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1. Introduction. For more than 200 years the central limit theorem (CLT)
has been an essential part of the very core of probability theory. The reason is
twofold; namely, the statement of the theorem is of eminent practical and
theoretical importance, but, moreover, research on more and more general versions
of the theorem has demanded new ideas and methods again and again. This
way work connected with the CLT has greatly influenced the development
and sharpening of the tools now generally used in probability theory. The
present survey article shows that this process is going on even in the field
of sums of independent random variables (r.v.). Throughout this paper we
write for the sake of brevity X~F if the r.v. X is subject to the distribu-
tion function (d.f.) F. We first consider a sequence X, X,,... of independent
identically distributed (i.i.d.) r. v. with X}~/ and put

(1.1) Sn:i=B7Y X+ ... 4+X)—A, n=12,...
where (A,};° and {B,}* (B,>0) are certain sequences of numbers. Further we
use the notations
(1.2) F(x):=P(8,<x)= H"(B(x+ An)),
Tlx):— 1—H(x) + H(—x), <1>(x)=7‘§'{__£:r e~ wdu,

Weak convergence of d.f. K, to a monotone limit function K is denoted by
K, —K, while we write K, —.K if, moreover, K(co)—K(—)=1 (complete
convergence).
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Now we are in a position to formulate the following well known version
of the CLT due to P. Levy, A. Ja. Khintchine, and W. Feller, see

e.g. [3]
Theorem 1.1. The complete convergence

(1.3) Fo—c®
holds true if, and only if,

(1.4) lim [x27 (x) [ w?dHiuj] 0.
X-3c0 —X

Condition (1.4) implies only that large values of .\, are improbable in a
precise sense. Convergence of {F,} to all the other stable d.f. takes place
only under very special conditions. This explains why we find d.i. similar to
& very often in practical situations.

For a long time it has been generally accepted that this theorem is a fin-
al step in the long history of the CLT, at least for the simplest model with
i.i.d. summands. But in the following sectior it will be shown that this is not
true and that — according to a conjecture of V. M. Zolotarev — conditions ne-
cessary and sufficient for (1.3) can be given which are of quite another type
than (1.4).

It is now obvious that this idea gave rise to the development of two dii-
ferent new theories; they are, of course, connected, but each of them pre-
sents an independent interest and advances knowledge useful for the other.

One of these research directions is connected with Kolmogorov’s conjec-
ture. It is devoted to purely analytic problems of a new kind, namely to the
continuation of d.f. within appropriate classes. The results now available in
this field are contained in [4]—[8], [14], [16]—([19], [21], [22], [25], |26] and are
briefly surveyed in [19], see § 2.3 of the present paper.

The other direction is a reconsideration of the theory of sums for r.v.
from a new pnint of view. Its saliant feature is “restricted convergence on F,”,
i.e. weak convergence of F, on a subset SCR,, which is assumed to con-
clude complete convergence. The problem of relative compactness (see 2.2) is
an essential part of it. In the present paper we survey the very first results
in this field. The reader will feel that the number of unsolved problems is
enormous so that we can formulate only a few of them.

2. New versions of the CLT for i.i.d.r.v.

2.1. Zolotarev’s idea and the general plan for the proofs
of the new limit theorems. It was V. M. Zolotarev who proposed to
prove the following new version of the CLT. This theorem was the starting
point of the theory to be described in the present paper. Better versions of
this result are the theorems 2.4.2 and 2.4.3.

Theorem 2.1.1. The relations (1.3) and (1.4) are true if, and only if,
we have the weak convergence on a half-line

(2.1.1) F(x) —, d(x), X<,

or, what is the essential assertion, (2.1.1) implies (1.3).

Remark. This means that the restricted convergence (2.1.1) continues
to the whole line and thal the limit function is a non-defective d.f. which is
uniquely defined,
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We outline the plan of the proof, since it is typical for all limit theorems
of this new type.

