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ON THE BASIS OF THE IDENTITIES OF THE MATRIX ALGEBRA
OF SECOND ORDER OVER A FIELD OF CHARACTERISTIC ZERO

BUI TUONG TKI

In this work is obtained a basis of the identities of the matrix algebra of second order
over a field of characteristic zero, which contains four identities.

Throughout this work, we shall denote by K an arbitrary field of charac-
teristic zero. It is well known [I, Th. 4] that the following nine polynomial
identities :

(1) fi= Z (1) x5 Xoqi) Xen Xoay Xo— Z (= 1)V [X5, X4 Xo1), Xo(2)y Xo3)] =03

o€y o€y

(2) f‘)::[[z»y]' [x,J’]v.V]=O;

Remark. After linearization of f, one obtains a multilinear polynomial
identity and we can denote it by fy(xy, x5, X3 X, x5)=0;

(3) fa= I (=1)@ [x5 X4 Xo1)y Xo(2) Xo3)|—[Xes [X1, Xa)y X3, X,]

o€,
[ X5 Xy [0, Xay g] (X4 [X4, Xal, X5, Xa] - [X4 X3, Xg, [Xy, Xa]] =0,

where ¢(0)=0,1 depends on the signature of the permutation o¢ 2.,

(4) 4z, x|(v, 0 va)=|2, vy, Uy, X]+|2, vy, v\, X][X, v, 2, V| —[X, 3, 2, V4],

where v, =[t, 1], v,=[t5 1];

(5) H(xy, xgy X3, X4 Xg)==[[X1, Xo] 0[X3, X, X5]=0;

(6) the standard identity S,(x,, x,, X5, x,)==0;

(7) f;(xn Xg, X3, Xy, X5, Xg)=0;
(8) Fi(x)s Xgo Xgy %40 X5, Xg)=0;
9) f3(%1, Xy X3, X4y X5 Xg)=0

form a basis ‘of the identities of the algebra of all matrices of second order
over the field K. We call it the basis of Razmyslov [1}. In this work we
denote by M(2, K) the algebra of all matrices of second order over the field
K, and by SI(2, K) the Lie algebra of all matrices of second order with zero
trace,over the field K. Recall that f), i1, 2,3 are obtained from f,, i=1,2,3
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as follows:_if fi=auy, vyl i=1, 2,3, where u;; and v,; are commutators
and the weight of u;=2, then

f; =3 a,j(u,-, o ['Z’U‘, xsl), =1 , 2, 3
J

In [2] Leron asserts that Rosset, using a computer, had proved every
polynomial identity of degree 5 of the algebra M(2, K') being a consequence
of the standard identity S,--0 and the identity //(x,, x,, ..., x5)=0.

In this work we shall prove this assertion without using a computer.
This means that the three identities f,=0, f,- 0 and f,—=0 can be removed
from the basis of Razmyslov.

At last, using a result of Filippov |3}, namely that from the Lie iden-
tity & —[y, 2, [{ x|, x]+[y, x, (2, x|, £]-- 0 follow all Lie identities of the Lie
algebra SI(2,K), we shall obtain a basis of the identities of M (2, k), which
contains four identities.

1. Representation modules for the symmetric group. A vector space
over the field K, which is a module over the group algebra K=, is called a
representation module for the symmetric group 2.

Definition 1. Let V be KZy-module, v¢'V, 1 <i,j=k and let (i, ) be
a transposition from X,. Then v¢ 'V is called (i, j)-symmetric, if (i, jyv-—v and
v is called (i, j)-skew symmetric, if (i, jyv=—mu. '

Example. Let V, be the set of the multilinear identities of the algebra
M(2, K) in the variables x,, xo, ..., X,

The action of X, on V, is defined as follows: If f(x,, x5, ..., Xp) € V, and
o€, then of(x,, Xo - ..y Xz) = f(Xu(1)y Xo@) - - - » Xo(wy)- This action induces on V,
the structure of a K2X,-module. The element f(x, ..., x;...,x;...)¢V, is
(i, j)-symmetric if and only if, f(xy, ..., X oo o, Xp o) = f(X, 0 XL, XL L)
and flx,, ..., X;,...,0 Xy, . ..) 1s (i, j)-skew symmetric if and only if

f(X[,...,xi,---,x/,---) —f(xlv--'vxh'--;xh---)-

Definition 2. Let V be a KZ,-module, v¢ Vand r=0 a given integer. The
element v is called r-symmetric if for some distinct numbers Uy Jiyboe Jay ooy
i, jr from among 1,2,...,k, v is (i, j)-symmetric for all t=1,2,...  r. If
in addition v is (p, q)-skew symmetric for all 1--p, q<k, such that {p,q)
N iy Jis - -+ in j.} is emply, then v is called r-perfect.

