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SOME ALMOST COMPLEX STRUCTURES AND THEIR
ALMOST HOLOMORPHIC FUNCTIONS

FKATERINA J. ARNAUDOVA, STANCO G. DIMIEV, TEODOSI A. VITANOV

The local existence of the J-almost-holomorphic functions on 4-dimensional almost-com-
plex manifolds (M, J) is examined. Under some natural assumptions for J it is proved that
a4 diffeomorphic to CXR? local foliation of the underlying manifold M arise.

1. Introduction. Let M be a real 2n-dimensional difierentiable manifold
(of class C=) equipped with an almost-complex structure J, i. e. for every

point m ¢ M an anti-involutive map J,: 7,M T, j,?,:mlrmm, is given
(I'wM denotes the tangent space of M in the point m). By definition J/, de-
pends smoothly by .

In this paper we shall consider J/-almost-holomorphic functions locally
on M. This kind of functions are examined first by Eheresmann (non-
published result) and later by R. Hermann (1), which give a beautiful dif-
ferential-geometric proof of the Ehresmann’s result. This is a negative result
concerning the local existense of thealmost-holomorphic functions correspond-
ing to a special almost-complex structure on the G-dimensional sphere. Here
we propose a positive result in the particular case dim(M)-4, n—2, under
some appropriate restrictions for J.

Suppose that for ¢: U +~R? we have o(U)=R?, i e. the diffeomor-
phisme @ stretches the carte {/ on the whole model space R¥'. Sometimes we
shall be interested to stretch the carte {/ on the unit open ball or the other
open subset of the model space. Therefore the investigation of the J-almost-
holomorphic functions (briefly: /-AH-functions) f: U-~C is reduced to the
analogous question for the almost-holomorphic function fog—': R* - C re-
lative to a naturally determined almost-complex structure on R?" (the image
of J by the diffeomorphisme ¢ : (/ ~R3¥). For this reason we shall consider
R?" as an almost-complex manifold (AH-manifold) which almost-complex struc-
tur= (AH-structure) is determined by a matrix J - ~ﬁ,’l(x),1,xeR“", with global-
ly defined on R*' real-analytic coefficients.If @(U/) is the unit ball or the other
open subset of R*, we consider notonly the induced AH-structure from R*-.
In the following, for the notation of the vectors x (xy, x, X3 X,) of R,

matrix /(x), differential d.f, functions J5(x) etc., we use two kinds of sym-
bols x and v, x=(x,, x3), ¥y=(y,, ¥3).- So we have (x,v) instead of x, and

respectively J(x,y), d.,/f and Jy(x, y).
By definition, the function 7: R* »C is called a J-AH-function, if for
every (x, v)¢R* we have
(I 1) d(_\', _y)l"O ./(.\', y) ld( .~'y)f:.
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If F-u-+iv, the matrix representation of di, ,)F is the following
[ Ou/dx, Ouldx, ou/dy, 0u/0y,
'; Jvjox, dv0dx, Jdv/dy, 0vdy,).

We receive a matrix differential equation of first order (an over-determined
system with non-constant coeificients) for # and v. Our aim is to solve this
equation by means of power series or polynomials. Recall that if J is inte-
grable (the tensor of Nijenhuis vanishes), after a suitable transformation of R,
we receive that (1.1) is the classical Cauchy - Riemann system in C2.

The main assumption for J is the following: there exist linear J-al-
most-holomorphic functions. Of course, we consider the case J/ non-integrable,
hence every two linear J-AH-functions are C-linear dependants. We recall that
the following lemma (1) is valid. The AC-structure J on the 2z-dimensional
AC-manifold (M, J) is integrable if and only if for every point m¢ M there
exists a neighbourhood U of m and J-AH-functions f,: U ~C,j 1,...,n,
such that the differentials df; are C-linear independant.

Our purpose is to prove that

(1.2) Flx,y)=F(¢+in),

where &=a,x,+aXy, 1--b,y,+b,ys @y, a,, b;, b, are real constants uniquely
determined by J, and F is a holomorphic function of one complex variable.
This purpose is realizedin this paper for polynomial AC-structure / of degree %
(all J%x) are polynomials of x,,...,x, of degree k), and F polynomial of
degree n, k=n. A counterexample for special real analytic / is given. As the
third author shows, the assumption 2=n can be omitted, but the proof is not
exposed here.

