Hs» fRf) $,=8<=s§,+o.
(iii) RA(x, D)y=1+T.

It is worth noting, that theorems 2, 3 remain valid also under small per-
turbations (inclusive with respect to the variable x’) of the coefficients of the.
operators.

We shall formulate several corollaries.

Let K be a compact in R1 and suppose that K,—Kn|x,=0} has non-
zero measure in R"!. We denote for s>0

Hy# (K) ~{u ¢ Hen(Re):suppuc K), Hyw'(Ko)={u ¢ H (R*) : supp uc Ko,
and for s-s,

Jegn (K) = Hs—m. M(K)XH H«_m —1r (K.

Corollary 1. Under the assumptions of theorem 2 the operator #(x, D),
rcgarded as a continuous operator from Hy#(K) into 354 K), Aas a finite di-

mensional kernel and a closed range.

Denote /7= (R")= r]‘)}fs.u (R7), 3= (R")= OJe:.u (R™).

Corollary 2. Suppose that the assumptions of the theorem 3 hold and
s=8, Then if u¢ Hor(R") and #(x, D)u ¢ B (R"), then u ¢ Hs»(R"). In
particular, if #(x, D)u ¢ = (R"), thenu ¢ H> (R").
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Corollary 3. Under the assumptions of theorem 3, for + (x, D)regard-
ed as an operator from H<»(R") into 3s»(R"), s=s, it is fulfilled
Ker Ac H=(R").

The results about smoothness of the solutions, formulated in corollaries
2, 3, are first of all interesting, because they are valid also for a wide class
of nonhypoelliptic equations. We shall note, that in this special case, when
the operator A(x, D) is hypoelliptic, the condition (A5) is fulfilled with
p=0[1].

Theorems | -—3 are proved in point 4. In point 2 the Poisson kernels of
the problem (4) are estimated, and in p. 3 sonre specific properties of the spa-
ces Hsn(R"), Hs»(R") are formulated.

Let us note, that boundary problems in R” for hypoelliptic equations
with variable coefficients were studied in [3; 4], and for nonhypoelliptic equa-
tions with constant coefficients — in [5; 6].

2. Estimating the Poisson kernels of the problem (4). Let x,’ ¢ R"! be
a fixed point. In this paragraph we shall prove two estimates for the system
of functions ©,(x,, &, x,), 1=k<d, being decreasing solutions of the systems
of ordinary differential equations

A . d ’ ’ .
A (xo', 0, f', --1 a—") .Q. (XO ’ E ’ x"): ()Y xnzot
(7)

. 0
B;(xo', 0, E‘, —1 ==

ax") Qk(xo,o :,y Xn)'x":ﬂzéfb l$]§d

(&' ¢ R™1, 4,, — the Kronecker symbol).

The functions 2, (x,, &, x,) are actually the partial Fourier transforma-
tions with respect to x’ of the Poisson Kkernels (or the Green functions)
G, (x,’, x) of the problem (4). It follows from (5), that for &=-0 and fixed %,
the system (7) has only one decreasing solution. Following the elliptic boun-
dary problems theory [7—9], we are going tolook for anintegral representation

of Qu Let us write A+ (x,, 0, &, 1) in the form

[Th

A¥(x, 0, & )=3 af (x,, &)1+

0

and let B={b/%(x,’, &)}%,_, be an inverse matrix of {6, (xos &5y We in-

troduce the notations
J d |
A; (xo’y s’v 1)= “:‘ a: (-"o'. 5’) ‘j—k9 Nk (xo'» f’ j‘)= Aslblk (xnl' 5') A;—j (xo” 5’1 ")’
k=0 J=
0

1= %k--d. Then Q,(x,, &, x,) for &0 can be representied .by the formula

- 1 e n Nyixy', & 7)

. 0 & e i O 2 X
‘8) "k(xn' s Xa) 2xi y'o» A+(Xo'. 0, &, 4) 4
In (8) y*+isaJordancontour in a half-plane /m i>0, which embraces lying in
this half-plane roots of the equation A(x,, 0, & 4)=0. As in [7] it can be
checked, that the function Q(x,, &, x,), defined by (8), satisfies the sys-
tem (7).
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Theorem 4. Let (4) be a P-elliptic problem with continuous and bound-
ed in R coefficients and let Q2 be defined by (8). Then if 10 is an

integer and 0<a<"1, the following inequalities are wvalid

o . ) » A—m, +(L—-172)/7)
(f Df, Q, (xo , & Xp) 2dx, (0 (E’)) k ’
)
bod °°D£. 'Qk (.Vo', & xn) - Di, Qk (xo'- E" .vll)l2
I | p—yp |12 X Y
e n

