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ONE-SIDED ALGEBRAICAL APPROXIMATION
ON THE REAL AXIS WITH THE WEIGHT EXP |—.x2)

KAMEN G. IVANOV

The problem of finding estimates for the one-sided approximation of functions by means
of algebraical polynomials on the real axis is considered by Freud and Szabados in [1].
They use the natural for this problem weight exp {—x2}. The estimates in [l] are made for

large classes of functions but they have the form E(H,, e—'":,f)L:Om_("’”Q). We can ob-

tain more concrete estimates using the Nevai’s paper [2] but they hold true for smaller
classes of functions. The purpose of this paper is to give estimates of the approximation of
the largest class of functions for which the problem has a sense. These estimates show how
the structure properties influence the convergence.

1. Definitions and denotations. Let /7, be the set of all algebraical po-
lynomials of a degree at most 7. For every f integrable in (—c-, c-) we have

[ =1 fix) .L'—'_Zlf(x)idx:

w(x—a) for x>4;
w(x)=exp{—x?, w4, x)= 1 for [ x =4,
w(x +9) for x<—4.
We have w(d, x)=w(x—y) for each y¢[—9,d].
The best one-sided approximation E(/,, w, f) of the function f in the in-
tegral metric with the weight @w by means of elements of /7, is given by
E(H,, w,f)—inf{| W(P—Q)|.: P, Q¢ H,, P>f=Q).

We shall consider the classes V{r, s)(r=0,1,2,...,5=0,1,2,...) (see [1]).
Vir, s) is the set of all functions / defined in (— oo, ) which has an abso-
lute continuous r—1-th derivative, fI’l has a bounded variation in each finite
interval and f satisfies the conditions

(1.1) MAf)~ | w(x)|dfr(x) <oe.

(1.2) There are numbers A, B, s depending on f such that A, B>0,s
is natural and f(x)|- A+ Bx* for each x.

Let us note that the largest class of functions for which E(H,,, w, f) has
a sense is the class of functions satisfying (1.2) with s—[n/2].
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We denote with @ the class of all functions ¢ defined in (— oo, o) sa-
tisfying the conditions

(1.3) @(x)=q(—x) for each x;

(1.4) @(0)>0;

(1.5, o is increasing in [0, < °];

(1.6) @ has a first derivative;

(1.7) There is a constant &, such that ¢(x+ 1/9(0))-- b,p(x) for every x 0;
(1.8) () —a(xs) =20, — x,)9(x,)p(x,) for every x,>x9-0;

(1.9) There is a constant b, such that ¢(x)=b,x for every x 0.

The class @ includes enough functions. For example x2+ 1 ¢ @(b,=-3, b3=2)

and ¢, € (b, =5, b,=1), where g(x)= x for |x'=1 and ¢y (x)=(x*+1)/2

for x <1.

Let us mark the following property of &:
(1.10) It o ¢ @ then aq ¢ @ for each a=1.

Let ¢ satisfy the conditions (1.3), (1.4), (1.5), (1.6), (1.9) and
(1.11) ¢’ is continuous and there is a constant &g such that

o'(x)<byp(x) for each x>0.
Then there is a constant a, such that for every a=a, we have aq ¢ @ [5]
2. One modulus of a function. We shall estimate E(/,, w, f) with the
modulus
1 f, 6 8) = L e(xX)n(f, x, (X)) 1,
where wy(f, x, 3(x))=sup{ 4f(¢)!: &, i+ kh¢[x—k)(x)/2, x-+k(x)/2]}

ibity= S (= 1y (§) fein)

(k is natural, ¢ and & are non-negative functions, ¢ is continuous).

We shall use these two cases: ¢=w, d=const and &— wo, d=0dg.9 ",
where 48, const, ¢ D,

This modulus is used for first time in [4].