The representation (1.2) involve the elementary foliation C<XR? +in¢C,
the affine submanifolds {(x, v): a,x,+a.x,— & b, y,+ by y-=n} as leafs. Obvio-
usly, F is constant on each. leaf {£+iy|><R® It is clear that this foliation can
be canonically identified with R*. The diffeomorphism ¢—!: R*— U carry the
considered foliation on the open set U of M. Finally, we see that the exis-
tence of a J-AH-functions implies local foliations on the underlying mani-
fold M of the mentioned above type.

2. Existence of linear almost holomorphic functions. Let J(x,y) be a
real analytic AC-structure on R*, i. e.

/(X,y)———. Eﬁ VlGudxuyd‘*_G(h
a and A be multi-indices, a=(a,, ay), 8~ (B, B2)y, a —ay+ag B = B+ Pa U

and G, be real (4x4)-matrices. We take (,=S (precisely, after a suitable
linear transformation), where

S (0 E) (l U)
SR NG T
Let z+in be a linear J-AH-function
(2.1) §=a,X,+ Xy + Ay Y1+ Ay Vo, 1= 01X, Fbyxy by Y, + b, V.

The almost-holomorphic condition (AH-condition) (1.1) in matrix notation
seems as follows: (a,, aq, s a)J(x, y)= —(b,, by, bs, b,), or
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2.2) (@, @oy @3y @g)Uap (0, 0,0,0) for all a, g,
2.3) (ay, @y, ay, @))S=  (by, by, b3, b)).
In view of J2(x, y)= —E,, E, is the unit (4><4)-matrix, we can write
(2.27) (b, by, bs, b)G.p=-(0,0,0,0) for all «, g,
(2.3") (b, by, by, b))S=(a,, as, as, a,).

Evidentely, (2.2) and respectively (2.2") are infinite systems of homo-
genous linear equations with four unknowns. For the existence of J-AH-func-
tions it is necessary that this system have at least one common solution, or
that ) Ker G,;5{0}, considering G, as linear operators in R*.

Lemma 1. Let J(x,y) be a non-integrable AH-structure on RY,
Jx,y) =2 . o g aUpxy?--S. Linear J-AH-functions exist if and only if
dim ) .1+ —1Ker Gp=2.

Proof. Set V—=n,., 3 Q. a +B8/=1. According to (2.2), (2.2), (2.3)
and (2.3'), it follows that |/ is an invariant vector subspace of R* under the
action of the linear operator S. As S is a complex structure on R* (§2?=—1),
it is clear that the dimension of V" is an even number, i. e. 2 or 4. When
dim V--4 we have G=0, |a|+|p|=1, 1. e. J=8.

Remark. For R*®» we have dim V is an even number, two.

According to the above remarks we obtain the following possibilities for
the matrices G,

(i) G.p=(0) for all @, 8, i. e. J=35,

(ii) there exists a positive integer / such that Gas=(0) for all ja + B|=(+1,
and all G,;40 when « + Al Li. e. the elements of / are the polynomials
of degree [/, with non-zero coefficients,

(iii) G.55-(0) for all a, p,

(iv) G,p+(0) for finitely many a, g,

(v) Gp-=(0) for infinitely many a4 and both G, —=(0) for infinitely
many a, f.

Remark that the real and imaginery parts of a linear J-AH-function are
R-linear independants. Indeed, if we have (b,, by, b3, b)=1(a,, ay, a;, a,), 2€R,
then the vector (&, by, by, b,) is an eigenvector of the linear operator with
matrix S. From S? —FE these eigenvalues are -+i, i. e. 2 is not real number.

3. Homogenous almost holomorphic polynomials. Let P(x,, x, ¥y, Vo)
(we shall write P(x, y)) be a homogenous polynomial of degree n. Obviously
we can write P(x, y) as:

(3.1) P(x, y)=x,Py(x, )+ x, Py(x, y) +v1P3(x, Y)+y.P(x, ¥),

where P,(x, y) are homogenous polynomials of degree n 1,7 1,2,3,4.

