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ALMOST HERMITIAN MANIFOLDS OF CONSTANT
TYPE AND VANISHING GENERALIZED TENSOR OF BOCHNER

GEORGI T. GANCEV

Almost Hermitian manifolds of class AHj with vanishing generalized tensor of Bocliner
are considered. The form of the curvature temsor is found. Some properties of the generalized
tensor of Bochner similar to the Weyl conformal curvature tensor and the Bochner curvature
tensor are established. A new characterization for a Kahler manifold with vanishing Bochner
curvature tensor is given.

In [10] L. Vanhecke andK. Yano established some properties of the
almost Hermitian manifolds of the class AH, with vanishing tensor of Boch-
ner. We consider AH,-manifolds of constant type and vanishing generalized
tensor of Bochner. We prove that some of the properties established in [10]
are also valid for these manifolds.

Let M be an almost Hermitian manifold with dim M- 2n, a metric tensor
g, an almost complex structure / and a Levi—Civita connection =". The cur-
vature tensor R of the connection 7 is given by R(X, Y)=[ x, Vy]—Vix. 1
for arbitrary vector fields X, Y. We denote R(X,Y,Z U)=gRX, Y)Z U),
where X, Y, Z, U are arbitrary vector fields. The classes Af; (i- 1,2,3) are
dete:i:ined respectively by the following identities for the curvature tensor:

HRX, Y, Z,U)=R(X,Y,JZ JU);

2 R(X, Y, Z,UY=R(X, Y JZ, JU)+R(X,JY, Z, JU)+RUUX, Y, Z, JU);

3) R(X, Y, Z,U) R(UKX, JY,JZ JU).

It is known that AH,c AH,c AH,.

If « is an arbitrary section in the tangential space 7,M, its curvature is
given by the equality K(a, p)=K(x,y)=RI(x,y,y, x), where {x, ylisan ortho-
normal basis for a. With respect to this basis the angle 6 between a and Ju
is given by the equality cost= g(x,Jy). The angle bH¢[0, 2], and if H=0
(7 -x'2) the <ection is called holomorphic (antiholomorphic). It « is a holomor-
phic section with an orthonormal basis {x, Jx|, its curvature is denoted by
K(x, Jx)—=H(x). Let E™(m -2) be an m-dimensional linear subspace (m-plane)
of T,M and {u,,...,u,}bean orthonormal basis of £7. Then the curvature of
E™ is given by the formula [2]

(1) KE™ p)- f—; K(a, u,)
A linear subspace £ of 7,M is called holomorphic (antiholomorphic) if JE
=E(JELE).
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Let M be a Kihlerian manifold. The tensor of Bochner in p¢M has
the form

1
B('\” y’ <, ll) R(xr y’ 2, u)‘Q(II—.L?) { g()’, Z)S(x’ u)——g(x, Z)S(y’ u)
+g(Jy, 2)S(Ux, u)—g(Ux, 2)S (Jy, u)—28(Jx, y)S (Jz, u)

(2) +8(x, w)S(y,2) &y, w)S(x, 2)
g x, w)S (Jy, 2)—g(Jy, w)S (Jx, 2)—2g8(Jz, u)S(Jx, y) |
S(p)

T oan+=1)(n+2) Rolx, 3, 2, u),

where S(y, 2) and S(p) are the Ricci tensor and the scalar curvature respec-
tively, and

Ro(x’ W 3 u):g(yv z)g(x, u)"‘g(x, Z)g(y’ u)
+g(Jy, 2)8(J x, u) —g(JUx, 2)g(Jy, u) -28(Jx, y)&(/z, u).

We shall establish a characteristic for a Kihlerian manifold with vanishing
tensor of Bochner.

Theorem 1. Let M be a Kdihlerian manifold with dim M=2n—-4. The
manifold M has a vanishing tensor of Bochner if and only if the curvature
of any antiholomorphic n-plane in T,M does not depend on the n-plane for
an arbitrary point p ¢ M.