Remark. Every element v¢ V isO-symmetric,an element ©v¢ V is O-perfect
itt v is (p, g)-skew symmetric for all 1<p, gk In particular a polynomial
f€V, is O-perfect iff it is a scalar multiple of the standard polynomial S,.

Theorem 1 (Leron [2]). Let V be a KX,-module and Q, and P, be
the subspaces of V, spanned respectively by its r-symmetric and r-perfect
elements. Then .

a) Qr - pr r (\)’+l'

by V=P, +P,+ - +PptQpy\, forall r -0,

c) V Py+Pi+ - +Py, for somet, that is V is generated by its perfect
elements. ’

2. A basis of the iqentltles of M(2, K). V. Drenski brought to my atten-
tion, that all Lie identities of the algebra M(2, K) are consequences of the
standard identity S,--0. To verify this assertion, by having the above result
of Filippov [3], it is enough to prove:

Remark |. The identity & [y, z, [¢, x|, x|+ [y, x, (2, x|, f]=0 of M2, K)

0.

is a consequence of the standard identity S,
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Prooi. Taking into account that the standard identity S, -0 has another
form:

SuX1y ooy X)=(lxy, Xa] 0[ X5, X))+ ([Xa, Xs] 0[5, X))+ ([X3, X, ] 0 [Xg, X )=0
and that [ab, c|=a(b, c|+|a, c|b for all a, b, ¢, we can prove that

P- [y’ z,[¢, x], x]+[y‘ x, [z, x], £
xS(x, 3, 5, 0)—S(xy, x, 2, £) - Sy(xz, x, y, £)+ S, (tx, x, ¥, 2).
This is the required equality.
Remark 2. It is easy to prove that the following equality is true:
fo=1[z, ¥}, 1%, ], ¥Y]=S.i(z, x, y% y) which shows that the identity f,=0 in the
basis of Razmyslov is a consequence of the standard identity S,=0.

We denote by V; the space of all multilinear identities of M(2, K) in the
variables x,, x,, X3, X,, X,

Theorem 2. Every element of V, follows from the three identities
Si(xy, Xy, X3, X,) 0, H(x,, Xo X3, Xy, X5) =0 and fo(x,, x,, Xg, Xy X5)=0.

Proof. By Theorem 1 of Leron, we have V= Py+ P, + Q.. It is well known
that every O-perfect element of V, is a consequence of S,(x,, Xy X3 Xy), |
every element of P, is a consequence of S,(x,, x,, X3 Xy).

Proposition 1. Every element of P, is a consequence of S,(x,, Xq, X3, X,)-

It is enough to prove Proposition 1 for the elements of Vj, which are,
say, (1, 2)-perfect.

Lemma 1. 7The following four elements of V; are (1, 2)-perfect and li-
nearly independent :

Pr o Xy Sy(Xy, X3, Xy, X5) +X0S (X, X3, X Xp)

Po=Si(xy, Xy Xy, Xg)Xo 4 Se(Xy X3, Xy, X)X,

P3= Si(X,Xq, X3, X4y Xg) + Sy(XoXy, Xy Xy X5)

Po— Su(xy, X3Xy, Xy, Xg)+Sy(X), X3Xa, Xy X5) 1 Sy(Xo, X5, X4Xq, X5)
Si(x1, Xy X Xg, X5)+ S(Xq, X5y Xy, X5X0)+ S (X0, X3y Xy X5X7)-

Proof. We have only to prove that p;, i—1, 2,3, 4 are linearly indepen-
dent. Let a,, a, a5 a, be elements of K, such that
(1) ay pr4-agPytag Pytagpe—0

Equating to zero the coefficients of the following monomials:

(12) XXX X Xy X XXXy Xy Xy XX XoXp, XyXgX X5Xg
we get respectively the equations a;+a3=0, «a,+a,—0, a+a, -0, —a,+ay
+a,~0 and obtain: a,= ay=a;=a,=0.