(! (@) e, 1 <k=d,

with constant c, independent of x,' ¢ R" ™', & ¢ R™\0.
The proof of theorem 4 follows from the listed below lemmas.
lLemma 1. For all a¢ R", a=0 and ¢ R" it is fulfilled

(9) ;':1 1. --;E-:n |a"f<(/‘(5))(a>'

Proof. It is sufficient to prove lemma | in the case « ¢ S because every
«(R", a=0, can be written as «={a).a’, where o' ¢ S. But in this special
case (9) follows immediately from the Young inequality.

Lemma 2. Suppose A(x, D) satisfies the condition (2) for P-ellipticity
and let i=1(x, &) be a root of the equation (3) Then for x ¢ R, & ¢ R"'
it is fulfilled
(10) Lix, &) <c( &N, [Imi(x, &)= c, (u' )NV, ¢,>0,

c, ¢, independent of x.

Proof. For &40 let us write the equation A(x, & 1)-0 in the form
Ax, &, ) =2a, (x, &
k=0

0 Fla G @ @[] o0
=(u" (&) ‘:'[)ak X, &) (u' (& weyr | =
It easily follows from (A3) and (1), that if «-—=(«, @,) ¢ R", a=0, then the equa-
lity (@« -/(a’, 0))+a,/r holds. Consequently we have

ax, &)= I a. ()&= I o (%) &
(ay=m (a’, 0)2=ﬂl—k/"
a, k a,=

From lemma | and the fact, that a, (x) are bounded, it follows the estimate
a, (x, &) —c(u' (&))" *r, ¢ independent of x, &. The P-ellipticity condition
guarantees the inequality am, (¥, &) =!aom,(X) =c>>0, consequently 1/(u'(&"))""
is bounded because it is aroot of an equation with bounded coefficients.

In order to prove the second inequality in (10), we note that

A(x, &) amr(x)] i Ep—Ay(x, &) iz=c(u (@)™
Jj=1

Since | @y m, ()| is bounded for x ¢ R'l and for 2= j<=mr the estimate ¢,

L0, &) g 1A (%, &) =c(u(@)Vr is valid, we obtain |&—2,(x, &)|
= (@) = c(u (E)Vr, ¢,>0 independent of x, & It remains to set &,
=Re 1, (x, &).
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Corollary 4. Let A(x, D) be a P-elliptic operator. Then there are

numbers D>56>0, such that if i does not belong to the set

(rn e C: |1, <D, Imi>é},

'he following estimate holds §+(x, &, l(u ENVr) =c (' (&))", c>0.
Lemma 3. If x,/ ¢ R, &€ R0, |1 <L<oo, then the inequality

(12) NG & A (E))] e  (E)meahr
holds with constant c, independent of x,, &, i.

Proof. Using the definition of an inverse matrix, the inequality (3) and
the estimate |6} (xo', &) =e(u’ (&), - *—Dir - we get easily the inequality

(13) b (xo, &) =e (! () et

where ¢ does not depend of x,, &. It follows from the Viete formulae and
lemma 2, that aj (x,/, &) \c(u (£))*r, consequently we have

(14) Af (o, & 20 (@D =e(u @)V

for 2¢ C, 7 -=L. Now the inequality (12) follows from (13) and (14).
Proof of theorem 4. Substitute i=1/7,(«’ (&))" in (8) and transform
the contour y, obtained after this change, to a contour y, which is actually

a boundary of the domain, defined by (11) (and which consequently does not
depend on x,/, &). Using lemma 3 and corollary 4, we obtain
D} Q4 (xo'y &5 Xn) € ( (E) 707 Lexp (6 (u' (). Xn)

(5 -0 is the number, which appears in corollary 4). By raising the second
power and integrating with respect to x, from 0 to ~ we get the first of the
inequalities in theorem 4. The second can be proved analogically.

3. Spaces /= (R"), H**(R%). In this paragraph we shall enumerate seve-
ral specific properties of the spaces F*{(R"), H*»(R"), which remain outside
the general theory in [2].

