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RANDOM MOTIONS OF INFINITE PARTICLE SYSTEMS
ON R' WITHOUT OVERTAKING

HERMANN DEBES

We deal with transformations T of sequences (X;); - of interval lengths of stationary
point processes on KR! which satisfy (TX); = X;+Y, =Y, Yi=Z(X;+Y;,)).i ¢,
where (Z;); ¢, is a sequence of i. i. d. r. v! s independent of (Xi)ier with Z; taking values
in [0, 1]. The (ncn-negative) r. v! s ¥; may ce thought of as translations of the points.

Questions of invariance and convergence are investigated. If for example Z; are equidis-
tributed we establish convergence to Poisson process of the iterated transformations of a wide
class of “initial conditions”.

0. Introduction. In this paper we deal with some transformations of sta-
tionary sequences of non-negative random variables, which may be interpreted
as a class of random motions of point processes involving interaction.

For each stationary point process with finite intensity on the real axis
one can construct the Palm distribution (often called tagged-particle distribu-
tion), which in turn may be described by a stationary sequence of non-negative
random variables. These random variables may be thought of intuitively as
the interval lengths of the point process [4].

Random motions of point processes, as introduced in [3], can be describ-
ed also in terms of Palm distributions or stationary sequences of non-negative
random variables. In this note we deal with the latter only and for the connec-
tions to point processes we refer to [3], [4] and [6].

Let X=(X))ier be a stationary sequence of non-negative random varia-
bles. Let Z (Z)ier be a sequence of independent identically distributed ran-
dom variables independent of X, with Z; taking values in [0, 1].

We will define a transformation 7 such that

(0.1) (TX),= X, + Y, —Y, for all ic T,
where the Y, are non-negative random variables which satisfy
(0.2) Y- Z(X;+ Yiy,) forali¢l.

The random variables may be thought of as translations of the points (all
in one direction). Translations are determined successively: The translation of
the i-th point is a random part of the distance between the i-th point before
and the (i+1)-th point after translation. 7X then is the sequence of interval
lengths of the point process after translation of all points.

lf we iterate this procedure we get 7"X. There arise two closely connect-
ed questions. Which X are T-invariant, i. e. 7X=,X, where —, means equa-
lity in distribution? For which X the sequence of iterates 7"X converges in
distribution to a T-invariant sequence?
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Our Theorem 1 gives a (partial) answer. As an example we mention the
following result. If 7 is induced by a sequence (Z;);¢, of independent, equidis-
tributed on[0,1] random variables, then for eachsequence (X;);¢ » of indenpendent,
identically distributed non-negative random variables with finite mean 7".X con-
verges in distribution to a sequence of independent, identically exponential
distributed random variables.

In the language of point process that means that the iterated transtorma-
tions of each stationary recurrent point process of finite intensity converge
weakly to a Poisson process.

Notations. I', N stand for the sets of integers and natural numbers,
respectively. By a stationary sequence X' we mean a sequence (X;);¢, of non-
negative random variables such that [X;, Xiyy, ..., Xig,]=a [Xo X; ..., X,
for all i ¢ I',ne N\
A recurrent sequence X is a sequence (Xj);¢r of non-negative, independent
and identically distributed random variables. The symbols, =, —), are denot-
ing equality and convergence in distribution, respectively. We suppose that
all random variables are defined on the same probability space.

1. Results. Let Z=(Z,);¢r be a recurrent sequence with Z, taking values in
|0, 1] and P(0<Z,<<1)>0.

Define a matrix 7=(7y,)ier by

g, J ie ', k=0,
(1.1) Tiive =, (1—2y) “:=|zl+e iel, ke NN{0},
0 otherwise.
T has the following properties
(1.2) For all k, n¢ N, (i, jol € I')XI, e-1,...,n
(Tiwso Tisie oo T’n’ln] = a|To+nirms Tithjtrs-.., Tt‘,,+k. /‘,,+Arl-

(1.3) Forall i¢ I' X E(T;;)=1.

