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ANALYTIC CONTINUATION OF POWER SERIES WITH
MEROMORPHIC COEFFICIENTS

W. GAWRONSKI*, R. TRAUTNER

The paper extends the results of the authors published in this journal in 1976. Theorems
are proved on the analytic continuation of power series with meromorphic coefficients, behav-
ing locally as a Stieltjes integral transform.

1. Introduction. Extended investigations on the field of analytic conti-
nuation have been devoted to power series of the type

(1) f(2)= }A(n)z”, lim sup | A(n) ' 71,

n—oo

where A is holomorphic in the whole plane C (e.g. [2] and the references
given there) or in an angular region S,;.: ={z| -f=argz=a, 2z =g}, 0<aq,
p<n/2, 0=-0 [1; 2;5; 6;9]. Then lower estimates for the domain of analyti-
city of / depend on growth properties of the interpolation function 4 in C
or in S,4, and on a, . In this paper we are concerned with power series of
the type (1), but we admit A to have singularities on the real axis. More
precisely, we deal with coefficient functions A behaving locally as a Stieltjes
transform, that is

2) A2) :-f 44D Ag(z)

z—t

for every R>0, where A is analytic in S.s.N{ z|=R} and [77% dx(t)| =0

for certain d,>0, n¢N,. We derive a general representation formula for f,
from which under certain growth conditions on A we may conclude the ana-
lytic continuation of f (theorem 1). The methods are related to and extend
those used in [5]. This formula will be fundamental for our further investiga-
tions. Its main applications are concerned with power series (1), where A is
meromorphic in S, ..

First, in case when A is meromorphic throughout S,,, with simple poles
on the real axis only we give a general theorem on the singularities of (1)
located on |z|=1 thereby proving a lower estimate for the length of a con-
nected arc on 2z =1 containing at least one singularity (theorem 3). This re-
sult essentially is based on density properties of the poles of A.

* The résearch of the first author was supported in part by the National Research Council
of Canada.
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In section 4 we give a further important consequence of our basic re-

oo

presentation formula. If {a,}¢l,, 1=p<oo, and A(n)= Z nakk , nEN,, is its
k=0 "

k=+n
Hilbert transform, then we prove that the power series Xra,z* and Xi°A(n)z"
possess the same domain of analyticity in C; (theorem 5).
For a¢R we denote throughout C;={z¢C if Re z>a, then Im z30}.

2. The representation formula. Suppose that for every R=¢=0 the in-
terpolation function has the form

R
@) A@)= [+ Ax2)
whenever 2¢S, s, \suppz, where [R|dx(f)|<oc. Let
t+a
suppx={tcR [ dx(s)|>0 for every >0}
t—s¢

denote the support of z and

(3) Ap(2) is analytic for 2€S,5.N{ 2|=R}.
Furthermore, we require the following conditions on x to be satisfied:
(4) z2(t) = e* for some &R and sufficiently large ¢

and if

(5) d,:=inf{ t—n | |t suppx}>0

denotes the distance between n¢N, and suppy, then

(6) lim inf d/"= :d>0

(the latter condition means that the mass function x is not distributed “too
close” to the integers).

Furthermore we assume that there exists a sequence {R,} of positive
numbers tending to infinity such that

@ A(2) is holomorphic at z= R,
®) A(Ryeiv) |se™ Rk, —p=p=a
and

©) D,: =int{| Re—n|, n¢N}>0,
(10) D: = liginf le/k’k>0'
Finally, if

log | A(re") |
r

h 4(@)=lim sup —B=@p=a, ¢=+0

denotes the growth indicator of A in S,5,—R we assume that
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(11) hy—B) and hya) are finite.

Now we basicly follow the proof of theorem 2 in [5].
Our result below will be a generalization of Cowling’s theorem. Without
loss of generality we may assume that of supp x N N,. Denote
Co: ={¢|argl=—8, o= C|=R}U{C!| |2|=Rp —B=arg{=a;

Uitlargt=a, Ryz[¢=elu{t! I¢/=e, nzargr=—B}.

Fig. 1

By (5), it is possible to choose disjoint Jordan curves y, such that the inte-
rior of y, contains supp zN(», »+1). The Jordan curves C,, y, are assumed to
have positive orientation. Then an application of residue calculus yields

Slogz ) Rk .
(2) J A Tdre 3 Ame  x L[ -EEH e  Djedordr.
k v

i
7t e<n< Ry, e<r< R,

Clearly the integration along C, is possible by (7) and (9). Further logz
loglz +iargz, O0=argz<2n.