In He(R"), s=0 besides the norm
(15) w!l! (Ry)y=inf{ a@|,,: utH"‘(R"),Hm"_- u},

we use the following norms
a) if s.r is integer

u ‘3,1(/?")—‘2 — T ’/(lu (&) | Fu(E, x,) 2de dx,
(16)

SH— f f ! F’ D" u ({-', Xa) 2 fie’ an,
(?1) T 5 on—1 n
b) if s.r is not mteger

w3, (RD = gy [ (40 O F (@, xa)d’ dx,

(17)
DR wE, ) F DR a(E, ya) 12

dr'dx,dyv,.
(Zn)r‘ (! (;';‘.! 1 | Xp— y,,"*“""'l"') . RN
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In (16), (17) F’ is the partial Fourier transformation with respect to x’ and [sr]
denotes the whole part of sr.
Let us denote by L the Hestens extension operator

u(x', x,), Xx.=0,

(18 1 (x' = 1 .
18) u(x', x,)=Lu(x', x,) T deu(x, — xu/k), x,<0.
k=1

N
In 7118) N is large enough, and the numbers 1, satisfy the system X (—1/k)/i,
k=1
=1, j-0,..., N—1. Without difficulties, we obtain the inequality
(19) lLuls=—cl uls,u(RY), s=0, u¢ H=(R").

With the help of (19), we deduce immediately, that the norm (15) is equiva-
lent to (16) for sr integer and to (17) otherwise.
In the following lemmas by £ will be denoted R" or R% and L~ (Q)

L (x)e C2(Q):sup Deg| < oy al.
Q

Lemma 4. The mapping u—> Deu is continuous from H*»(Q) into
Hs—(@.u ().

Lemma 5. Let o (x)¢ L= (). Then the mapping u— qu is continuous
from Fis-» () into Hs»(2) and

s . (D)=cs s | u "s,u (),

w Hs»(Q), where ¢ ¢=sup |D*@ and cs is an universal constant.
(@)=[s)+1
Lemma 6. If s,>58,>5,, then for any £>0 thcre exists a constant c,,
so that

’1~Ye"t ('Q) =€ [ u ”Sn“ (Q) + c, [ u ‘i-"s-l‘('Q)' u e HS‘ “(Q)

In the next two lemmas we suppose that P satisfies in addition (A5). Let
x (X, X, X (xy, ..., Xp), X' =(Xpyy,. .-, Xa) be the partition of the vari-
ables, connected with this condition.

LLemma 7. Let P satisfy (A5). Then there exists a constant 0>0, such
that if o(x") € L= (), u(x) ¢ H» (Q), the inequality

Lo (x"YDu(x)—D*(p (X" u (X)) s, (Q)=c| | ssim—0.. (2)

is valid with c, independent of n.
Lemma 8. Let P satisfy (A5). Then there exists a number 0>0, such
that if ¢ (x")¢ C;" (R™7), u(x) ¢ H» (L), then the inequality

'P(x”)u(x) l.ru(g) :-S!‘;P‘:(r(x")“ |'u S.u (.Q)'f—L" Ulls-ou (Q)

holds.
lLemma 9. Let s>1/2r and u(x)¢ H>*(Q2). Then the mapping x, —u(-,xn)
is a continuous mapping of x, onto FF<='2rw'(R"™1). The inequality
u( -y Xp) | s—12rw (R H=cllu s, (£2)

holds with constant c, independent of u, X,
We are not going to prove here lemmas 4 9.
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4. Proof of theorems 1, 2. 3. Proof of Theorem 1. Theorem 1 follows
immediately from lemmas 4, 5 and 9

Prooi of theorem 2. We consider first the case, where the operators
A, Bj are of the form

(20) AD)= X a. D4 B, (D)= X b;pl? 1=j=d,
(a)=m (B)=mj

Qq, bj;=const. Let s=s, be fixed. We can assume without loss of generality
that n ¢ Cg (R%). Here CG, (R") is the space of functions u¢ C=(R?), equal
to zero for | x large enough. We abbreviate f=A(D)u, g=B8;D)ux -0 |
—j=d. Let f, be an extension of f in the whole space R’ defined with thehelp
of the Hestens formula (20), with Nlarge enough. Denote by F and F!(F’, and
F'—1, respectively) tl.e Fourier transformation and its inverse in R” (in R"" !, respec-
tively). Set uo(x)=F 1 (Ffo(&)/ A), &n(X) = Bj(D)tio(%)x,=0),1=j=d,
and for &=0 v (&, xp)=F u (&, xp)—F uy (&, x,). We have for &==0