Obviously there exists a subsequence {n’} of natural numbers and a mo-
notone function F such that

(2.1.2) Fo—,F
where F satisiies the condition
(2.1.3) F(x)=w(x), x<z

Now inevitably two problems arise.

2.1.1) Is the set F-—|F,> relatively compaci, i e. does from (2.1.2) and
(2.1.3) follow that F(ecc)=17?

If this is the case (see §2.2) then F is an infinitely divisible (i. d.) d.f.
This is an immediate consequence of the following result which is a slight
extension of a lemma proved in [20].

Lemma 2.1.1. Let x,<x, be two arbitrarily fixed numbers and

fr: =limsup,LFa(x))<liminf, o Fu(x)= : fo.

Then {B,\n} is bounded away jrom zero.
For the prooi we observe that for all y>0 and all x

Fu(x-+y)—Fu(x)= sup [F(x+y)—Fu(x)] = sup P(x-- S,=x+y)
supPE=X,+ ... + X, <z-+By)

Now by a well known property of concentration functions of sums (see [28,
§IIL 2] it follows that F,(x+v)—Fu(x)—~C(yB,+1)/n, where ¢>0 is an abso-
lute constant. Putting x—x,, y= x,—x, we obtain the assertion by an indi-
rect argument.

Now the second problem can be formulated as follows.

2.1.2) Is an i.d.d.f. F with property (2.1.3) uniquely defined?

This problem is treated in § 2.3. Having given an answer in the affir-
mative to both these questions we have essentially proved theorem 2.1.l1. Na-
mely, if the assertion were wrong then there existed a subsequence {n’} such
that we have (2.1.2) and (2.1.3), but F== @, which is impossible.

Since [20] was published these two problems have been solved separa-
tely for several times under various circumstances. Only in the proof of the
CLT quoted in §4.5 it was possible to treat them in a unique set-up.

2.2. Relative compactness of {F,}. As well known (see e.g. [2]) a

d.f. F is called stable if for each s there exist constants Q;>>0 and A, such
that for all x

(2.2.1) F(Qsx+Py)=F%x), s-2, 3,...

They form the class of all limit d.{. for sums (1.1) of i i.d.r. v. Turning to
problem 2.1.1) we remark that it has not much to do with the normal d.f.
Indeed, the classical argument leading from the assumption F, —:F to the
equation (2.2.1) can be adapted to our case in which weak convergence of
F, on a half-axis (- oo, 7v) is assumed. It is an interesting feature of the new
theory that certain lemmas of Khintchine and Gnedenko (see (3, § 10]) have
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to be reformulated. The following lemmas are slightly improved versions of
results proved in [17]. Obviously part b) of lemma 2.2.! concerns a continua-
tion of convergence.

Lemma 2.2.1. a) Let v be a real number and let us consider two mo-

notone functions K:( ~,1)— (0, 1), I/(\:(v—- ~, o0) - (0, 1] with the property
(2.2.2 K(—oo) - K( - )=0.

For a certain sequence {Kx) of d.f. we assume the weak convergence

(2.2.3) Kalx) = K(X), x<r

Furt,}zzer we suppose that for certain sequences {a,), {b,} (b,>0) of numbers
we have

(2.2.4) Kibox+ an) = K(x), xR,

Then lax, and |by) are bounded and liminfb,>0.

by Let, moreover, a continuation K of K be given by the weak con-
vergence (for a subsequence (k') of natural numbers) Ki(x) —+ K(x), X(R,.
Then there exist numbers a and b such that in the points of continuity we
have K(x)=K(bx—+a), xR,

Lema 2.2.2. Under the assumptions of lemma 2.2.1 we have a lima,,
b limb,. 1f K(x)— K(x) for bx+a<r, then a=0, b 1.