3
(1.4) For all jeI' X Ty=1 a. e

i€r

Now let X=(X;)i¢, be a stationary sequence independent of 7" with EX,< o.
We define a sequence 7X=((7X))ier by

(1.5) (TA)i= 2 Ty X, icl.
ier
The sum in (1.5) is finite a. e. because from (1.3) follows
E(XT,X)= 3 ETy.EX,=EX;<co.
jer j€r

From (1.2) it is easy to deduce that 7.X is a stationary sequence. Hence we
can define iterated transformnations 7 in the following manner.

Let 7M. T®,. . be a sequence of independent, identically distributed co-
pies of 7 independent of X.

Define matrices 77 by 7'=TW, (T");;= Zae 1+ TP L 4 j, n=23,...
and sequences 7"X by

(1.6) (T"X)= 2T X,
Jer
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Note that 7 satisties (1.2), (1.3) and (1.4) and consequently all 77X are sta-
tionary sequences with £ (7"X),=EX,.
Now we are able to state the main result.
Theorem 1. Let Z - (Z)ier be a recurrent sequence with Z; taking va-
lues in [0, 1] and P(U<Z,<<1)>0. Let T" be defined by (1.1) and (1.6).
Then for each ¢ >0 there is a stationary sequence X°¢ such that ["X
aX" for all stationary sequences X independent of T', T? ... with

(1.7) EX,-¢c, X cov(X, X))l <o
jer

The sequence X¢ is T-invariant, i e. TX— 4 X¢. Furthermore EX:=c, E(Xs)‘2
=|EZE(1 - Z) E(1 —Zg) E(1 - Z3)).c* and cov (X§, X))~ 0 for all i, jeI
with i=j.

Corollary 1. For each ¢>0 there is one and only one T-invariant
stationary sequence satisfying (1.7).

Remarks. (1) The transformations 7, as defined by (1.1) and (1.5), satisfy
(0. and (0.2). To see this we put Y, = vy (li* [ Z.,.) Xig,.

-RkR=0

(2) In general Theorem 1 gives only informations about the covariance
structure of the limit. In special cases, however, we know the set of recurrent
7T-invariant sequences ([2]) and in view of the Corollary above we know X
For example Theorem 4 of |[2] combined with Theorem 1 gives

Theorem 2. Let (Zi)ier be independent, identically equidistributed
on |0, 1|. Let 1" be defined by (1.1) and (1.6).

Then for all stationary sequences X independent of 1%, 1% ... with (!.7)
T"X )4 X¢, where (X¢);¢, are independent, identically exponential distributed
with mean c.

Theorem 2 remains valid if Equidistribution and Exponential-distribution
are replaced by Beta-distribution and Gamma-distribution, respectively.

(3) Theorem 1 may be generalized to the class of transformations which
satisfy (0.1) and

(0.2%) Yi ZXi+Wi Y.y,

where (Z,, W))i¢, is a sequence of independent, identically distributed random
vectors with Z; and W, taking values in [0,1].
Some ideas of the proof of Theorem 1 are adapted from [5], where the
simple case W, 0 (a type of conditionally independent motion) was treated.
2. Proofs. First we prove a continuity property of the transformation 7.
Lemma 1. Let T be defined (1.1) and (1.5). Let X, X', X?,... be stationary
sequences independent of T with EX,< cc and sup; EX!<co. 1f X" =4 X so
X" -, TX.
Proof. For all £, ¢ /', a, =0, i 1, 2,..., with 8= « <oc and all £>0
we have
lim,sup P( Xa, X} ¢) i sup, E/\’gll}
e i o

i

'a, oo ()'

Hence by Theorem 4.2 of (1] it follows from X” )4 X that also
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(2.1) S a Xt = 2 aX,,
i=1 i =1 !
Now define non-negative random variables by
a; = 2 ﬂ! ky,
where §.,-0, k. ¢ 1", e=1, ,m.