’ . 0 ’
A (5, rvto—xn)v(f. X2)=0, x,20,
(21)
.0 » e i s .
B/(E', “lb‘;;)‘v(t» Xn) lx,,=0_fg](~ )—Fgp&), 1=j=d

Since v (&, x,) belongs to the space of decreasing solutions oi the system (21),
then for =0, x,=0 the representation

d
'v(f’v xn)=j§1(F'gJ($l) ngo(f’))sJ, (E" x,.)
is valid (see p.2). In this way we obtain the equality
d
Fru(¥, xa)=F (&, xa)+ 2 (F g (&) —F g0 (&) 2 &, Xn)-
j=

Using this last equality, the norms (16), (17) and the estimates for £, proved
in theorem 4, we obtain the inequality (6) just as in [9], proposition 14. 1.

We pass to the general case. Denote by R";” the space of points x”

= (Xpt1- - - » Xn), for which x,=0. We fix K so large, that outside 11={x"
€ R"-7:|x" =K]| the coeificients in the principal parts of the operators in (4)

are constants. Let 4>0. Choose points xj ¢ WN{x,=0}, 1=A=N,, x, €U N
{Xn —‘}d}, Ny+ 1 k=N, so that the domains Wa={x"" ¢ R"7:'x"—x}/|< d}, 1=k
=N, cover 1:11c U, 10, Let {pa(x"")} be the partition of unity for 11, con-
nected with the covering {11,}. We denote 1o=R"7"\1U, ¢ (x") =1 I @,(x").
Fix a point xj ¢ 1,N {x,=0}. We construct functions y, (x") ¢ C= (R"#) so that
SUpp w, C Wy v, — 1 on suppg,(0=k=N). Let us introduce the operators

A(x", Dja—{A(x", D)a, By (x", D)t |x,m0 » - - -, Ba(x", D)t |x =0},
*, =&(x}, D), O=k=N.
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For 1- k& N, we have JE%;I”',: E (st .T(:)(p,—#(:? »;&:,),,',_.. It follows from
the proved already part of the theorem, that

el (RY) < g Apuntrs H wattll(R)).
Using the results of p. 3, we obtain
(A=) @ptt)s =€ oalt smeu(R)=e] gt s R HC yatt] J(RY), 02503
(A—AR) @ptt )=y A— ) @ )5 Se |ttt o (R0 gl (RY)

for & small enough.
Putting e=1/4¢, and combining the above inequalities, we get (for 1- %
=N,)

(22) lpptt s, (RY) =20, (Agpptt)s ut €l lly (RY).

In a similar way with the help of the identity A, =, ¢+ (At—st)ypg, we
obtain an inequality of the type (22) with 2 0.

For £--N,+1 we can use theorem 3 in [1]. This theorem guarantees the
inequality

Ppll s (R =20 | Ayt somu(R)+ @pu |y (RY)

Obviously, the last inequality is equivalent to (22) for Ny + 1 k& N
Finally, we obtain

N N
u s, (RY) :kr’ q»ku‘.,.,,(R1)§k.\.;(’2t‘u~’ﬁw,‘ll/),“ L g G (RY))
=

N N
260 2 (@t i)t 260 X (Kpn—gu) i) 01 (RY)
k=0 =

Cl'-,'&'u,'-\‘.u""'cﬁ [R5 (R’:) eou U(R’:.)v Q/\’U'

It remains to use the interpolation inequality in lemma 6. Theorem 2 is proved.
Poof of theorem 3. We again consider first the special case, when
the operators A, B; have the form (20).
Let s'>s, be a real number. We shall prove, that there are operators R,
S and 7, satisfying for s,~s ~s the conditions
(a) R is a continuous operator from ¥+ (R7) into H>*(R7Y),

(b) Sis a continuous operator from J¢« (R") into JC"+(R?),

(¢) T is a continuous operator from /7%= (R") into " (R"),
(d) AR —I+S, RA=I+T.