First we shall prove

Lemma 2. Let P(x,y) be an almost holomorphic homogenous polyno-
mial of degree n and P/x,y) be the polynomials (3.1). Then the polyno-
mials Py(x,y) are almost holomorphical, too.

Proof. We must prove that the real and imaginary parts of 7(x,y)
satisfy the AH-condition (1.1). We can write the polynomial 7(x, y)—u(x, y)
+iv(x, y) as the polynomial of “noncommutative” variables x,, x, y,, v,.
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(3.2) P(x, y) Y QugpXiXLYi VB X bripgXixi Yl v
k+lt+gtp=n k+1+qg+p=n

It is easy to see that the coefficient @uup(brigp) OCcurs (Z)("l*k)("_:'l)
‘n—-k—1l—q n! . .z

<" kit p times in (32). |

Using (1.1) for the polynomial P(x,y), and equalizing the coefficients in
front of equal degrees of variables, we obtain (1.1) for a,,, and b,,,. Here
we use the fact that the right side of (1.1) is the homogenous polynomial
with matrix coefficients of degree n—1. (P(x,y) is a homogenous polynomial),
Hence the matrix coefficients in the left side in front of monomials of total
degree higher n--1 vanish. Therefore, when the polynomial P(x, y) is a homo-
genous, we can consider only these products in the left side of (1.1) which
are of degree n—1, i. e. the products of @uy(b,,) with the constants in the
structure /. (All the rest products are zero.)

1

The coefficient of the monomial xfxy{ys are (—k%)!%--p!akum
ou (+n! . ou (q+1)n! . Ou (p+1)n!
o, ETAFD)! gl pt@itoe I o b it gyt g1 Ge+ie 0 5o and e
X Qrigp+1 1IN gf We obtain the coefficients in g and :yj changing a into b&.
Obviously the coefficients in front of Ak 1ugps - - .', Qrigp+1 are equal. Hence tak-
ing out a common multiplier we obtain for the coefficients a and & the
equation

in

(3.3) (flk+llqp, Ari-1qpy Arlg--1py akquu)l(x,y)-( -br “1igps '-ka-lqpo
bkll[+]p, *‘qu#+|),
which is of the type (l.1).

Varying &, [, q, p we obtain some equations of the type (I.1)

Let Pyx, y)=u,x, y)+iv,x,y), j-1,2,3,4. We shall prove the state-
ment for Py(x, y). The coefficient @i, 14, Occurs in u, as coefficient in front
of the monomial xj{xiyfys, @ni+1gp —in front of XA Y0 YR @1y — i
front of x%-'x{ y{*! ¥2, Qrigps1—in front of xA-lxiy7yr+l. The first coeffi-

i (n—1)! ; (n—1)! .
cient occurs Tgl pt times, the second TE-I)T AN gl p! times, the
(n—1)! (n—1)!

third T@E-N (g p! tlme? and the fourth— E=D)TIT g1 (pE1)! times.
After derivation on x; and y;, j=1, 2 the above coefficients are multiplied by
k,l+1,q+1, p+1, respectively. As we have seen these four numbers are equal.

But in g;;. 3;;, J=1,2 they are the coefficients in front of x*—lxiy¢yr and
as we know they satisfy (3.3).

As the coefficients in front of the corresponding degrees of P,(x, y) sa-
tisfy (1.1), and all of them are coefficients in P(x, y), we conclude that the
polynomial Py(x, y) is almost holomorphic.

Hence the polynomials Py(x, y), j=1, 2, 3, 4, are almost holomorphic.

We know (Lemma 1) that linear J-AH-functions exist, if and only if,
dim s Ker G,; = 2. Let the vectiors (a,, a,, a,, a,) and (a;, a), a;, a]) form the
fundamental system of solutions of {2.2). We obtain from (2.3) —(b,, &, by, b,)
—=(ay, a,, a5, a,)S and (b}, b, b,b)) - (a;, a., a,, @))S. From (2.2") (b,, b,, b,, b,)
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ma,, ag, as; a,) - ma, a, ay a,) and (b, b,, b;, b)) =s(a,, a, a3 a,)-+Ha,, a,

a,, a}), where m, n, s, t ¢ R. By the multiplication with S, we obtain: 1 —m*—sn,

1 t2—sn, 0 n(m-+t), 0 sim-—t). Since s+0,n+0 it follows m: f.