These lemmas make it possible to obtain the equations (2.2.1) at least on
half lines; more precisely we have

Lemma 2.2.3. Let F:(—oc, 1) >0, 1)be a monotone lunction satisfy

ing

(2.2.5) Fix)>0, x<r Fl—~)-0
and assume the restricted convergence

(2.2.6) Fux) — Flx), X<

If further a continuation F of F is defined by (2.1.2), then there cxist num-
bers Q>0 and Ps such that the equations (2.2.1) are true at least on lhe
half-axes Qsx+Ps=—1, § -2, 3,...

Now we get the following answer to problem 2.2.1, see [L0}.

Theorem 2.2.1. Under the assumptions (22.5) and (2.2.0) the set
N = {F.) is relatively compact and all limit d. f. are i. d.

Proof. We introduce numbers x5 by the equations Qux; 7 ¢ and ob-
tain from lemma 2.2.3 O<F(r)= F*(x— Ps)Qs) F*(- ) Fi(~), s 2,3,...
so that Fl~c)< 1 is impossible. The second assertion follows from lemma 2.1.1.

23. Kolmogorov's conjecture: The continuation theorem
for &. Now we turn to problem 2.2.2) which was solved in [16] with the aim
of solving Zototarev's problem on the CLT. Afterwards it turned out that it
was A. N Kolmogorov who had stated the problem already in the fifties of
our century. As we remarked in § | it served as a starting-point for the con-
tinuation theory of d.f. The exact answer to problem 2.2.2) runs as follows.

Theorem 23.1. If an i.d.d. f. F possesses the property
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(2.3.1) F(x) =d(x), x<z,
then F— @.

Soon it was remarked (see [14]) that this very origin of continuation
theory leads beyond this theory. The point is that theorem 2.3.1 can be gene-
ralized such that we need not assume coincidence of F and & in any point.

It is just a certain asymptotic behaviour of one tail of F that characterized ¢.
More precisely we have

Theorem 232, An i.d.d.f. F salisfying lime,_(F(x)/P(x))=1 coinci-
des with @.

The most general theorem which can be obtained in this direction was
found only very recently, see [21]. For its formulation we denote by |}
and {y,;};° two denumerable point sets with the property lim x;=lim y;= —co

Theorem 233. Let I stand for an i.d.d.f If for i — o~ we have

(l+o(l))¢(x,)\F(,\) and for all ¢>0 we have F(y,)=o(d(y,)e”i), then it
follows that F—

This result cannot be improved, see [21]. All theorems quoted in 2.3 are
of purely analytic nature and we do not enter a discussion of their proofs,

see [19]. All of them yield new versions of the CLT, namely the theorems
2.1.1, 2.4.2 and 2.4.3, resp.

24. A general compactness theorem with application to
the CLT. The method which in 2.2 led to the compactness of {F,} can be
further developed and yields the following result, see [17]. We consider an
arbitrary subset {F,.}c{F,} such that

(2.4.1) Falx) -, Flx), x<xz,
where F is a d.f. We also introduce the notations
Fr(x): =lim infp e Frnr(X), Fi(x): =limsup,cFr(x), k=1, 2, ...
so that Fi(x)=F(x)=F(x).
Theorem 2.4.1. Assume, for H fixed, (2.4.1) and
(2.4.2) F(x)>0 forall x, F(—o)-0, k=12 ...
Let, moreover, there exist two numbers y and >0 such that
F(y) -6>0, k=1,2,...,

then the set \F,} is relatively compact and all limit d.f. are i.d.

This way an interesting asymptotic property of convolutions appears,
since relative compactness is equivalent to tightness (see e.g. [1]). Hence by
virtue of the compactness theorem we have the following situation. For every
>0 there exists a number N(e) such that

(2.4.3) 1 —F(x)+F,(—x)<e for all x>N(), n=1, 2,.
But the assumptions concern only the left tails of F,.
In full generality this theorem has not been applied yet. But putting

F(x): -lim inf, ,Fa(x), F(x):=lim sup,_.Fa(x)
we obtain simple criteria (see [17]), e. g.