Proof. Let B=0 and E" be an arbitrary antiholomorphic n-plane in 7,M.
If {u,,...,u,} is an orthonormal basis for E”, then {u, Ju,} (i=1,...,n) is an
adapted basis for 7,M. The equality (1) gives

3) KE"p=2 T  Ku,u).
1=i<j=n
From the given condition, using (2), we obtain
S(u;)+S(uy) S(p) , 1 g
K(ui, u])=R(”iv Uy, u;, ui)= 2An+2) = 4(n+1)(n+2) y L5,

where S(u,) is the Ricci curvature of the direction, determined by the vector
u,. Substituting in (3) we find
K(E" p)=(n—1)S (p)/4(n+1),
which proves that K (E”, p) does not depend on the antiholomorphic n-plane
E" in T,M.
For the inverse let E” be an arbitrary antiholomorphic n-plane in 7,M
with an orthonormal basis {u,, ..., .. Then {Ju,,u,, ..., u,} is also an ortho-

normal basis for an antiholomorphic n-plane E” in 7,M.From K(E", p)=K(E", p)
it follows that

(4) "-’:' K(ull u;)-—= £ K(J”u uj;) = -(-': K(ulv Jul)'
Jj=2 Jj=2 j=2

In the last equality we used that every Kahlerian manifold is an A/,-mani-
fold. Taking into account that

S~ £ (K @ w)+K (ay Ju))+ H)
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from (4) we obtain 2 2] 3 K(u,, u,)=S(u,)— H (4,). Substituting the vector u, by
any of the vectors u,(j—~2,...,n), and summing the corresponding equalities,
we get

JK(E’I’P)= ; S(P)_ n;:l H(ul)

This equality implies that X7_; /7 (u;) does not depend on the adapted basis.
Hence B=0 [9.

Let M be an almost Hermitian manifold. In [3], [1] the following genera-
lized curvature tensor is considered:

16 R*(x, v, z,u) =3 R(x, ¥, 2, u)+ 3R (Ux, Jy, 2, u) + 3R (Jx, Jy, Jz, Ju)

(5) +3R(x, y, Jz, Ju)—R (Jy, Jz, x, u)— R (Jz, Jx, y, u) +R(y, )z, /x, u)
+R(Jz, x, Jy, u)—R(y, 2, Jx, Ju)—R(z, x, Jy, Ju)+ R(Jy, z, x,Ju)+ R(z, Jx, y,Ju)
This tensor is uniquely determined by the following conditions:

1) R¥(x, y,2,u)=—R*(y, x,2,u);

2) R¥(x, y, 2, u)+R*(y, 2, x, u)+R*z, x,y,u)=0;

3) R*(x, W2 u)= —R*(x, y,4, 2);

1) R*(x, y, 2, u)= R*(x, y, Jz, Ju);

5) R*(x, Jx, Jx, x)=R(x, Jx, Jx, x).

We shall call an LC-tensor any tensor satisfying the conditions 1), 2), 3). With
respect to the tensor R* a curvature K*(a, p) of a section « in 7,M, a Ricci
tensor S*(x, y), a Ricci curvature S*(x), a scalar curvature S*(p) can be de-
fined in the same way as with respect to the curvature tensor R. The genera-
lized ‘ensor of Bochner associated with R* is given by the equality

B*(X, )’, 2, u) = R*(xr y) Z, u)'— 2(,,:_2) { g()’» Z)S*(x! u) g(x! Z)S*( y' ll)
gy, 2)S*(Ix, u)—g(/x, 2)S*(Jy, u) 2g(Jx, y)S*(Jz, u)
(6) +g(x, u)S*(y, 2) g(y, u)S*(x, 2)
- g(Jx, )S*(Jy, 2)—g(Jy, u)S*(Jx, z)—2g(Jz, u)S*(Jx, y)}

4 SHp)
"4 (n+1)(n+2)

If E”(m 2) is an m-plane in 7,M with an orthonormal basis {u,, ..., u,}, we
deiine a generalized curvature K*(E™, p) of E™ by the equality