It is easy to verify that two obtained linear /-AH-functions are C-linear de-
pendent. So we obtain unique C-independent linear J-AH-function.

Now we shall specify the expression of every homogenous J/-AH-polyno-
mial. Since there are not two C-linear independent J-AH-functions, we can
suppose that every linear homogenous J-AH-polynomial is of the kind
(y+id) (& +in), where & ax,+bx,+a y,+by, n=c'x,+dx,+cy,+dy,79,
a b,a,b,c,d,c',d are real constants.

In the case of J block-antidiagonal
/ 0 Jio(x, ¥))

| [

J-
“j,’l(xvy) 0 J

where /,,(x, v) and /. (x,y) are 22 matrices. It is not difficult to see that
if =14y is J-AH-function, then the same holds for the linear function ax, +bx,
+-i(cy, +dy,). We see that in this case we can take &=ax, -+ bXy, 1=Cy+dYy,
i. e. we have a “separation of variables x and y”. In the secual we suppose
always J/ is a block-antidiagonal structure.

Under this condition we shall prove

Theorem 1. Ewvery homogenous J-AH-polynomial of degree n is of the

kind (y-+id) (& -+in)", where y,0¢R.
Proof. Let g(x,y) be a homogenous J-AH-polynomial of degree 2. Ac-

cording to Lemma |

(3.4)  g(x, y)=x(y, +idy) (§-+in)+ Xo(yg +idg) (§ 4 in) + Y1 (73 +1id3) (5 +in)
Yo7+ 10,) (£ in)

Also

(3.5) g(x, y)=x((a;, X, +@,%, -a;3 Y, 8y ¥o)+ (b1 X, + 019X+ 013y, 614 Y2))
o Yol X @ Xy + @ YA Vo) F (B Xy Xt b3 Vi + 0y V)

As at least one of the constants a and & is different from zero, we can
take a + 0. Using from (3.5) a,,—a;, and b;, - b,;, by equalizing of the coeffi-
cients in (3.4), we obtain y b= ya, d.a -b, —8,c- ya, d;a - y¢, —0,d - ya,
d,a=y,d. Thus we can find y;d; /- 1,2, 3, 4, substitute them in (3.4) and

obtain

. : . 1 . R
g(x, )= ‘l, (7, +1id,) (¢ +in)(ax, +bx,+icy, + dy,)) a (7, +idy) (& +in)

let g(x,y) be a homogenous /-AH-polynomial of degree 7. From
Lemma 1, using induction on n, we see that g(x,y) has the representation

(3.6) g(x, y) = X,(y,+108,) (& + in)"= "+ Xy, +idy) (£ +in)—!

+ Yy -+ i0g) (£ + in)y =" + Yoy +18,) (§ +iny"—".
On the other hand,
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(X, ¥) = X1(@nooo X' (n— 1)@n_1100%," 2 Xy 4 (—1)@n_1010X] 2 Y,

E(= 1) 1o X072 Yo S i(B o X (1 Db X2+ 1)
(3.7) Xt I B X )
FV1(@n—1010X? '+ - - Fi(ba—r010XT - - 1))
+ Yo(@n—1001 X7 ¢ - il Opron XS ).

Having in mind the binomial development of &= (ax,+ bx,)", & 1= (ax;+bxy)* !
(5+in)"!, and the equality of the coefficients in (3.7) we can calculate the
coefficients in (3.6) ya" '=y,a"%h, da"'=0,a""2b, —ya"'=da"*c
05a" @t k, —yat'=d.0"%d, d,a"'- y,a* ’d. Herefrom, as in the case
deg g(x, y)=2, we obtain g(x, y) (y,-+id,)(5-+in)" a.