7 Cepauxa, 2
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Criterion 24.1. Let V be an arbitrary d.f. with V(x)>0 for all x.
If for certain numbers a, b

0<a<liminf, , LF(x) Vix)<limsup,, F(x) V(x) “b< oo,

then the set (F,| is relatively compact.

Criterion 2.4.2. The set |F, is relatively compact if for all x,
F(x)>0 and F(—o0) -0.

Now we are able to turn to generalizations of theorem 2.1.1 in which
convergence of {F,} is not supposed in any point. The first one is an imme-
diate consequence of theorem 2.3.2 and criterion 2.4.1 (see [15]).

Theorem 2.4.2. The convergence (1.3) follows from

lim F(x) &(x)= lim F(x) @(x) - 1.

But theorem 2.3.3 and criterion 2.4.2 yield (see [21]).
Theorem 24.3. The convergence (1.3) follows from

F(x) ()1 +0o(1)), F(y)—o(@(y)e” )

for all ¢>0.

95 The classes (,.In the continuation theory of i d.d. f. the following
notation plays a considerable role.

Definition 25.1. An i.d.d.f. K belongs to the class (. if it possess-
es the following propertv: If for an arbitrary i.d. d.f. L we have K(x)
= [(x)(x<7) then it follows that K — L.

By theorem 2.3.1 this class contains «; it is important since we easily
recognize that the proof of theorem 2.1.1 outlined in §2.1 yields also the fol-
lowing result. We need only replace the characterization theorem for @ by
definition 2.5.1.

Theorem 25.1. If Fi®, F(x)>0 for all x, and Fyx) —, F(x) for
v<rt, then we have F, — F.

A very useful criterion for an i.d.d.f. to be an element of (3, wasgiven
by I. A. Ibragimov in [26]

Theorem 2.5.2. Let the d.f K be i.d., K(x)>0 for all x, and for
all r>0

(2.5.1) K(x)=0(e™), x - —co,

then K. for all .

Note that {2.5.1) is equivalent to the fact that the characteristic function
(c. ) k of K is analytic in the upper hali-plan, see [13). Examples given in
[26] show that this supposition is essential.

It is already obvious that subsequences {n’} of natural numbers play a
considerable role in our context. Therefore the theory of partial attractions
outlined in [2, § XVIL 9] and [3, § 47|, might be useful. Indeed it provided
characterizations of (%, see [17, §8.

3. Convergence of /, to a positive function of a half line. The results
surveyed in 2 make us suppose that assumptions on F, concerning a half
axis only will be sufficient to obtain complete convergence also in the gene-
ral case, see [17].
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We remind the reader of Levy’s canonical representation formula accord-
ing to which every i.d.c.f. is uniquely defined by two numbers a, ¢°=0
and two spectral functions M:(—oc, 0) — [0, =), N:(0, ) — (— <, 0]. There-
fore we can briefly characterize 1i. d.d.f. by the notation F=F(a,s’, M, N).

On the very first sight it seems natural to replace ¢ in theorem 2.1.1 by

another stable d. f.
F, Ff(a,0,c ' x —c. 'xv), 0<a<2, ¢-—0, c.:=0, c—+c+>0.

But it can be easily derived from [13, §5.7] that the corresponding c. i. f, is
analytic in the upper half plane if, and only if, ¢c_=0, so that theorem 2.5.1
can be applied only in this case. It is for this reason that another approach
had to be taken and that stable d.f. are not mentioned in the assumptions of

Theorem 3.1.1. Let F:(—-,7) — (0, 1) be a monotone function

satisfying

(3.1.1) F(—)=0, F(x)>0, x<t,
and assume the restricted convergence

(3.1.2) Fux) — Flx), x<gz,
then there exists a unique stable d.f. F, such that
(3.1.3) Fp—F,

We outline the proof. The compactness theorem 2.2.1 tells us that the
sequence {F,}; is relatively compact.