Properties (4]

(21) Ik(f+ g' & (’) tk(f' & ") +"I.-{g’ £ 6);
(2.2) If ¢,< ey 0, 8y then 0= 1x( f, &, 8,) =1, f, €25 05);
(23) te (o6 8) T f €8, (R + 1)k
(2.4) n(f,e,d0)= [edf |, +1,(f,d,0).
We can also prove [5] that (4-=const>0) .
(2.5) o (fow, 8)<d [ w42, x)|df(x)  and
(2.6) n(f, we, b= [ wx) df(x)]

for every @¢ @, where ¢, depends only on ¢,
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3. Notes about the paper of Freud and Szabados. In [l] Freud and
Szabados prove

Theorem A. /f f¢ Vir,s) then E(Hin—1, @, f)=O0(n="+D72),

We shall obtain a more concrete estimate for E(Hs,1, w, f). For this we
shall follow the reasonings in [1}.

Lemma 1 [1]). For each x>0 and for k=0,1,2,... we have

oo

(3.1) [ (t—xyw(t)dt=k! 2x)*1w(x).

We consider the function a(x) =x~"e*". It is easy to see that a® - x—"—%e¥*. B(x)
where B¢ H, and 8 has a positive coeificient before x2*. Then there is,
Xo=Xo(r)>0 such that

(3.2) 0<a®(x)-—a,(r)x—"+*e* for x=x,, £=0,1,...,r—1
and
3.3) ay(r) —aNe—*<=ay(r) for x—x,

We fix the point x,.
Lemma 2. If Fc V{r,s) then for x=x, we have

(3.4) FR(x) - x—*w(x) |=a,(r) [MAF)+] F"I (—X,) JH"-‘E] F (xg) | xn—*
u=~r

for k=0,1,...,r—1 and
(3.5) FIN(x) w(x) = MAF)+ FUI(—X,)|.
Proof. (3.5) follows from
| @(x) (A7) () — Fr (—xo)) = [ ()| dFI ()| < MAF).

—X,

Let us set 7=FUl(—x,)+MJF). (3.5) and (3.3) give

(3.6) Fliri(x) = E}-’—) a™(x)=ay(r). T.a"(x)for x=x,.

Integrating (3.6) from x, to x r—k times and using (3.2) we obtain

(3.7) F®)(x) | <ay(r)Tal® (x)+ P(x), where
3P (xg) |

(3.8) P(X) — “:k Tk)o' (x_xo);t—k'

We obtain (3.4) from (3.7), (3.8), (3.2) and the inequality x—x,<x.
Remark. The corresponding lemma in [1] says that the functions in the
left of inequalities (3.4), (3.5) are bounded above.
Theorem 1. If F¢ V(r,s) then for each n=max {s, 9x2} we have
-1
E(Har0, F)<a(NMAF)n—"+2 4 ay(r, S){A+B+| FI"(0) £3 [| Fox(— xg) |
=0
+ Fm (0) |4 | FO) (x,) Jle—nPns—17, g

where A, B are the constants in (1.2).
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Prooi. We shall use the proof of Theorem A in [1]. Obviously we can
suppose that 2s>r. We have for F

r—-l v) {r)
(3.9) Floy= 2 700 0O o Fi(x)+ F— ),

v= 0
where F., F,e Vir, s), Fi(x)— Fy(x)=0 for x--0, \/FIl=_\/ Firl, ) Fyi<\/ Fir
for each finite interval [a, b] and ‘ ‘ ‘ !
(3.10) MAF)Y=MAF), MA(Fy) M(F).
Let f satisfy the inequality (1. 2) Then

r— -1
(3.11) F(x) ~(A+ | FrI(0) + L LFO0) )+ (B+] Fl’l(0)+ 3 F®(0) )x2s
»=0 =0
for i=1, 2.

That shows us that it is sufficient to prove the theorem for functions F
such that F(x) 0 for x<<0 Let w, €(Jn/3,Jn/2) be a point of continuity
for FI7l. Then .

r-1 F(y,

(312 Foo Y Vo) (¢ I “""’(x Y - Fx) 4+ F**(x),

v

where F*, F**¢ Ur, s), F¥(x)- 0 for xe[O wy), F¥(x)=0 for x<w, and the
variations of F* and F** are not greater than the variation of F in every
finite interval.