@) KYE™ P | X K u)

Ro(x: J’, zl u)‘

Similarly to Theorem | we obtain the following theorem.
Theorem 2. Let M be an almost Hermitian manifold with dim M=2n
4. M has a wvanishing generalized tensor of Bochner if and only if the
generalized curvature of any antiholomorphic n-plane in T,M does not de-
pend on the n-plane for an arbitrary point p¢ M.
In the theory of the almost Hermitian manifolds the tensor R'(x,y, 2, u)
R(x,y, Jz, Ju) is useful. With respect to this tensor we define a Ricci ten-
sor by the equality
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(8) S’(xv ,V)= !-\.:l{R,(ui, xv y, Il,-)+R'(Ju,—, X, _V, ./U—,-)},
where {u;, Ju,} (i=1,..., n) is an arbitrary adapted basis for 7,M. The Ricci
curvature of the direction, determined by the vector x, is given by S'(x)
=8"(x, x)/g(x, x). If a is a section in T,M, we define a curvature K'(a, p) of
this section

Ry Iy, Jx)

g(x, x)g(y,v)—g%x,y) ’

where {x, vy} is a basis for . With respect to an adapted basis we have

K’(ay p); K’(x’y) =

Su)= 2 {K(u,u)+K'(u,Ju)y+H@),i 1,...,n
j=1, ji

The bisectional curvature H(u,, u;)=R(u;, Ju,, Ju;, u;) [5] and the curvature K’

are connected by the following equality A (u;, u,)=K'(u;, u;)+K'(u;, Juy), i=j

Using the first Bianchi identity for the tensor R, from (8) we obtain S'(x,y)

—=2713r  R(x,Jy, Ju, u). Finally, the scalar invariant associated with the ten-

sor R isgivenby S'(p)=27_,{S'(u,)+ S (Ju,)}-

Let E™(m=2) be an m-plane in T,M with an orthonormal basis {z,,...,
U,}. We define a curvature K'(E™, p) of E™ with respect to the tensor R’ by
the formula
9) K(E™p)= =  K(u,u).

1=itj=m

Corollary 3. Let M be an AHgmanifold with dim M=2n=4. The

manifold M has a vanishing generalized tensor of Bochner if and only if

(10) K(E", p)+K'(E", p)=c(p)

for an arbitrary antiholomorphic n-plane E" in T,M, p¢ M.
Proof. Since M is an AH,-manifold, from (5) it follows that

K*(u;y ) = —,l;* {3K(u;, ;) —K(u;, Juj) —5K' (w;, u)+ K, Ju))j.

Then the proposition follows from Theorem 2 taking into account the equali-
ties (7), (9) and the last equality. The function in (10) has the form

&(P)= sty P+ a1y () — S (P}

In [6] A. Gray has considred nearly Kihler manifolds of constant type.
This notion was extended for the class of the almost Hermitian manifolds
[11]. We shall call that an almost Hermitian manifold is of constant type i(p)
if for any antiholomorphic section a in 7,M holds K(a, p)—K'(a, p) =4(p),
where 1(p) does not depend on the section a.

L. Vanhecke proved in [11] that if M is an AH;-manifold of constant
type, then for arbitrary x,y in T,M the following equality R(x,yv,y, x)
—R(x, y,y, x)=12g(x, X)g( ¥, y)—&%x, y)—g%x, Jy)} holds. This equality can
be written in the form K(a, p)—K'(a, p)=4isin?6, where a is an arbitrary sec-
tion in 7,M and Y=< (a, Ja), -
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Let M be a Kihlerian manifold with vanishing tensor of Bochner. If {x, y}
is an orthonormal basis for any antiholomorphic section in 7,M, the quan-
tities

4 1 S(x)-S(y)
wi SO HE) 3 g T =KX y)
depend only on the point p¢ M. The inverse is also true, i. e. if these quanti-
ties depend only on the point, then M is a manifold with vanishing tensor of
Bochner [9; 3]
Now let M be an A/H,-manifold satisfying in every point p¢ M the con-

ditions
4
(11) n+25(x’_H(x) 'u(p);n+2 o *'2’*"—K(X,y) v(p),

where {x, y} is an orthonormal basis for any antiholomorphic section in 7,M.
We shall find the form of the curvature tensor for such manifolds. We shall
use the next theorem.