According to the general model for the proofs of such theorems (see §2.1)
in the second step we consider a subsequence {F,} such that we have for a
certain i d. d. f.

(3.1.4) Fo —F.

The i. d. d. f. F obviously continues F to the line, but it is known (§2.5) that
not all i.d.d.f. F satisfying (3.1.1) belong to (.. Therefore we have to intro-
duce a new element in the proof outlined in §2.1. Indeed, we have to carry
out the unique continuation of F given by (3.1.2); for this purpose we distin-
guish three different cases described in the reduction theorem quoted below.

Needless to say that the following notion proves useful in our context;
for details see [5, 11, 19]. ‘

Definition 3.1.1. A d.f. F is called analytic if there exists a strip
}5‘* {,:”: X+iy:|y <b) and a function A analytic in S such that F(x)=A(x)
or all x.

Reduction theorem. The i.d.d.f. F appearing in (3.1.4) belongs
either to ., or it is an analytic d.f., or it can be characterized by

(3.1.5) F.-F{a, 0,c_ x= N), ¢_>0,
where the number a, 0<a<1, is uniquely defined.

This way the continuation problem has been essentially reduced, and we

need only the following . .
Continuation theorem. The i.d.d.f. (3.1.5) with a fixed (0<a<l)

are uniquely defined by their values F(x), x<x, where v is an arbitrary number.
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Theorem 3.1.1 leads us to the

Conjecture. All stable d.f. F. satisfying F.(x) -0 jor all x belong
to 3. for all i*.

Why does theorem 3.1.1 not permit such a conclusion?

Let the assumptions of theorem 3.1.1 be satisfied for a certain d.f. /7
(see (1.2)). Then there might exist another d.f. H, a subsequence {n; oi na-
tural numbers, and sequences {A~}, {B--| such that

Fox): =H" (BAx+A.)) — Gix),

where G(x) F.(x), x<r, but G F,. In view of the uniqueness theorem for
stable d.f. (see [7; 18; 25|) it is only clear that G is not stable.

4. The triangular array. 4.1. Statement of the problem. Let {X,,}
(n>1, 1-"k-k,, limk,=oc0) be a triangular array, i. e. a double sequence of
r.v. independent in each row, see [2; 3]. We assume .X,,~F,, and put X :
=Xp+ ... ~:~X,,,,” Ap~G, n=1,2, ..., where {4, stands for a certain se-
quence of constants.

As usual the r.v. X, are said to be infinitely small (i.s.) if

(4.1.1) lim max P( Xu =¢ 0 for all £>0.

n—oo 1=R=—k

Recent research on this model was stimulated by the following problem stated
by Zolotarev in [25]
Let F stand for an i.d.d.f, while = denotes a point set and F 5 the

restriction of F to &. In certain cases F is uniquely defined by F~ (if

~

S (—, 1), then this is true for F~¢@,; if F is analytic and 2 is denume-

~

rable and bounded this is trivially true).
Now assume that F is uniquely defined by FS' Further suppose that

(41.2) Gu(x) —  Fa(x), x¢E,

where isolated points of = are continuity points of F~ by convention. Does

it then follow that G, —. F?

Obviously a compactness problem does not arise if & is unbounded in
either direction. Therefore we will not discuss this case. We focus our atten-
tion to three different ways in which this problem has been treated so far,
see 4.2, 4.5, 4.6.

42. A general compactness criterion. We will denote a median
of the r.v. X,s by m,,. Then from results obtained in [23] the following clas-
sical compactness condition can be formulated; compare also [24].