From (1.3) follows that E(Z ,a;)<oo hence I <co a. e. Calling in
mind that (a;);-, o, ... are mdependent of X, X', X% ... we conclude from
(2.1) that
(2.2) Slﬁ,(TX")ke- Yai X —a X aXi- X pe(TX),.

= i=1 i=1 e==]

Hence by Theorem 77 of [1] it follows that 7X"- ), TX.

Lemma 2. Let 7" be befined by (1.1) and (1.6). Let X be a stationary
sequence independent of T', T2 ... with EX,<cc.

If T"X —=a Y then Y is a stationary T-invariant sequence.

Proof. Let 7 be defined by (l.1) independent of X, Y, 77%,...

Now 7(7"X)~)4TY by Lemma 1. On the other hand 7(7"X)=, T"+' X =), Y.
Hence 7Y=,Y.

We give now a result concerning the covariance structure of 7"X.
Lemma 3. Let X be a stationary sequence independent of T', T2,..,
with EX3<<oo and E(X,.X;)=E(X,.X_4) for i— 1, 2,...
Defme R, by Ry(i) =E(X,. X)), Ru()=E(T" X)o AT"X)).
Then for alln=0, 1, 2,... and all i =1, 2,....

(23) Row ()=, @ [Ra(0)+2 2Ry (€) al+(1— @)Y @' 3 Ry (e+k)ar,
Ry ( i)—Rn-H @,
Rt =63(Ra (0)+2 Rn (e)ac|,

where a —=EZ,, b—EZ?, ¢,=(1—a)(a— b)/(l —b), cg=(1—2a+ b)/(1—0b).
(Note that 1>a>>b>0 because P(0<Z,<1)<0.).
Proof. We can write

Ry ()= E(T"' X)o .(T"+' X),)
= S E(Teg. T E(T" Xw.(T" X),1a)

i,
=0 om0 i+e

2 Xyike Rn (i+e—k),

R=0 e=0
where

L] e
rine= B~ 2. I Z(1 =211 Z,,).

For all i ¢ I', k, e¢ N, yine =7—iex @and therefore, from Ry, — R, ., for
alli ¢ I, follows the same for R.4,.



288 H. DEBES

Calculation of the coefficientsy, .. leads to (2.3).

Lemma 4. Let X, R, be as in Lemma 3. X is T-invariant oj the second
order, i. e. Ry(i)= R, (i) for all ic I', if and only if
(2.4) Ry Ry(1), i~ 1, 2,..., and ¢, Ry (V)y=ac,Ry(1).

Proot From (2.3) we get for all i=1, 2,...,7n¢ .\

Ruta i+ 1) ~aRupy () = (1—@)* X a*—U+1) R, (k)
R=i+1
and for all i—2, 3,..., nelNV

[Rat1 () —aRn ((—1)|— @Rty (i+ 1) — aRpyy ()] = (1 —a)* R, (D).
Ii Ry(i) Ry (i) we get herefrom for all i =2, 3,.

Ry(i+1) Ry(f)- Ry(i)—Roi—1) and Ry (i+1)—Ry(1)=i(Ry(2)— R, (1)).
Hence R, ({))=~R,(1) for all i=1, 2,.

Now using (2.3) again we have Ro(O) - Cg (K, (0) 42/ (1)a (1 —a), whichis
equivalent to ¢, R, (0)==acgaKy(1).

If, on the other hand, (2.4) is valid, then (2.3) shows that R,({)=R, (1)
for all i ¢ I'. Hence Lemma 4 is proved.

The next lemma is the last preliminary to the proof of our Theorem 1.
Lemma 5. Let T" be defined by (1.1) and (1.6). Then

lim X £ (T7)=0.

n—oo jEI
Proof. Define f, by
S| Lo
Jo () ‘ 0 otherwise, f,({) — X E(T7,.T7 , ).