4. Nonhomogenous almost holomorphic polynomials. In this paragraph
we shall consider the case (ii) for G.; (p. 2), i e. the structure J is a block-
antidiagonal AC-structure, whose elements are real polynomials of degree
k.(Gup=(0), a + B - k+1). In the following we take all the matrices G,
equal, i. e. (,; -G,. For this class of AC-structures we prove

Theorem 2. Let J be an AC-structure which elements be real poly-
nomials of degree k. Let P(x,y) be an AH-polyvnomial of degree n-—k. Then
the homogenous parts of P(x,y) are almost holomorphic, too.

Proof. According to the above note

VE A 3 xe i+ G,
»=1 a + B =»

We prove the theorem using induction on n—the degree of the polynomial P(x, y).
Let deg P—n,n-— k. We can write

n »! n »y!' b

a .
v A oAl kgl iy v L. a8 umed
Plx, y) R TR IR T e b B4 B4 RN i T gt R Y Ve

a-—-(k 1), 5 (q,p)

On the other hand, P(x,y) X, oP,.(x,y), where P,x,y) is a homoge-
nous polynomial of degree «. Now we prove that P,(x, y) is an J-AH-polyno-
mial. This is executed, when the coefficients of the P, satisfy the AH-condi-
tion (1.1), i. e.

(4.1)  (@x11gpy @ris1gpn Anig 1py Arigp+1)U, = (0), where k+1l+q+p-—n -1,

(4.2)  (@r+1ugpy @rit190y Qrig1py Akigp +1) 0o = (br+11gp, Oki1gpy Orig11py Origp11)-

First we shall prove (4.1). We consider the coeificient in front of the mono-
mials xf+7-! and xj'"?x,, in the AH-condition. They are n(@no00, @n—1100,
Ap1010y An. |(|1|)G| (0) in front of Xf"'_' and n(a,.mo, Qn—1100y Qn—-1010, an—llJOl)Gl
."2(’2‘)(0,.- 1100 @n—2200, An—2110 An—n01)G, = (0) in front of xf‘*"'"x?. (Here we
use essentially the fact that degJ/=£k). Therefore (@n—1100, @n—2200, @n—2110,

@n-20)G, =(0). In this way we obtain (@.—ii1—100 @100, @n—ti-110 An—ss—101)G,
-(0) and changing x, into y, and ¥, — (@n—1+100-10) @n—111—10y @n—t0i0y Br—t04—11)
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G;=(0) and (@u—i+1000—1y Qn—1101—1, An—ioti—1, a, 00)G,=(0). If we consider the
monomial x?**3x, y,, receive (@, 2110, @n—3210, An—31205 a,—311)0, = (0). In this
way, gradually increasing the degree of X, y;, v, in the monomial x{t*‘x,y, y,
we obtain (@ 1oy ki+ 190 Qkig+1py Arigp+1)U, = (0) as the coefficient in front of
the monomial x2*x!y{ys k+-l+q+p=n—1, i e (4.1).

Now we shall prove (4. 2). This equation occurs in the AH-condition for
the polynomial P (as a fragment), which are obtained by equalization of the
coefficients in front of the monomials of degree n 1. The matrix §, do mnot
occur in the equations which are obtained by the monomials oi degree from
kE+n-1 to n, as the polynomials du/oxj, ou/dy;, j=1, 2, are of degree n—I.

Now if we consider the monomial xf*”*’, as above mentioned we obtain
(@ 100y An—2100y @n- 2010, @n—2001)T, — (0). With  similar reasonings we receive

(43) (Ari119py Qri+1gpy Arig+1py Akigp+1 )(J, ’—'(0), where k+l+(]+p-f v,

V=1,...,Il--l.