Theorem 4.2.1. {G,);° is relatively compact if, and only if,

n o

X

sup X [ S dF (X A M) < o,
o k1 . 1+ x?
“ This conjecture has proved wrong by I V. Ostrovskij; see the material of the 3id

Vilnijus Conference on Probability Theory, 1981.
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k
(4.2.1) sup ¥ P( X, m,, =x)-o(l}, X -,
n k=1
kn s ~i
(4.2.2) sup X [m,,,\. 4 [ xdFa(x)! A, <o for all &>0.
n k=1 —e J

For the right understanding of the results concerning the triangular array
we remind the reader of the following classical conditions of convergence
for G,

Lemma 4.2.1. Let the r.v. X,, be i.s. Then for the convergence
G, -»cFla, 6®>, M, N) it is necessary and sufficient that for

x>

Far(X+mMp) — Mix),  x<0,

(4.2.3) '

145" ff’ L2

[Frs(x—+mny) 1] — N(x), x>0,

]

1

k Z kn £ 2]
v [ X*dFp(x+mu)— X ( JxdFp(x+ m,,k)) j
k=1 —= k=1 &

£—)

&
(4.2.4) lim hm mf [

=lim limsup [...]=0%
s n—)
Remark. It is easxly seen that (4.2.1) is a consequence of (4.2.3) since
lim, .. tM(—x)—N(x))=
Now we put

(4.2.5) G(x): =liminf, .. Gux), G(x): =limsupy... G,(x)
and assume that there exist real numbers a,, afS, a,<a,, such that
(4.2.6) G(ay) -- G(a,) >0.

Theorem 4.2.2. {Ga}, is relatively compact for a certain sequence

{Anly if, and only if, (42.1) and (4.2.6) are true; in tlu's case A, satisfies
the condition (4.2.2).
We introduce the concentration function Q(X, 2): =sup Px==X<x+1),

1>0. Then we are able to formulate another version of theorem 4.2.2.
Theorem 4.22. (G, is relatively compact for a certain sequence
{An); if, and only if, (4.2-1) holds and for some i>0 we have mf Q= 4)>0

We next consider the one-sided condition
(4.2.7) lim G(x) -0
It is trivially satisfied if, for instance, we put Z-( -~,:) and assume
F@(x) -0, Xx — —oo.

Theorem 423. {G,) is relatively compact for a certain sequence
(A, if. and only if, we have (4.2.7), Gx,)>0 for some real numbers x,
and 1
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(14.2.8) sup SP(Xux Mar=x) =0(1), X — oo,

An interesting assertion for the defective case is given by

Theorem 4.2.4. Let us assume that the X,, are i.s. and that we have
G, —, F, where F( ~)=0 and 0<a:-F()<1. Then there exists an
i.d.d.f. F such that aF =F, —log a— lim limsup R(n, x)- lim liminfR(n, x)

X—o00 n-—oo X—00 n—co
where R(n, X): =2 | P(X,—Mnp = X).

43. The law of large numbers. The compactness theorems in 4.2
are intimately connected with O—1-laws. This permits us to formulate new
versions of the weak law of large numbers, see [23].

First we assume

(4.3.1) liminf P( 2, <e&)=»>0 for any >0.
n—oo
Which conditions are necessary and sufficient for the weak law of large num-
bers if we have (4.3.1)?
Theorem 4.3.1. Let us assume (4.3.1). Then liminf, .. P( X, <e) 1
for any ¢>0 if, and only if, we have

n
(4.3.2) sup ¥ P( Xox—mMpe =anx)=0(1), X — oo,
n k=1

for a certain sequence a, — 0.

As a consequence of theorem 4.3.1 we obtain

Theorem 4.3.2. Assume G, —,F+ const. and (4.3.2). Then either F is
a unit-step function with F(xo+0)—F(x,)— 1 for a certain constant x, or F
is a continuous non-defective i.d.d. f.

44. Limit theorems under the assumption of restricted
convergence. In 4.1 we mentioned two cases in which continuation theo-
rems for i. d.d.f. FS are known. Accordingly we now give limit theorems

assuming restricted convergerice on a half-axis and on a set with a finite limit
point, resp. It is recommendable to compare our theorems with the well-known
limit theorems stated in the classical theory, see [3, § 25.].