In the last term of (12) the interchange of integration is permitted by
continuity arguments (see e.g. [10), p. 25, theorem 15a) and by (5). Again by
residue calculus we obtain
. log z ) k_’k et ok
o AGe Vo= 3 Amead [ ),

Ce e

Now making k& — oo we get for small 2z

e R Ry
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(13) f@)= Q@)+ [ A dp—a [ Lo (o),
where Q(2)= Zo<n<pA(n)2" and
(14) C:={¢|arg{=a, ©>|{|=0jU{¢| |{|=0 azargi=—58}

u{l argl=—5, e=|l <o}
To justify (13) we have to show that (f=Re'®, z=rev)

. @ A(Rie'®) exp (Rye' log 2) »
l,:= L i
20T 0T exp (2wiRze ) —1 Riedy — 0

and that the integrals on the right hand side of (13) exist. First, by (9), (10)
we have that exp (2niR:e®)—1 | =e*®r k, >0, kN, —B=¢p=a. Using (8)
we obtain as £ — oo

Iy = Rke“‘+ ARy j‘ exp [Ry(cos plogr—y sing)de — 0,
=8

if log r<<—[k;+ M+ 1+ 2x]/min(cos a, cos}p).
Next, we consider the integral

ol log z
(15) f1(2): =cf U
Cowling [5] shows that, under (11), it converges and represents an analytic
function in the domain bounded by the exponential spirals
{z=reiv|r<exp (y tan a— k (a)/cos a), 0<y<2a},
{z=reiv} r<exp ((2an—y)tan g—hy(—p)/cosp), O0<y<2a}.
Finally we investigate the Laplace - Stieltjes-integral in (13)

(16) fi@)i = [ (o).

Suppose that #[n—1/2, n+1/2]Nnsuppyz, n¢N. Then we have by (5) and (6),
(0<e<d=1, n=nye))

et 1|~ <|t—n '=1/d,<(d—e)*<exp[—(£+1/2) log (d—e¢)]
and by (4)

fodyx) ) £ e y(x)
iy b e

= O(exp[df—¢.log (d—e)|+1£ exp [6f—2¢ log (d—e)])
=0O(texp[t(d—2log(d—e))]), as £ — oo,

where we have assumed that x(0)=0 w.l o.g.
This proves, since >0 was arbitrary, that (16) converges absolutely if
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log z|< —d8-+logd? and represents an analytic function in the cut disc
{z] |z|<a? 3, 0=argz<2ax}.

In contrary to the case when A(z) is holomorphic in S, s, [5; 6] the func-
tion defined in (15) has a cut along the positive real axis. This is due to the
definition of logz and the fact that the right hand side of (13) contains a
sum of two functions of logz.

Summarizing the results above we obtain

Theorem 1. Given the power series

(n f(2)= ; A(n)z", lim sup | A(n) "7 =1.
n==0 n-—so0

Suppose that for every R>0 the interpolation function A has the represen-
tation

R dye)
(2) A(Z) = Oj z—¢ + “lR(Z)r ZESa.ﬂ-O\supp Xs

where [§|dx(f) <o, 2(0)=0, and that
(3) Ap is analytic in S,z.N{z| z|=R} (0<a, p<n/2, 0=0)

Assume further that conditions (4)—(11) are satisfied and that C is defined
by (14). Then the functions

- _AQ)eF 08 2

(15) fx(z) “:g _CQ_HIc___l de
. oo et log z
(16) foA2)= d} ";Q’,,T,:T dx(t)

define holoemorphic functions in the domains
U8 : ={z=re'v |r<exp(ytana—h,la)/cosq,

r< exp ((2z—vy) tan B—hy(—pB)/cos B, U<y <2aj,
y={z=reiv|r<dle—?, 0<y<2a},
respectively (log z=log r+ iy, 0<=y< 2x). Moreover the representation

. , @ el log 2
(13) 1&) = Q@)+ [t e orede—2mi [ o dx(®)

Q being a polynomial, holds in {|z \<1}n Gy? N Gy
Clearly the right hand side can give the analytic extension of f(z). To
this end it remains to replace G, by a larger domain, since in general Gy is
already a nontrivial estimate for the domain of analyticity of f,. We first state
two important consequences of theorem 1 useful for further applications
Theorem 2. Suppose that the assumptions of theorem 1 are satisfied.
1) If hy(a)=0, hy(—B)=-0, then f(z) and fo(2)= [g[e* ' ot =/(e**—1)]dx(t)
have the same singularities on {|z|=1} except for z=1 possibly.
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2) If hy(@)=0 for n/2—e< @|<a/2, (0<e<a/2), then f(z) and fy(z) have
the same singularities in C,.