Lemma 2. Let f(x,, X, X3 X4, X3¢V be (1, 2)-perfect element, in which
the monomials (12) occur with zero coefficients. Then f(x,, x., X3, Xy, X3) is the
zero polynomial.

Proof. Let us introduce some notation. Let
,A ) Uy X (1) Xo(2) Xo(3) X o(4) Xo(5)s fOl’ fl=(
o€,
we shall write «,

1 2 3 4 5)
o e =5
i, iy ig iy g

Qiyislaighy *
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Recall that 1 is (1, 2)-symmetric and (i, j)-skew symmetric for all 2<Zi-~/ 5.
Therefore if some monomial occurs in / with zero coefficient, then so do all
the monomials, obtained from it by a permutation of {3, 4, 5} or {1, 2]. Thus
in order to prove that every monomial has zero coefficient in f we have only
to consider the various possible positions of x, and x, in the monomial, with-
out regard to the order of the other variables. We distinguish several cases:

a) Monomials in which x, immediately succeeds x,. With

X X, X C X; i 3
X, Xy X3 Xy 5 >1$l,, i 9

\€i,/, €ij.  Ciyjy €ij.  Cisy

we deinote the substitution for the variables in f, the sequence e, ,, €., €,
€. €., of matrix units of M(2, K), in which the matrix assigned to each va-
riable is written directly under that variable. Since f is an identity of M(2, K),
after such a substitution we always obtain the zero matrix.

By the hypothesis of the lemma we have a5, 0. Now consider the
following substitution :

(.\cl X, X3 X, x,,)
€y €y €y €y €y

Since we must obtain the zero matrix, the coefficient of the matrix unit
e,» must be zero. Therefore we have @ gq,5+ @ 3015 ~@31045 =0, SINCE @ 9345 = 3045
0, so that we obtain agq,;=0. Substituting

(x;, Xy Xq X, X )
’
€1, €99 €95 €3 €

we obtain . Fagyae -0 and agy,, 0. The substitution

(x:; Xe X5 X Xy >
€1n Cag €, €13 €
gives ag,;;.=0, which completes the proot of case a).

b) Monomials in which x, and x, are separated by a single variable,
say x;. Substituting

( Xy Xy Xz Xy X
€q €1y €5 €y €y
we have a,, g0+ @ass+dusros = 0, and  then agyg0--0. Now consider in g the
substitution

(xt X5 X Xy Xy

€ €3, € €y en' /
we obtain aggg,=0.

¢) Monomials in which x, and x,are separated by three variables. We have
@ 3520 by the hypothesis of the lemma.
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d) Monomials in which x, and x, are separated by two variables. By the
hyvpothesis of the lemma we have «,,,; 0. Substituting

<.\‘,-, X, Xy X, .\‘2)
€, €, €3 €3 €9

we obtain a;y5,4-0 and lemma 2 is proved.

Now let f¢ V5 be (1, 2)-perfect and the monomials (12) occur in f with
the coefficients 5,, B2, B3, A; Then there exists an uniquely determined element
g€V, g—a, py-+ag pytagps+ayp,, a;¢ K, such that the four monomials (12)
occur in g also with the coefficients g, £, B3, B4, Where ay, a,, as, a, are defined,
as the solutions of the system of linear equations ’

a;+ag=f,
—a,tay—fy

a; +ay=pg
—a,+ay,+ag= Py

Since f—g¢ V, is (1,2)-perfect and the four monomials (12) occur in f—g
with zero coefficients, by Lemma 2 f—g is the zero polynomial i. e. f=g. Thus
the proof of Proposition | is completed.

Proposition 2. Every element of Q, is consequence of S, H and
Jalxy, Xg, X5, Xy, X;5)-

It is enough to prove the assertion for polynomials, which are, say, (I, 2
and (3, 4)-symmetric.