Theorem 4 [4]. Let M be an almost Hermitian manifold with dim M

-4 and T:(T,M)* —~ R be a quadrilinear mapping satisfying the following

conditions :

1) T is an LC-tensor ;

2) T(x,v,z,u)=T(JIx, Sy, Jz, Ju);

3) T(x,y,v,x) =0, where {x,y} is a basis for an arbitrary holomorphic
or antiholomorphic section in T,M. Then T 0.

Theorem 5. If M is an AH,-manifold satisfying in every point p¢M
the conditions (11), then the curvature tensor R has the form

1 S(x)--S( )

. 1 "w—wv
(13) R(x’ y: Z, u)' = 2(’!-}-.2) RS,I(XU y’ Z, u)—‘VR](x, ,V, Z, u) - 3 RQ(vvy )’, Z, u))
where
[€S,I(x, Vs <, u)=g(y7 Z)S(X, u)v g(x' Z)S(y’ ll)
L g(Jy, 2)S(/x, u) —g(Jx, 2)S(Jy, u)—2g(Jx, )S(J/z, u) + g(x, u)S( y, 2)
—g(y, w)S(x, 2)+ g(Jx, w)S(Jy, 2)—g(Jy, u)S(Ux, z) 2g(Jz, )S(Ux, y);
Ri(x, y,z,u) gy, 2)g(x,u) glx,2)8(y,u);
Ry(x, ¥, z, u)=g(Jy, 2)g(Jx, u)—g(Jx, 2)g(Jy, u)—2g(Jx, ¥)g(Jz, u)
and vice versa.
Proof. We consider the tensor 7=R (1/2(n+2))Rss+vR, + ((t—»), 3)R,.
By the given conditions this tensor satisfies the properties 1), 2), 3) in Theo-
rem 4 and hence 7 -0. The inverse is an easy verification.
Corollary 6. If M is an AHg-manifold with dim M -4 satisfying in
every point p¢ M the conditions (11), then
a) M is an AHy-manifold ;
b) M is of constant type.

Proof. From Theorem 5 it follows that the curvature tensor has the
form (12). By a straightiorward calculation we obtain

R(x, v, z, u)— R(x, y, Jz, Ju)—R(x, Jy, z, Ju)— R(Jx, y, z, Ju) 0,

which proves a). From (12) we have R(x,y, v, x) -R(x, y, [y, /x.) (u—4»)'3
for an orthonormal basis of any antiholomorphic section in 7,M, i. e. M is of
constant type - (u—4v)/3,
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Corollary 7. An AH,-manifold M with dim M=4 satisfying the con-
ditions (11) is an AH,-manifold if and only if n=4».

Proof. Theorem 5 implies that the curvature tensor has the form (12).
Using this formula by direct computation we find

‘ R(x, y, y, X)—R(x, y, Jy, Jx)
=27 gy, 2)8(x, u)—g(x, 28y, B)—g(Jy, 28(Jx, u) +g(Jx, 2)g Sy, u)}.

The proposition follows directly from this equality.

Corollary 8. If the AHymanifold M with dim M=4 satisfies the
conditions (11) in every point p¢ M and w4y, then M is an AH,-manifold
with vanishing tensor of Bochner.

Proof. In terms of an adapted basis the conditions (11) by «=4» are

4 1 Slu;)+S(u,) s
g SW)—H@) =us iy =g — K@iy 1)) = G i,

From these equalities by summing we obtain u=S/(n+1)(n+2) and replacing
in (12) we find R=(1/2(n+2)) Rs;—(S/4(n+1)(n+4-2))R,, i. e. B=0.