Proof. 1) hy(a)=0, ky(—B)=0 imply Gz> {|z|<1}\{z|argz=0}.

2) Theorem 1 may be applied for any =/2—e<a, f<x/2 and the state-
ment follows from lim, ., s-.pGeé=C. : i

3. Meromorphic interpolation functions. In this section we assume that
the interpolation function A is meromorphic in S, ;. with simple poles on the
real axis only. The first result illustrates the influence of the location of the
poles of A on the distribution of the singularities of f on |z|=1.

Theorem 3. Suppose that A has the form

(17) A(2)=B(2)/P(2)
with
(18) B(2) is holomorphic in S, ., 0<a, f<z/2, 0=0,
(19) P(z) = fli (1—'{;—2), >0
"k
Further we assume the following conditions to be satisfied
(20) dp: =inf{ Az—n , ReN}>0, neN,,
(21) lim inf d}/"=1,
’ .k
(22) il_l:lo “;-——Da
(23) Ars1—Ag=c>0, kN,
(24) hy(p)==aD|sing| —p=p=a,
(25) lim sup | B(n) |V7=1.

n—»o0

Then the power series
(1 fR)= X A(n)z"
n=~0

defines a holomorphic function in the unit disc. Moreover, if
(26) o: = li:n sup [log B(i,) /A

then the following statements hold:

a) If 6<O0, then z=1 is the only singularity of f(z) on |z =1.

b) If 0=0, then there exists at least one singularity on every subarc
of |z|=1 with length exceeding 2z min (D, 1).

Remarks. 1. Since d,=n for sufficiently large #, (21) is equivalent to
lim,_d!/” =1, that is d=1 in (6).

2. From (23) we know that £:=1lim inf ge(4z+1—4;)=c¢ and thus, by stan-
dard theory [8,p. 1), D=h'=c"\.

3. Clearly in the case D=1 assertion b) shall be interpreted as the trivial
statement that there is at least one singularity on |z|=1.
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4. Condition (24) implies that ¢=0. If (24) can be replaced by the sharper
estimate

(24) hlp)=L|sing|, —B=e@<a, L<aD,
then by a known density theorem [7, p. 100, theorem XXXII] we have
a:lir:x sup [log | B(4;) ]/Ax=1lim sup [log | B(7)|]/r.
— 00 r—co

Further, if D<1, then by the same theorem and (25)
O0=Ilim sup [log | B(n)|]/n=1im sup [log ! B(r)|]/r.

Hence (24') together with D<1 is sufficient for 0=0. The following less tri-
vial example (of course we can choose B(1,)=0, kN, if (24’) does not hold)
shows that ¢ <<0 may occur when (24’) does not hold.

Define B(z): =sinn(z-+41/2)/2 and i,=2k—1/2+e* k¢N. Then D=1/2,
ha(@p)==|sing /2 and conditions (20)—(25) are easily verified. Since

B() = (— 1) sin (3 e=*) = (= DA{-5- e~ )1 +o(1)),

it follows that o=lims,.[log| B(is) |)/i,=—1/2.

5. If D=06=0, then |z|=1 is the natural boundary for f.

Examples. 1) For the power series E;'_o(e‘/" ‘cos m/n)z” and ¥ )
(tan m/n)z" the unit circle is the natural boundary, since 4,=42—k+1/4 and
D=0=0.

(Choose P(z)= E:i (1 —7:,2—)= ;:i (1 “(‘/z—_'zl/'m") I:’f (1 *(’E'—flfy‘)

= cOS m/Z cos hnyz).

In a similar way the more general power series X5 (tanzn®)z”, 0<<a<'l, can be
treated.