Here J and / are the unit operators in J¢*»(R") and FH**“(R"), respec-
tively.'

z\ssume the operators & and & are already constructed, so that the con-
ditions (a), (b), (d) be satisfied. Denote 7 - R4 /. We shall establish (c). Ob-
viously 7 is a bounded operator in /#*“(R"), s,~s=s" It follows from ARA
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=(J+S) A=A (+T) that SA=+T. Then according to (b) and theorem 2 we
have for u ¢ H**(R%), sp=s=¢'

U T s (R )= ((# Tu)s .+ |l Tu il$0se (R:)): c(Satu)s .t | Tusu (Ri))
=c((Au)s,,. +u fRS.u(Rl))s“; & s, (RY).
Thus (c) is proved.

Let us construct & and & now. Let L be the continuous extension ope-
rator for H*#(R") into H*#(R"), 0<s=s" m, defined by the Hestens formula.

Choose a function ¢ (£) ¢ C5 (R"),
. 1
O=se=l, ¥ (E)={ 0 for

and fix it. Let y be the restriction operator from R" onto R7: yn—njg. We
e

define the operators

— we™
Ro=7F cE+wemae b
(e mj+l‘_'
Rl=7'Fﬁl (# &) =17 -(-)j (51‘ X,,) Fy,
&, 0)+(u' (5) /
1=j=d.

It is not difficult to check, that the operators 4, &,
d
R (f' ISR ’gd)=R°f+j—£| RI(KIABIROf 13,,*—0)1

S=AR—1J

satisfy the conditions (a), (b). Thus theorem 3 is proved in this special case

when the operators A, B; have the form (20).
Let us consider now that general cese. We shall use the notations, intro-

duced in proving theorem 2. For 0-— k=N set
4, (%, D) =%, (D) + v (x") (£ (x, D)~ %, (D).

We shall prove, that for a suitable 4>>0, there exist operators Ry, Ty 0=k
< N, with the properties ’
(al) R, is a continuous operator from 3¢ (RY) into A~ (R) for 0=k—N,
and form M« (R") into H*+(R") for No+1=k=N,
(bl) T, is a continuous operator from /f* (R7) into H*»(R%) for 0=k=N,
and from Hs—o#(R") into H**R") for Ny+1=kR=N,
(c1) Rya(x, D)~ I+ T

In (al), (bl1) 0>0 and s,=-s=s, +o.

Assume that the operators R, T, O=k=N, with the above properties

are already constructed. We set

N
R X Ryga(x"), T=RAx, D)—1.
=0
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It iollows from (al) that < satisfies (i) in theorem 3. It remains to show, that
I" satisfies (ii). We have

N N
I'= Z R, (x") #(x, D)y—1= 2 Rpqgp(x")t,(x, D) 1
R=0 k=0

N N
I (e (X, D)@ (X")+Pp) —1 - Z(T,@u(X")+ 1)
k=0 £=0

For the operator P,=R, (@, (x"’) 4, (x, D)—#; (x,D) @, (x"")) we have according
to (al) and lemmas 4, 5, 7

Pku r-\‘-u '_ pk Yy (xl') ul‘f,uéc :Wk(x")ufs—ovu =C (U |s—, ‘R;‘.)

(0 >0; where it is not mentioned, the norms are taken over R” (0=A<N)
and over R*(N,+1=k<=N)). Similarly

Tooe(x")ulls,u=cll@p(x")t|ls—gu=c' s . (RY)
Consquently 7 satisfies (ii) with ¢’ = min (g, ¢)>0.

It remains to prove (al), (bl), (cl). Let first 0= £~ N, It tollows from the
first part of proving, that there are operators R, 7%, such that for S1=8s=58
+0 (6>0) ¢i, is a continuous operator from J« (R%) into H*“(R}), T, is a
continuous operator from H—=«R%) into H*#(R%) and %Ry &, =1 + T, We
have R, 4, (x, D)1+ fk—}—Pk, where P, =R we(x") (4 (x, [))—I,b (D).

Using the results of p. 3, it is easy to see, that if 4>0 is small enough, we
can write 7,+/F, in the form 7,+P,—P,/+P, where

PV (R = 8] e (RY) (s,55558,+0)
Pl (R0t e (R,
Consequently, we can take
Ry =L+ Py 'Fny Ty=U+P)) 1P}

Thus for 0 -k ~N, operators Ry, T, satisiying (al) (bl) (cl), are construct-
ed. In the case Ny+1 -k =/ the existence of R,, T, follows from theorem
4 in"[1].

Theorem 3 is completely proved.
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