Let M be an AH,-manifold satisfying in every point p¢ M the conditions
(11). The functions u(p) and »(p) can be expressed by the scalar invariants
S(p) and S’(p). In fact, using an adapted basis we have

1 1 S)+S() .
(13) L Sw)—H@) =i iy g — K@, w) =, i)

Summing the second equalities on j we obtain
4

S
Comparing these equalities with the first equalities of (13) we find
(14) ut2n—1)y =S/2(n+2).

On the other hand K{(u,, u;,)—K'(u;, u,)=(u—4»)/3, i=j. Summing these equa-
lities we obtain
(15) w—4r=3(8S—38")/4n(n—1).
From (14) and (15) we find
S M=, L S S—5")
o ar)(n+2) " an(n—1) ' VT a(n+1)(n+2) Sani—1) "
The manifold is of constant type 2=(u —4v)/3=(8S—3S")/4n(n—1).
Theorem 9. Let M be an AHs-manifold of constant type i and dim M
-4. The following conditions are equivalent :
a) Mis with vanishing generalized tensor of Bochner
b) The curvature tensor has the form (12).
Prooif. Let B*=0. With respect to an adapted basis from (6) it follows
that
45%(w,))/(n+2)—- Hu)=S*/(n+1)(n+2);
(16) 1 S*uy)+S¥u,) . S* 53
ny2 2 —K*(a;, u)) “anrn(nia
On the other hand, M is of constant type 4
(17) K(u;, u,)—K'(u;, uj) =2, i=+j.
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From here by summing we obtain S(u,)—S'(z;)=2(n—1)i; S—8 —4n(n—1)i
This equality and (5) give

(18) S*(u,)=S(u,)—3(n—1)4/2; S*=S—3n(n—1)i
Substituting in the first equalities of (16) we find

4 S S—-8
(19) n+2 Stee) — H(u)) = (n+1)(n+2)+3 an(n—1y "

From (5) we have
K*(uiv u/)=K(u1'» ”/) % {K(ui- U/)’—K’(u“ ll/)}—'% I‘K(ui! .Ill/)—K'(ll[, ./ll/)}-

Taking into account (17) we find K*(u,, u;)=K(u,, u;) -34/4. This formula, (18)
and the second equalities of (16) imply
1 S(u;)+ S(uy) S S-8

nv2 2 K@ )= gy 3 ey

(20)
Now the proposition b) follows from (19), (20) and Theorem 5.

For the inverse let R have the form (12). By Corollary 6 M is of cons-
tant type i —(u—4»)/3. Then (5) gives

R&(x, v, z, u): R(xy B Z, u)_' :: lRl(x) y) 2, u)_ :l‘. lRl(x’ W 2, u)’

S*(X, ,V)=S(X, .V)"3(” o ])lg‘ Xy y)//?'
S§S*=S 3n(n—1)i.
Substituting in (6) we obtain

B* R

1 H—v

An+2) Rs +vR,+ 3 R,=0.

Remark. Theorem 9 gives another approach to the problems in [12].

The next theorem is due to Schouten.

Theorem [8). The Riemannian manifold M with dim M=4 is confor-
mally flat if and only if R(x,y, z,u)=0 for an arbitrary orthonormal basis
of any 4-plane in T,M for every p¢M.

L. Vanhecke and K. Yano proved an analogous characterization for
an AH,-manifolds with vanishing tensor of Bochner.

Theorem [10]. Let M be an AH,-manifold with dim M 8. The tensor
of Bochner is zero if and only if R(x,y,z,u)=0 for an arbitrary orthonor-
mal basis of any antiholomorphic 4-plane in T,M for every p¢ M.

We shall prove an analogous property for Affy-manifolds of constant type.

Theorem 10. Let M be an AH,-manifold of constant type and dim M

8. Then the following conditions are equivalent :

a) B*- 0;

b) R(x, y,z u) -0 for an arbitrary orthonormal basis of every antiholo-
morphic 4-plane in T,M, pe¢ M.