2) Let f(z): =X;° 2"/sin a(0n—a), where 0, acR are rationally independent
and (0, 1]. If a is fixed, then for almost all 6 (in the sense of Lebésgue
measure) theorem 2 applies to f for we have

o= (k+a)h, du= int **2_pl— L jbn—a,
reN ’

where | x|/ denotes the distance of the real number x to the closest integer.
By Khinchin’s metric theorem on Diophantine approximation [4, p.121] we have
| Bn--a|=1/n3, it n=ny6) for almost all 6 and thus (21) holds. Hence, by
theorem 3, for almost all 6 f(z) defines a holomorphic function in |z|<1 and
possesses at least one singularity on every connected subarc of |2 =1 the
length of which is exceeding 2a6 (note that ¢=0). Actually, if a=0 and 6¢Q,
then it is known by a different technique [3, p. 71] that the unit circle is the
natural boundary (for almost all 6) for this particular series.
In order to prove theorem 3 we need the following
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Lemma. Let P(z) be defined by (19) where {ix} satisfies (20)—(23).
Then as r — o and for every >0

(27) P(rei*) = O(exp (zDr|sin ¢ +er)),

(28) P'(reiv) = O(exp (nDr |sin @ | +er)),

(29) [P(re?®)|'=O(exp (=Dr|sin | +er)) if |[refr —iy|=c/4
and as n — oo

(30) (P(n)~ = O(e™),

(31) [P(m)]-'=O(e*”).

Proof. Assertions (27), (29) and (30) are given in [7, p. 89, theorem XXX]
and (28) follows from (27). To show (31) again we use the prooi of theorem
XXXI in [7, p. 98, (22.29)] to obtain | P(n)/(n—2iy) =e—*", where iy makes
‘n—2,| a minimum [7,p. 93]. From (20) and (21) we get 1/|n—2ay|<=1/d,
=1/(1—¢)" which proves (31).

Proof of theorem 3. Estimates (27) and (31) show lima.. | P(n) V=1
and (25) implies that f has radius of convergence unity.

To establish the main part we apply theorem 1. Since A(z)=B(z)/P(z) is
meromorphic throughout S, ;, with simple poles at i, only, it is of the type
required in (2) where z(f) reduces to a step function with jumps at i, given
by the residues of A(z)

res A(z)=B(4)/P'(4,).

:=J.k
From (24) and (30) it follows that (4) is satisfied. Further from (24) and (29)
we obtain

(32) ho@)=hglp)—=aD|sing =0, —f=¢<a @+0,

and moreover, A(re’*)=0(e"), —f=@<=a, r — o, when |re*—Ii,|=c/4. This

together with (23) ensures the existence of a sequence {Rs} possessing pro-

perties (7)—(10). Clearly (20), (21) and (32) imply (5), (6) and (11) respecti-

vely. Now, by theorem 1, (13) has the form
A

() = _AQY vegzgr_ 9n; w BUx) €% T
(33) f(2) Q(Z)-i—g 2 € dr—2ai T PGy iy

From (32) we see that the integral on the right hand side defines a holomor-
phic function in the region

GT.ﬂ_.—_-{z_.:relv !r<ey tan a, r<e(ﬂu—-1~) tan I}.

Since the sequence {&/i,} is bounded, the abscissa of ordinary and abso-
lute convergence of the Dirichlet series

S Bl e _
(34) T Py A s=—logz

coincide and may be computed by the formula
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(35) ogc= lim sup

k—co

| B 1
(Iog ' Pl " i

u,,)

[8, p. 11, theorem L 2.5]. From (20), (21) we get limg o(log | &% — 1) /2x = 0
and (28), (30) imply lims.(log|P(4,)|)/4,=0. Substituting these results in
(35) we obtain o —o,, hereby proving that the series (34) represents an ana-
lytic function in the slit disc {z=re'” |r<<e—°, 0<¥<2a]. Now Wwe apply
theorem XXIX in (7, p. 89] to (34) which shows that on the line Re s=o
there is at least one singularity on every interval with length exceeding 22D
Since z=1 is the only singularity of the integral on the right hand side of’
(33), this identity and part | of theorem 2 complete the proof.

Remarks. 1) If <0, then actually the preceeding proof shows that f
can be extended analytically onto G@*n{lz|<e~°}.