Lemma 3. The following six elements of V, are consequences of
Su(Xy, Xg X, X)), H(xX,, %, X3, X4 X5) and [, (xy, X9, X3, X X5), (1,2) and (3, 4)-
symmetric and linearly independent :

G, =S4(x, X3 X0 Xy, X5)+ Sy(XeX3 X, Xy, X5)
F Sy(xgxy, Xy Xa, X5) + Si(XgXy, Xy, X3, X5),
qo— Si(X3Xy, Xgy Xy Xg) + Se(XaX Xy X4y X5)
+Sy(Xy Xy Xy X3 X5)+ Se(X,Xg, X3, X3y X5),
g3 =[x, X5] 0 [Xay X4}y X5)+[xa, X3] 0 [X), X4], X5),
7= %1, X5] 0 [Xay X 4], X3]+[[ X4, X5] 0 [X3, X3], X,
X2 x5] 0%y, 4], Xg] [ Xa0 X5] 0 (X, X5, X4)s
75— ([ %3, X5) 0 [X2, (], X1} +4-[[2%3, X5] 0 [x), x4}, o]
x4, x5] 0 [xo Xa), X4]4-[[x4 X5] 0 [Xy, Xs), Xgl,
qo=1[X5 X1}y [ X0 Xas X5+ [[x5, X,], [X5y X0, X4
Fl[Xs Xaly (X4 X1, 5]+ [[ X5 o), [X50 1) X4]
(X5 Xa)s [X0 X1 Xa]+([x5, x,], [X5, X1), Xs]

F X Xal, [0, Xaly X4]4-[[X6, X4y [ %30 Xal, X4).
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Proof. It is evident that ¢,, ¢, ¢s, ¢4 g5 g are consequences of S,, /1,
f, and (1, 2) and (3, 4)-symmetric.
Let v, 2 ¥a 74 Vs> s De elements of K, such that

(13) 7191+ vadat vadst vigat+ vsds + veds - V-
Equating to zero the coefficients of the following six monomials :
(14) X X9X3.X, X5, X XXX (X5 X3X X XoX5 XpXX3X,Xg, X X1XgX0X, X1X3.XqXzX,
we get respectively the equations
—7i—t7s 0,
n—rstrs+rs—r6=0,

71 Yot ys—vitrs=0,

Yot Vst e 0,
=71~ Va Vst Vs =0,
— vt ri—7s =0,

which imply that y,=yq 3 =v,—=7,=7s=0, since the following determinant is
different from zero

—1 O 0 0 l 1

1 —1 ] 0 1 1

i Io—1 1 10
(15) o 1 0 0 1 1
10 1 ro0 1

1 1 0 1 | 0

Lemma 4. Let [— X a,X,01)X2) X0 Xah) Xoz) € Vi e (1,2) and (3,-4)-sy-

mmetric. Suppose that the six momomials (14) occur in f with zero coeffici-
ents. Then f is the zero polynomial.
Proof. We wish to prove that «, 0 for all ¢, By the hypothesis of

the lemma we have: iags=— @i3045 81495 = Aseai2 — Tg1324 — Apagne = 0. Substituting
(x, X, Xg Xz X,
€n €1 €1y €xn 5’”),

we obtain ., —0, similarly we have ag9--0. We distinguish several cases:

a) Monomials of the form xx, x;, x;, x;. By the hypothesis of the lemma
we have ayoas 3945~ @a1405= 0. The substitutions

(xl Xy Xg Xy x,,) (x, Xy Xy Xy xr,‘> (x, Xy Xy Xg x6)
’
’

€11 €nn €y €1g €y €y €y €, € €y €1y €y €y €y €9

lead respectively to ag gy, =@ 15495 ~ @34126 - 0. Thus we have proved that a;,s=0
where (iy, iq, iy, {,) is an arbitrary permutation of (I, 2,3, 4).
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b) Monomials of the form Xxgx: X:, Xi, Xi, o
By the hypothesis of the lemma we have ayg9= @530, = (. The substitutions

(\g Xy Xy, Xy x;,) (x, X3 Xy X x5) (x5 X, Xg Xg x‘)
€y) €y €9y €y €;/y \yy €99 €39 €y €1/ €y €91 €51 €11 €11

lead respectively {0 azingt-a531940 = Tss1a0 = 31342 Uoa2s1 = Troas — 0. Thus  we
have proved that as;;.,=0

c) Monomials of the form x, X x; X5 X;. By the hypothesis oi the lemma
we have a;g95,=0. The substitutions

(xl X, X3 X xﬂ) (xl X, Xy Xj x‘) (x, X, X, Xg x5)
€1, €11 €1a €9 E90ly N8y € €y €y €9l €11 €11 €19 €9 Cog/>