JEr
Using (1.2) it is easy to show that for all i¢ I', n¢ N,

Srpr ()= .:1 f:o Vikefn(€—R+410),

where the coefficients ;.. ore defined as in the proof of Lemma 3. Hence
equations (2.3) are valid if we replace there X, by f,.

In an analog manner, as in the proof of Lemma 4, we find that for al
iel', i+0,

f({)y=Ilim f,(i) exist and

(2.5) f@)—f(Q) forall i¢1l', i+0.
As a consequence of (1.4) we get for all n¢ V
| =E( X T7,)*=2 x E(T} o Thvio)= fa(0) +2 X fr (R).
i€ Gl k A=1
Hence for all m l, 2,...by (2.5)
I lim % f, (k) — £ fR)=m.f()),
1 A==l

naeo k=

and consequently f(1)=0.
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But from (2.3) we see that f,,(1)=c, f,(0) and f(1)=0 implicates f(0)=0,
which was to be proved.

Proof of Theorem 1. Let 7", T, n=1, 2,..., be defined as in (1.6)
and denoted by C, the sequence whose components are all equal to aconstant
c>0.

As a first step we show that there is a sequence X* such that
(2 6) " C ESSY Xe.

We define matrices 7" by y L - M, Tn—7T"—1_Tm n=2, 3,... Then we have
using (1,3)

E ((TrC),/TO, TO,..., Te—)= X T E(T0C);=(T"1 C),
Jjer

i.e.foralli¢ I (T'C),is amartingal relative to the family F” of o-algebras induced
by 7™, 7™, ..., T, respectively. Because sup, E(77(C);=c<oo we haveby the
martingal convergence theorem the existence of a sequence X¢ such that
77" C— X¢,a. e. Now (2. 9) follows from 7 =d 7" for all n=1, 2,.

Clearly X* is stationary and by Lemma 2 X¢ is 7T-irvaiiart. Now we “show that

(2.7) EXs=c.

From (2.3) it is clear that if ¢, R,(0) -—acyd, R,(k)=d for some d>0 and all
k--1,2,...then the same is true for R,;,. Hence from R, (k)=E(C,.C,;) =c?
for all k¢ I'" it follows (note that ¢,=acy) that for all =1, 2,... R,(0)
— E((T"C)})=c
Therefore (7"C), is uniformly integrable and (2.7) follows from
c=E(T"C)) ;5= EX

n—oo
Now we prove that X° has uncorrelated components.
First a famous property of weak convergence gives for all i=1, 2,...
E(X5. Xo)<lim, int E((T" C)y. (T" C),)=sup, E((T" C)j)~c™
Second by Lemma 4 E(X;.X%)—=E(X;.X;) for all i -1, 2,... and by the
ergodic theorem we obtain

1

E(Xg.Xf):,:}imx E(X;. X)=lim E(X; ‘:1 X¢)

E(X5 E(X§s) = E((E(X]|8))?) = E(X{)*=c2,

Hence E(Xj.X9) = E(X5. X{)=c?= E(X}).E(X,). Using again Lemma 4 we get
Ry (0)= E((X%)?)=a.c,c?/c,. It remains to show that 7"X—),X* for all X
with (1.7). Let X be a stationary sequence independent of 7', 72,... which
satisfies (1.7). We get for all /

E (T"X),—(T"C); *= X E _Cov (Xo . X)) E(T7, )

jer
*‘/2 R COV(XO Xk)E(T" R J) " 3 COV’(X(\, Xk E(T")’
er Gl
Hereby we have used that
b E(Tt/— )- o (E(Tn,_k)9+E(T" )’) E(Tn )a—-z, E(T'l )

Jer

19 Cepanxa, 3
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By Lemma 5 we see that for all i ¢ I' (7" X),—(T"C); converges to zero in

the mean square.
Hence by (2.6) we conclude that 7”X—); X¢ and Theorem 1 is proved.
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