Now we equalize the coefficients in AH-condition for the F in front of the
xtxtyiys, k+l+q+p-n—1 and obtain

n! -
kU gt pt (@k119py Aki+19p) Akig+1py Arigp+1) U
(n1)! G.+ 4 -
PENA q ' p !‘al,-lqp‘ Qr—-11y It/p.alc—llqe 1ps ak—ll(,'p l) 1 se e (aH'O(H ao”,o, aOOIO’ aOOOl)(ll
n!
TRy q!p! (bk +1gpy bkl'f-‘ll’, bkll,w 1 bqup+l)~
From (4.3)we receive (a,,*. Vgps Qki+1qpy Qrig+1ps (Iqup+-l)Go - (bk.,.qu, br +1gpy buq,‘. ips

biigp +1). i. e.the Py(x, y)is an J-AH-polynomial. By induction we can conclude that
the homogenous parts of the J-AH-polynomial P(x, y) are almost holomor-

phic, too.
Let the elements of / be polynomials of degree k and J is such a

AC-structure as in Theorem 1, then follows
Corollary 1. Let P(x,y) be an J-AH-Polynomial of degree n k.

Then P(x,y) has the representation .
P(x,y) cols+in)"+ey(E+iny1+ -t ea(§Fin)+Ca P(E+in).
5. The other cases. In this paragraph we shall discuss the cases (iii), (iv)

and (v) for the structure /, obtained in p. 2. For the cases (iii) and (iv) we

state the following
Conjecture. Let J be an AC block-antidiagonal structure. Ewery

AH-polynomial P(x,y) has the representation P(x, v) P(E+in).
For the case (v) we give the following counter-example. Let

0 0 1/(14-x,) O
0 0 0 2
HAx,y) —1—x, 0 0 0

0 1/2 0 0
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J is real analytic, when | x; < 1. The generating linear AH-function is &4y

-Xx,+1i2y, Now we consider the following function f(x, y)=x]—2x,—i2y,.
It is easy to verify that this function is AH-function. Obviously f(x, y) can
not represent as function of &-in.

6. An example of AC-structure without linear J-AH-functions. Using
paragraph 2 it is not difficult to describe the coefficients J; of the all almost-
complex structures J which admit linear /-AH-functions.

Now we give an example of AC-structure which coefficients are polyno-
mials of degree 2. This AC-structure do not admit the linear AH-functions.

Let / be the block-antidiagonal AC-structure with the following coeffi-
cients:

A=270y) fe+1, A= s )+ Bog P ),

Jie L e s fm

where f(x, y)—ax,+bx,~cy,+dy,, a,b,c,deR, f(x,y)--0. The other coeffi-
cients of J (1‘13, J3, J3, Ji) are uniquely determinate by the above given /A, Ji,
J3, Ji, irom the condition Jyp/y,— — E.

Let £+4iy be a linear J-AH-functions &= c,x,coXg+d, ¥,-+dyys n=a,x,
+@yXo+b,v,4 b, y,. Using AH-condition (1.1), we obtain

9= dy 2 Oy as 1 Oy 2 Oy s 3 On 4 Oy
(A - Y b kR i
ay, A3 FI7 I3 ax,’ 0 5 ox, /i ox.’ odx, 'y’ i dy.
0: 43 0y 4 Oy
ox, 5 ay, 7% ay,

By equalizing of the coefiicients in front of equal degrees of x and y, we
receive

2a,+a, 0, a,-=0, d, a, from where a, a,d,;-—-0,
2a,+a, (), a,+a,=0, d,—a, from where d,=0,
b, b0, b,=0, ¢, —b, from where b, =b,=c;=0,
by—b, 0, b, +b, 0, ¢, —b, from where c,- 0.

Therefore do not exist nonzero linear J-AH-functions.

7. A class of uniform limits of J-AH-functions. Let us consider a set

AHP,(RY) of J-AH-polynomial P(x,y) with the representation (1.2), P(x, y)
1‘5(5 +in), §=@,X,FAgXy, 1) "‘bly_l"'b?yav a,, aq, b,, b,¢R.

It is not difficult to prove (with the help of some L°-estimation of Hor-
mander (2), ch. 5) that a Wierstrass type theorem for J-AH-functions holds
(3), i e. if {fa} is uniformely convergent on compact subsets of R* sequence
of J-AH-functions then the limit f=Ilim,f, is also a /-AH-function.

As consequence we obtain that the above mentioned representation holds
for the closure AHP,(R') of AHP,(R'). 1t is interesting to know if every
real-analytic J~-AH-function is an uniform limit of J-AH-polynomials.
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