2) Theorem 3 shows that it is useful to consider interpolation functions
A(z) being a “local” Stieltjes transform, because the sum of principal parts of
a meromorphic function might not be convergent.

The next theorem is a further consequence of formula (13) stating a cor-
respondence between two power series which “essentially” have the same do-
main of analyticity.

Theorem 4. Given a strictly increasing sequence {1}, 1,6\, satisfying
(22) and b:R\Z such that i,+b>0, kéN. Moreover, assume that for all
e>0 B(z) is an analytic function in S, . Y satisfying (24) and (25) for

2 2

i¢’[<"2'" . If
oo 22
Pyz): =TI (1—.(——% # b)z),

> 5(‘9—2” and % Btet0)
o Pslm) 1 Pydp+b)
and have the same domain of analyticity in C;|.

Proof. The assumptions of theorems 1 and 3 are easily verified. Hence
(33) has the form

then the power series Z'k both converge for |z|<1

> (2,+b)log z
= B(n) B(;) ef'oe* . X B(lptb) ek

B o 2y (B —dp—2ai 3 S\t0) €
o Pu(n) A2 L[Pb(:) gty Wt Pldp+b) o x+0_|

and the series on the right hand side reduces to

108 T Blletd) gy

20l ———— T —
e?nib_l 1 P’(Ak-f-b)

Now, by (25) (26), theorein 2, 2) completes the proof.

4. Hilbert transforms. In this section we use the results of section 1 to
compare the domain of analyticity of power series I3 a,z2* {a,)¢l, 1=p< oo
and Iy A(n)z", where {A(n)} is the discrete Hilbert transform of {a,}. Weprove

Theorem 5. If {apgely, 1= p<oco and A(n)=Z7 a,/(n—k), then the

A=tn
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power series Sraxz* and ITA(n)z" converge in |z <! and have the same
domain of analyticity in C..

Proof. For 8¢R define Ay(z): =33 ax/(z—k—3). Conditions (4)—(7),
9), (10) are directly verified for 0</d|=1/8. Further by Holder’s inequality
1/p+1/g=1)
.
[z—k—3 7

As(2) |=(

<148

a, oy (E e
0

(the second sum has to be replaced by SUP,eN, z—k—8 !, if g=o0), which

yields

(36) As(z) is bounded and continuous on {(z, d)?inf“No z—kI=1/4,|6 =1/8}

with bounded modulus of continuity.

This implies (8) and that

log | A,(re™®)]
r

(37) lim sup

r—oco

= ha,(9)=0,

exists uniformly for &|==1/8, provided ¢==0. Hence, in particular (11) is sa-
tisfied for any 0<a, 3<n/2. Applying now theorem 1 to fy(2): =ZpAy(n)z"
we get

Ay(L)es tog 2 oo a
2= [N 9ai B ehaions
f42) cf P27 dz —y e27_]
) edlogz oo
= :BJ(Z)—2MW E akzk,
==)

where C is chosen as in theorem 1 with ¢==1/2, and 0<a, f<<=/2 arbitrarily.
So we get

LD+ o@D = (Bo@)+Bo2)) — i

Y a2t

‘Jlozz e—a log z ) oo
h=0

Zz:' i3 __ 1 + ‘—?nid___l

Letting now o tend to zero we obtain

.1 . " (3 i PO Y
lax_r?J V~QV(B,(z)+B_,,(z))--- {_’ R dr: =B(z)

the interchange of lim and [ being justified by (36).
From (37) and the arguments used in the proof of theorem 2, part 2,
we get '

(38) B(z) is analytic in C.
Furthermore, we have uniformly with respect to z in any compact subset
in C;

3 log z —3 log = ,
€ e _ log z—=i
o210 _ l'+ o2l o +0(8) as d— 0.
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Again by application of Holder’s inequality we see that

As(n)+A_s(n) = .ﬁo ak( n—;e-a + n—L—é )

R=n
is continuous in 3 and bounded uniformly in z¢N, and 4, |8 =1/8, which
implies
lim L (Ay(n)+A_o(n)= = % = A(m)
3 2 k=0 n—k
kn
and

lim -(f)+foN= = Amz, |z|<L.

Combining these results we obtain I>=_, A(n)z" = B(2)+ (ni —log 2)X; jarz*. Now

n=1

from (38) the statement follows and the proof is complete.
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