Proof. Let B*—0. From Theorem 9 it follows that the curvature tensor
has the form (12). If |x,y, z, u} is an orthonormal basis of any antiholomorphic
4-plane in T,M, from (12) we obtain R(x, y, z, u)=0.

For the inverse let orthonormal quadruple {x,y,z,u| span an antiholo-
morphic 4-plane in 7,M. By our assumption R(x,y,z,u)=0. The quadruple
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(x+y) N2, 2, (x-—y),'\]2} is also an orthonormal basis for an antiholo-
morphic 4-plane and hence R((x+y)N2,y, 2 (x —y) V2)=0. This equality gives
(21) R(x, y, z, x)=R(u, y, 2, u).

The quadruple {/x, y, z, u} span also an antiholomorphic 4-plane and similarly
to (21) we have

(22) R(Jx, y, z, Jx)=R(u, y, z, u).
From (21) and (22) we find
(23) R(x, v,z x) R(Jx,y,z Jx).

Using the quadruple {x,(v+2) V2,(y—2)/ V2, u} analogously to (23) we
obtain
R(x, (y+2N2, (y =22, x)=R(Ux, (y+2)N2, (y—2)/\2, Jx).
From here follows
(24) R(x, y, y, X)—R(x, 2, 2, x)= R(Jx, ¥, y, Jx)— RUXx, 2, 2, Jx).
Replacing the vector z with Jz, similarly to (24) we obtain
(25) R(x, y, ¥, X)—R(x, Jz, Jz, X)= R(Jx, v, y, Jx)—R(Jx, Jz, Jz, Jx).
Since M is an AH,-manifold summing (24) and (25) we find
(26) R(x, y, ¥, X)= R(x, Jy, Jy, X)
for an arbitrary orthonormal basis {x, y} of any antiholomorphic section in 7,M,

The vectors {(x'—l-y)/\/'f.(x—y)/\/i} span also an antiholomorphic section and
hence

R(x+IN2, (x— N2, (x—N2, (x+9N2)=R((x +y)V2, (Jx—Jy)N2,
(Jx—Iy)/V2, (x+y)N2).
From here by direct computation we find
2R(x, ¥, s X)+ 6R(x, y, Jy, Jx)= R(x, Jx, Jx, X)+R(y, Iy, Iy, ¥)
or
@7) 2K(x, )+ 6K'(x, y) = H(x)+H (y)
and with respect to an adapted basis we have
2K(u;y u;)—6K"(u;, uy) = H(u))+Huy), i+,
2K (u;, Juy)+ 6K (u;, Juy) = H(u,) + H(ay), i=j.
From here by summing on j it follows that S(u;)+ 3S8"(u;)=(n-2)F(u;)
+XpaH(uy), i=1,..., n or

. 4 1 A .
(-)8) n+?S'(ui)—H(u:)=n+2j'\:]H(ui)v l=l’---) n.
Summing on { we obtain 3;=lH(u,) -S*/(n+1) and (28) gets the form
4 S*
2 S*(u,)—H(u,) =

(_—nri)(”——-{'—-?)’ l l,--.' n.
Hence B* =0 [3].
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Corollary 11. Let M be an AHymanifold of constant type and
dim M=4. The following conditions are equivalent .

1) B* -0;

2) K(x,y)  K(x, Jv), where {x,y} is an orthonormal basis of any anti-
holomorphic section in T,M, p¢ M.

Proof. Let B*-~0. From Theorem 9 it follows that the curvature tensor
has the form (12). Then 2) follows by direct verification.

Since the condition 2) is (26), the proof of the inverse is the same as
in Theorem 10.

Corollary 12. Let M be an AH;-manifold of constant type i and
dim M=4. The following conditions are equivalent:

a) B0

b) 8K (x,y) H(x)—H(y)=24, where {x,y} is an orthonormal basis of any
antiholomorphic section in T,M, p¢ M.