Repeating the reasonings in [I| we have

(3.13) E(Han—1, @, F*)=ag(r)n—* D2M/F);
2= E(Hayp, @, F*)= 'w((u,,) [(A+Bn*/2)n—"? +-22—1Bn—s 17

r l
PO o) |y esnay ET 0 0214 (A4 Broj2) [ i)

y‘ﬂ “n

12218 f(x m,,)zu(x)dx+ s —F( ‘”") f (x—m,)w(x)dx

ELFI () (P (X — wp) w(x)dx.

Using the inequality F(x)|- A,+ B,x*(A, and B, are the following coeffi-
cients in (3.11)), Lemma 3.1 and lemma 3.2 with Fl’l(—vco) -0, we obtain

(B4 E (Fap_y,w, F**) “a(nn" V2 MJAF)+ ay(r,s)| A, + By ).' FOo(x,)|le="ns 172,
p=0

Using (3.9) —(3.14), we prove the theorem.

4. Estimates for £(H, w, f). In broad outlines we shall follow the
ideas of Popov and Andreev [3] to Theorem 3.
Theorem 2. /f F satisfies (1.2) and F is measurable, then

(4.1) E(Han1,w, F)  c,t,(F, @, 4 'n '?)+c,(s)(A-+B)e "°ns—'7
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Proof. We set x,=24-%2i—1)n—"? for each integer i,
Fy(x)=sup{F(t): texiy xi00)}, FAx)=inf{F(t): t€[x;, xi+1)}

for x¢[x;, Xip1). Fy, Foe VIO, s), because F satisfies (1.2).
(12) @) (Fy(x) Fx)dx= [ wx)oy(F, x, 6-'n'2)dx=n,(F, @, 4~ 'n1?).
Using Theorem 1 we obtain P, ¢ f, ,, P, —F,, such that

(4.3) [ @) [Px)— Fldxsa0n? [ w(x)|dFy(x)|+e

a2 Y w(x))| F(xi40)—F\(x,—0) +e

X —ce (x’.+xl_|)»2

=24.0,0(% [ @woFux 12 0dx+ [ w(x)eF, X,
i=1 (xl.+x,-_l)f2 f=— X.
12717 V) dx] 4+ e-24.ay0)e (F,, @, 127 'n V) + 6= 24 .a,(0).v(F,w, 47 'n7'2) +¢,
where &= cg(0, 5) (A+B)e " ns172,
Analogically there is Py¢ on 1, Py=-F, and
(4.4) f w(x) (Fy(x)—Py(x))dx =24a,(0)ry(F, w, 4 'n~'?) +e.

(4.2), (4.3) and (4.4) give (4.1) if we set c¢,=48a,0)+1 and cys)=2c4(0, ).
Lemma 3. If f is measurable and if we consider w,(f, x, h) as a fanc-
tion of x, then for every &—const>0 we have

(4.5) t(wxl £, x, ), @, O)=t,(f, w, h+/R).
Proof. In Lemma 2 in (3] the following inequality is proved
(46) . wl(wk(f! Xy h)’ X, h)?‘wk(f' X, h+6/k)'

(4.5) follows, from (4.6) and the definition of z,.
Lemma 4. If f is a measurable function satisfying the condition (1.2),
gu(x)=wa(f, x, 4 1n—"2), then there is an absolute constant c, such that

(4.7) E(Hon1, @, @)= 61t f, @, 271712) +cy(s) (A+ B)e="2ns 112,
Proof. Lemma 3 with A--d=4"'n"12 gives
(4.8) 1,(&m @, 47 ) <1y f, @, 27

Theorem 2 for g, gives
(4.9) E(Han 1, @, 8n) €1(&n @, 47'0712) + ¢y(s) (A+B)e—"ons—-17,

We obtain (4.7) from (4.8) and (4.9).
Lemma 5. If |f(x)—&(x) so(x) for each x, then