Theorem 4.4.1. Assume S (- oo, 1) and F¢®.. In order that G, —F
it is necessary and sufficient that the conditions (4.1.2) and (4.2.1) are sa-
tisfied.

This theorem is an easy consequence of the compactness condition (4.2.1)
and the definition of the class (5.

It is useful to compare it with lemma 4.2.1. In view of (4.1.2) we can
drop (4.2.4) and instead of (4.2.3) we need ouly the weaker condition (4.2.1),
see the remark to lemma 4.2.1. In the following we denote by & a denume-
rable and bounded set.

Theorem 4.42. Let F be an i.d.d.f. with a UGaussian component
0?2 0. Then G, ~F if, and only if, we have (4.1.2), (4.2.1), and

k
(4.4.1) lim liminf X [ x2dFp (X may) >0.
e  noco Rl —e

Note, that (4.4.1) is weaker than (4.2.4), see [3,p. 124]. The next lemma
gives a suificient condition for (4.4.1) which permits an interpretation.
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Lemma 4.4.1. Assume that for any sufficiently small ¢>0 there exists
a sequence {6,(¢e)} with 0=6,(s)<e and

5
(4.4.2) limsup liminf 62(e) X P(84(e): Xnp— Mne —€)>0.
=0 n-yco k=1

Then (4.4.1) is satisfied.

Clearly, condition (4.4.2) means that the probability masses of the r.v.
X, are not concentrated too closely to their medians.

Theorem 4.4.3. Assume (4.2.1) and G, W const. (xt2). If there
exists a real number i, with 0<n<<1 and

k
(4.4.3) lim inf liminfe ¥ P(y.e = Xu—Mae =€) >0,
o) n—oo k=1
then we have G, —.F for a certain i.d. d.j.

The basic idea of the proof of the theorems 4.4.2 and 4.4.3 is the fact
that from (4.4.1) (or (4.4.2)) and (4.4.3), resp., it follows that every limit func-
tion of a subsequence U, is an analytic d. f.

45. The general CLT. The general CLT for the triangular array (see
[3, § 26]) gives conditions (in terms of F,) necessary and sufficient that we
have

(4.5.1) G, —ec®d, n— oo,

see e.g. lemma 4.2.1. The characterization theorem 2.3.3 for & makes it pos-
sible to derive this convergence from quite different assumptions, where
{x;}°, (¥} have the same meaning as in theorem 2.3.3, see 20. We use the
notation (4.2.5).

Theorem 4.5.1. Let the r.v. X, be i.s. and assume (as i — )

(4.5.2) (1+o(1)D(xy)- Gix;),

(4.5.3) G(y)=o(d(y)e”i')y for all ¢>0.

Then (4.5.1) follows.

For all the other limit theorems mentioned in the present paper relative
compactness of {F,} and {G,}, resp., had to be proved separately. But in this
case it was possible to obtain both results in a unique set-up. It is theorem
4.2.4 which permits to draw from (4.5.2) and (4.5.3) the conclusion (asi — o)

a-'(1+-o()d(x)=F(x), Ey)=o(®(y)e i) for all >0,

where / is i.d. Hence theorem 2.3.3 yields F =@ whence a -1 iollows.

46. The Lindeberg —Feller theorem. The general assumption
adopted in this section is the existence of the variances Var Xup=02 k=1,
<., k, satisfying

R
(46.1) Vary, X o

. O 1, n-1,2,...