Proof. Let B*=0. From Theorem 9 and Theorem 5 we have

4 X
b S HE= SN —H() = g e K(x, ) <.
From these equalities we find 8 K(x, y)—H(x)— H(y) —=2(u —4v) =64

For the inverse let {x, vy} be an orthonormal basis of any antiholomorphic
section in T,M. Then 8 K(x, y)—H(x)—H(y)=61. Using the vectors {x, Jy} we
have also 8 K(x, Jy)—H(x) H(y)—64 and hence K(x,y)=K(x,Jy). The con-
dition a) follows now from Corollary 11.

The next characterization for the conformally flat Riemannian manifolds
is due to R. Kulkarni.

Theorem [7). Let M be a Riemannian manifold with dim M=4. M is
conformally flat if and only if K(x,y)+K(z,u)—K(x,uw)+K(y,2) for an ar-
bitrary orthonormal basis {x, y, z, u} of any 4-plane in T,M, p¢ M.

L. Vanhecke and K. Yano proved an analogous characterization for
AH-manifolds.

Theorem [10]). Let M be an AH-manifold with dim M=8.The follow-
ing conditions are equivalent:

a) B-0;

b) K(x,y)+K(z,u) - K(x,u)+K(y, z), where {x,y,z u} is an orthonor-
mal basis of an arbitrary antiholomorphic 4-plane in T,M, p ¢ M.

We shall givean analogous characterization for A/ -manifolds of constant
type.

Theorem 13. Let M be an AH,-manifold of constant type and dim M
>8. The following conditions are equivalent

a) B0

b) K(x,y)+ K(z, u) - K(x, u)+K(y, z), where Ix,y,zu} is an orthonormal
basis of an arbitrary antiholomorphic 4-plane in T,M, p¢ M.

Proof. Let B -0 and the orthonormal quadruple {x, vy, 2z, u} span an anti-
holomorphic 4-plane in 7,M. From Theorem 9 and Theorem 5 we have

K, 9)+ Kz )= o 1506 + () + S(2) + S} 42,

K(x, u)+ K( y, 2) 2(”:_2) (S(x) + S(u)+ S(y) + S(2)} + 2»,

which proves the first implication.

Let now the condition b) be wvalid and let the orthonormal quadruple
{x, v, 2, u} span an antiholomorphic 4-plane in 7,M. The quadruple {(x +2)N 2
v,(x-—-2)/V2, u} has the same property. Then the following equality
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R(x+2)/V2 33, (x+2)/N2)+ Rix —2) V2, u, u, (x ~2)/\2)

= R((x+2)/V2, 1,1, (x+2)/V2)+ RY,(x=2)/V2, (x  2)/V2, )
holds. From this equality by direct computation we find
(29) . R(xr w3, y):R(x’ u, z, u)!
which holds for an arbitrary quadruple {x,y, z, #}, spanning an antiholomorphic
4-plane. Then (29) is also fulfilled for the quadruple {x,(y+u)/ \/2, z,
(y—u)J2} and hence

(30) R(x, y, z,u)+ R(x, 4, 2, y) — 0.
Changing x and y by y and x, respectively in (30) we obtain
310 R(y, x, z,u)+R(y, u, z, x)=0.

Taking into account the first Bianchi identity from (30) and (31) we find
2R(x, v, 2, u)—R(Yy, z, x, u)—R(z, x, y, u) =3R(x, y, z, u)=0. Now the proposi-
tion follows from Theorem 10.

Corollary 14. Let M be an AHs;manifold of constant type i and
dim M_-4. The following conditions are equivalent :

a) B*=0;

b) K(E", p)-c(p), where E"is an arbitrary antiholomorphic n-plane in
T,M, pec M.

g Proofi. Since M is an A ;-maniiold of constant type 1, by a straight-
forward calculation we find K(E”, p)—K'(E", p) = n(n— 1)A(p).
Now the proposition follows from Corollary 3. It is easy to show that
—1 3 -1
AP =301 SP) + oy ).
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