E(Hpy @, [)= E(Hn, @,8)+ 2E(Hn, w, ) +2 | we | ;.
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Proof. Let P, QLR,SeH,, be such that P--g=Q, R=¢--S and E(H,,,
fw,g),, | u’(l)—Q) Ly E(Hm w, (p) UJ(R—S) L Then l)fRZfEQ—R and

Bty w,)s [ o) (Px) - Que)dx + 2| Rixwix)dx

Bt w 9)+2 [w@p(ds+ [ w0 (Rx) - o(x)dx]

~E(Hpw,8)+2 we 1+ 2E(Hm w, @).
We consider the modified Steclov’s function (see [6])

~ k
Fasr (=108 S (18 () Forn

where
P )
S, 1(X) - 6”'0f .- 'uff(x+fx+ s t)dty L di

is the Steklov’s function.
It has the following properties:

(4.10) f(x)—f,,,k(x) <, f, x,2h) for each x;
(4.11) TEx) - c(kyh*w,( f, x, 2h) for each x;
(4.12) FOx) <c(k, h~' max  fit) for i—0,1,... k.
| t—x |=Rh
Lemma 6.

(4.13) E(Hazp1, W, [y B cs(Ryeul £, @, 2-'n=12) e (k. s, A, Ble™" 9k 245 —12,

Proof. We obtain (4.13) from Theorem 1 applying for f, ), Withr-1-=%
and the inequalities (4.11) and (4.13) with A—-4"'n—"" '
Theorem 3. If f is a measurable function satisfying (1.2), then

(4.14) E(H,, w, /)< cs(R)yma f, @, n V) +-colk, s, A, Bynt2ts e 15
Proof. (4.10), Lemma 5, Lemma 4 and Lemma 6 give
E(Han—y, @, f)scsR)ul f, @, 27'n712) +co(k, 8, A, B,)nki2+s—12g—n9,

This proves (4.14) because E(Han, @, f)< E(Han—1,w,f), e "° = e~ 3/18L o= (n—DI'8
and (2.2) gives

u(f, w, 1/@Vn)=ulfow, 1/V2r)<ul f, @, IN2n—1).
Corollary 1. If f has an r-th derivative, then
E(Hu w, f)=c(r) (r+Dn" 25 (f0, w, (r+ 1)V )+ cgns +7/2e—ns,
Proof. We apply (2.3) in (4.14) with k—=r41.
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Corollary 2. If f has an r—1-th absolute continuous derivative, f'!
has a bounded wvariation in each finite interval, [* w(e, x) firl(x)'<cc  for

some ¢>0 and [ satisfies (1.2) then E(H,, w, f)=0(n—r+V7?),

Proof. We apply (2.5) in Corollary 1

The statements for f in Theorem 3 are very less than the statements
for f in Theorem A. But Corollary 2 shows that we can obtain the result of
Freud and Szabados from Theorem 3 if we replace (1.1) with a stronger con-
dition. In order to avoid this, we shall use the class @.

Theorem 4. If f is a measurable function satisfying (1.2), then

(4.15) E(H,,I 1y, @, f)=cgty( f, wp, n— 12 ) cynse—n"?

for each @ ¢ @, where cg and c, depend only on q¢.
Proof. Let us set d=2""(1+5,)"'n"12 x,=0, x;=X;—1+8/g(xi—1) for

i—=1,2,. If we assume that x,=/ for each i, then xi 11— x; =48/¢(x;)=6/¢(l),
and x; dz (p(l) which leads to contradiction w1th the assumption. Then x; — oc.

l—o:-a
We set x_;=—x, for i=1,2,... and

sup {f(t) tE(x,-, xi+l]} if X € (xi’ xi+l]» t>0;
F(x) -ysup{f(t): telxiz, x,)} if  x€[xi, X)), i<0;
sup {f(): te[x—y, x))} i x€[xop, xy)
lnf{f(t) : l((x,, X1_+1]} if XE(X,', x1+|]) l>0;
Fyx)=1int{f(6): te€lxim, x,)} i x€[xim, x;), i<0;
lmf {f(t): telxy, x]}  if x€[x_y, x,).
Obviously Fy, Fo€ V(0, s) and Fy(x)—Fy(x)=w,(f, x,»d/¢(x)), where »=4 for
x€[x_1, x;] and »=2 for x§[x_1, x,]. Then
(4.16) fw(X) (Fi(x)—Fyx))dx=n(f, @, 46¢“)$t1 [, ow, 46¢7").