Without loss of generality we may assume for the mathematical expectations
EX,, - 0; this amounts only to an appropriate choice of {A,}. Condition (4.1.1)
will be briefly denoted by (I). We introduce the function
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k
L(e): A [ x%dF,,(x)

k=1 X e
and remind the realer of the Linceberg condition
(L) lim, el (e) O
for all £ >0, which implies that the individual variances ., uniformly tend to
zero, namely

(4.6.2) max o2, — 0, »n — ~o.
1-- & k"

We also introduce the “tail condition”

k

(T) lim Y [ dFu(x) 0.
n—ow A=l Xi=s8
t is easily seen that
&
La(e) -& X [ dF,(x) ~e?P(max X, —¢)
k=1 |x = 1 k<R

n

2 max P( X =¢);
1 k= ky,

hence (L) implies (T) and (I) follows from (T).

For the interpretation of (L) see also [2, § XV. 6].

We now quote from [3, §21] the

Lindeberg —Feller theorem. Under the condition (4.6.1) (L) is
necessary and sufficient for (1) and the convergence

(C) G, —c®, n— oo.

In another version of this theorem (I) is replaced by (4.6.2), see [2].
Note that condition (4.6.1) is trivially satisfied if we consider a sequence
of independent r.v. X,~F, with variances o?=Var X,, k=1, 2,...; we need

only to put
k

2. N
B:=— X o

k=1

=

2 Xm: =Xy/Bn 1sk=ky=n.

This theorem gives the impression that (L) is by far a stronger condition
than (I), since we have to add (C) to obtain (L) from (I). But from theorem
4.5.1 it is easily seen that this impression is not quite correct; we need only
impose the additional assumption (4.6.1) to obtain

Theorem 4.6.1. Assume (4.6.1). Then (1), (4.5.2) and (4.5.3) are neces-
sary and sufficient for (L).

For the following two reformulations of the Lindeberg - Feller theorem
(see [10]) we again have to treat a compactness problem and a continuation
problem separately.

I. Compactness. This affair can be easily settled by means of the very
simple
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Lemma 4.6.1. Let ¥ stand for a set of d.f. F with [finite variances
or. If supFe%n'j:/\/mo and if the set of all limit functions for sequences

{F,)¢% does not contain the constants O and 1, then 3% is relatively compac.

Remark. Note that the set F—{P(x-+a), —oo<a<oo} is not relatively
compact, but 0 and ! are limit functions.

Accordingly it is condition (4.6.1) that implies relative compactness pro-
vided that convergence to 0 and 1 can be excluded. This is trivially the case
in theorems 4.6.2 and 4.6.3.

Il. Continuation. a) It is a very striking feature of the following result
that convergence only in two points is needed. The essential tool (compare
[3, § 25 and lemma 4.6.1]) is

Lemma 4.6.2. From (T) and (4.6.1) it follows that all limit functions
for {G,} — but for the constants 0 and 1 — are normal.

But two normal d.f. coinciding on two different points are identical.
Hence we immediately obtain

Theorem 4.6.2. Assume (4.6.1) and put S-—-{x,, x5}, X,Fx,. Then (C)
and (1) are necessary and sufficient for (T) and

(ChH Gy(x) —w D(x), x(S.

Now the Lindeberg — Feller theorem yields

Corollary 4.6.1. Under (4.6.1) the condition (L) is equivalent to (T)
and (C).

b) Now we assume that S is a set with a finite limit point and adopt
conditions guaranteeing that all possible limit d.f. are analytic. For this pur-
pose we introduce the condition
459 lim limsup La(e)<1
being equivalent to (4.4.1) (if (4.6.1) is true).

The key lemma for the case under consideration is

Lemma 4.6.3. Assume that (4.6.1), (I), and (L') are satisfied. i Gp —,G
for some subsequence {n'| of natural numbers then G is i.d. and has a non-
degenerated Gaussian component.

Note that all these i.d.d.f. G are analytic so that they are uniquely de-
fined under the assumption of the following

Theorem 46.3. Let S be a set with a finite limit point. Assume
(4.6.1) and (1). Then (C) holds true if, and only if, (C') and (L') are satisfied.
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