(x3 Xy X; X xg) (x3 Xy X, Xg x?)
€19 €39 €99 €91 €1\/r \€y €y €y €y €p
lead o 2854 = 31950 @a4152 = A31452 = Uyasse = - )
Since fis (1,2) and (3,4)-symmetric, the prooi of the case c) is completed.

d) Monomials of the form x; Xz x:. X; X;,. It is easy to see that aggq,,-=0.
The substitutions

(x| X3 X, X x,,) (x‘ X; X3 Xy x,)
’

€y €y €3 €y €y €y €, €7 €y €y

lead to 5130 =0a5105=0. NOW a;, 3,=0 implies a,;,,,=0. The substitutions

(xn X, Xy Xg x) (x, Xg X, Xg x‘>
€13 €y €91 €y €41/ \lg €y €y €y €y

Imply daygy,4 = dgg34; =", Which completes the proof of the case.
e) Monomials of the form .x; x; x;x;x;,. We have shown that a;y545,=0
and ay59="0. The substitutions

(x1 X3 X9 X4 x,) (x3 X, Xy X3 x,,)
€19 €y €19 €q1 €1, /> \€;5 €y €19 €y €y

(x1 X3 Xg Xy x5) (xs Xy X5 X x‘)
€19 €) €y €y €x9/> \€yy €y €15 €3 €y

lmply that alas";031ﬁ‘~_ﬂv1(l“53-’r 70315’4-'0' SO we have Qi iy 5 iy [‘=0- Thus Lem'
ma 4 is proved.

Now let f¢ Vg be (1,2) and (3, 4)-symmetric and let the six monomials
(14) occur in f respectively with coefficients 4,, d,, 8, d,, d5 dg. Then there
exists an uniquely determined element g¢ Vi, g=2X%_ v ¢i, 7 €K, such that the
six monomials (14) occur in g also with the coefficients: 8,, 8y, dg, &, &5, dg,
where vy, 72, 73 Yo Vs 2o are uniquely defined, as the solution of the follow-
ing system of linear equations:
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"1~ ¥tV =0y,

71— ye+yat v 6= 0y
N vatrs— 74+ v6=dy

- - 1. ——
— V2 Vet Vs =0y,

—P— Yyt t Ve 05
Mt Vet ra—7 O
with determinant (15) is different from zero.

Since f—g¢ V; is (1,2) and (3, 4)-symmetric and the six monomials (14)
occur in f—-g with zero coeificients so by Lemma 4, f—g is the zero polyno-
mial i. e. f=g is a consequence of S,, 1, fy(Xy, X,, ..., Xs). Thus proposition
2 is proved, which also completes the proof of Theorem 2.

By Remark 2, every element of V is consequence of the two identities
S,=0 and H(xy,..., x;)=0 and we obtain the result of Rosset, that all iden-
tities of degree 5 of the algebra M(2, K) follow from the two identities S;-=0
and /=0, without using a computer.

This fact means that the three identities f,—0, f,= 0 and f; -0 can be
removed from the basis of Razmyslov.

Denote by &(x,, xs, ..., x;)=0, the Lie identity, obtained by linearization
the Filippov’s identity ®=|y, z, [£, X}, x]+[y, X, [2, x], ¢]=0.

Replacing the identity f,(x;, Xs,...,X;)=0 in the basis oi Razmyslov by
the identity @(x,, X, ...X;) =0 and also the identity fi(x; X, ..., X5)—=0 by
the identity @'(x,, X, ..., x;)=0 it is easy to see, by the proof of Theorem 4
of Razmyslov [1], that the two identities f/(x, x, ..., x;) O and fl(x,, x,

., xX;)—0 also can be removed from the basis of Razmyslov, so we have

Corollary 1. The following four identities form a basis of the identi-

ties of the algebra M(2, K) :

Si(xy, Xgy X3 X)) =0, H(xy, x4 ..., X5)=0, P'(x, x,,..., X5 =0,
4|z, x| (v, 0 1)) =2, vy, Uy, X]+ (2, vy, v, X]—[X, vy, 2, o] — [x, vy, 2, Ty},
where vy=[t,, ), Ti=|l; 4], V0 Va=1,0,+ .

The author is deeply grateful to his Thesis advisor M. Gavrilov and
to the other members of the seminar of algebra at the University of Sofia for
many precious advices.
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