Let i=1. Using (1.7) we obtain
(4-17) F\(x;+0)—Fy(x;—0)|=|sup {f(y): y€[xp xis1)}—sup{f(¥): ¥ €[xi—1, X))} |
=sup{|f(¥)—f(ya) : Yi, Y2€[Xie1, Xiz1)}sy(f, X, 2(1 +b,)8/9(x))

for x¢[x;—1, x;) because X1+1 Xi—1=0/@p(x)) +0/p(x;i—1)=(1+b,)8/9(x). Analo-
gically for x¢[x;, x;41) for i—— 1 we have

(4.18) | Fi(x;+0)— Fi(x;—0) |=w,(f, x, 2(1 + b,)d/9(x)).

We set e=c4(0, s, A, B)e"°n°~1? (see Theorem 1). (L5), (1.7), (4.17), (4.18)
and Theorem 1, with 7= 0, give

(4.19) E(Honer, , Fy)<c,(O)n—112 _fmw(x) Cd(F\(x)|+e

=c(O)n—12 ‘-Eo"”(xi) Fy(xi+0)— Fy(xi—0) |+
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C20 40O S wle)et don(f x 21460 ()
t=1x; 1
o *itl
+ X f w(-‘\’:‘+l)(l’('\'—i)wx(f: Xy 2(l +b1)‘5//‘1’(x))dx]+€

i 1 x,
<21 +6)e,(0) [ wx)p(X)onl f, x, 201+ 0,)8/g(x))dx +e

=2(1 + b )c 0y, ( f, wp, =2~ +e.
Analogically

(4.20) E(Han1, w, Fy) -2(14-8))c,(0)r,(f, wp, n—2p~1) f-e.
(4.16), (4.19), (4.20), (2.2) and the inequality 4 2(1--b,) give (4.15) if we set
cs=1/p(0)+4(14b,) and cy=2¢5(0, s, A, B).

Corollary 3. If f¢ V(O, s) then E(H., 1, w,f)=O0(n"'7).

Proof. We apply (2.6) in Theorem 4.

Remark. Corollary 3 shows that Theorem 4 is an intensification of the
result in [1], because we do not want f to have a bounded variation in each
finite interval and f to satisfy (1.1). The ctatement for satisfying (1.2) ex-
presses the essence of the one-sided algebraical approximation. We want f to
be measurable because we use the modulus 7,(f, ¢, d).

The following theorem shows that we can reduce the problem for the best
one-sided algebraical approximation of differentiable function to the problem
for the best algebraical approximation of its derivative.

Theorem 5. If f is measurable, [% f(t)dt is a function with a polyno-
mial increase in infinity, P¢ H, and u— wP f) i, thenthereare Q,, Q€ Hp.\
such that Q(x) =[x f(t)dt = Qq(x) for each x and

|| (Q,— Qy) 1 cyonuc e~ Bns 12,

where ¢,, is an absolute constant and c,, depends on f.
Proof. Let us set F(x)= [ (ft)—P(t))dt. From Theorem | for F we ob-

tain R, R,¢ H, such that R, -F=R, and
fmw(x)(Rl(x) Ry(x))dx—-a,(0yn—172 fo w(x) dF(x) |

+¢5(0, s, A, Bye"8ns 12 ¢ on " 2u+c e 1R

We must only set Q,(x)= R (x)+ [ P(t)dtand Qy(x)  Ry(x)+ [5P(t)dt to prove
the theorem.
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