Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

ON SOME DEPENDENCIES BETWEEN FUNCTIONAL FORMS
IN FUNCTIONAL PROGRAMMING SYSTEMS

ATANAS A. RADENSKY

In the present paper, some dependencies between functional forms in functional program-
ming systems are demonstrated. It is shown that any functional form can be expressed by
using only the forms composition, condition and construction.

1. Introduction. In the remarkable paper of John Backus [I| the func-
tional style of programming was opposed to the conventional one. It is shown in
the present paper that any functional form in the Bachus’ functional program-
ming systems can be expressed by means of only three of the functional
forms: composition, condition and construction.

The functional programming systems (FPS) consists of a set Ob of objects,
a set F of primitive functions (F:Ob -+ Ob), aset F of functional forms (F:F

+F) and a set of definitions [1]. We will present briefly some definitions con-
cerning the FPS. Let A be a set comprising strings of digits, some specials
symbols, the symbols 7 (true) and F (false), the empty set @. The elements
of A will be referred to as atoms. Any atom is an object. If x;, i=1, 2,...,n,
are objects then (x,,x,, ..., X, is an object. There exists an object | (nam-
ed “undefined”) with the property (..., | ,...)=.1f f¢F, x¢Ob, theu
f:x(f:x is an object) is the result of the application of f to x. For any f,
f ¢ F, the equality f: | — | holds. All primitive functions used in the present
paper are shown in Table |. The expression p, se;; Po-— €y;...5Pa— €n}
€ns i x means ¢;:x if and only if 1/ nand pj:x=F, j=1, 2,..., i—1,
p,:x=1T; it means e, ,:x in any other case. The functional forms (Table 2)
are expressions denoting functions. Any definition in the FPS is an expression
of the type Def /- r, where [is a functional symbol and r is a functional
form, and for any x, x ¢ Ob, the equality /:x - r:x holds.

We will define the usual ordering on functions and equivalence in terms
of this ordering.

Let f and g are arbritraty functions, then [1]:

— f- g iff for all objects x, either f:x— |, or f:x -4 x

—f -g ift f--g and g- f.

The so called “recursion theorem” is very useful when proving proper-
ties of functional programs.

Let f be a solution of f- p . g:Q(f) where Q)= h-|i, k-j] for any
function k(p, g, 4, i, j are given functions). Then according to the recursion
theorem [1]:

f=p g

peJ - Q8)s
SERDICA Bulgaricae mathematicae publicationes. Vol. 7, 1981, p. 301—305.

302 A. A\ RADENSKY

pof' > QUex

\

where Q") is & -|i, Q" Yg)jl, and ;7 is j-j"~' for n 2), and Q*(g) - ki
Joeoo s i g

The first three functional forms from Table 2 can be used to express any
other form according to the following theorems:

Theorem |. If f, f¢F,is an arbitrary function and g\, hl are defin-
ed by:

Dei gl — null-tail - 1; / [1, gl tail], Def 21 — [,

then gl — hl.

Table 1
Primitive Functions
Function Letinition
null null:x=x—=g@ — T; x+@ —— F; 1
tail tail t x=X=(X) —> D ; X=X, Xoyer oy Xp) &N =2 > (Xa, ..., X)) 5 L
id id:x-x
apndl apndl: x=x-=(y, @)—— V; ¥=(3,(2,,2s, ..., 2y)) —— (V. 2. Z2. .., Zp); L
not not:x-x=r-——F; x=F—>T; 1
1 lix=x=(xg..., %, - Xy
Table 2
Functional Forms
Name Denotation Definition
composition fcg (fog):x t:(g:x)
 construction U e Sl If,, v Salix=(f1:%, 0., ¥ X
. condition p—figlp—f g :x=p:x=T —=fix, pix=F—sg:x; 4
constant v Xiysy=| ~—» 1, X
insert r fix=x=(x)—>» Xy;
116 TR X, &nz2-—
f:lx,lf :{xa, Xp)) %l
apply to af |afix=x=0Q — I}
all X=Xy, oo Xp)— (X0 00 fi1x,); 1
binary to unary_ bu f ¥ [(bu f x):y-fily,y
while while p f | (while p f):x p: =T .

(while p f):(f:x); pix=F-+x; |

DEPENDENCIES BETWEEN FUNCTIONAL FORMS

303

Theorem 2. If f, f¢F, is an arbitrary function and g2, h2 are de-
fined by:

Def g2 — null » & ; apndls f-1, g2-tail], Det A2 af,
then h2 = g2.

Theorem 3. If f, f¢F,is an arbitrary function, x, x ¢ Ob, is an arbi-
trary object and g3, h3 are defined by:

Def g3~ f+[x, id], Def #3 = bu f x,
then g3~ h3.

Theorem 4. If p, [, p€ ¥, f¢F,are arbitrary functions and g4, h4 are
difined by

Dei g4 —notp — id; g4of, Dei h4- while p/,
then g4 — f4.

2. Proofs of the theorems. 2.1. Proof of Theorem 1.

A. From the recursion theorem [1] and from the definition of g4 it fol-
lows:

(1) g1 = nulletail — 1;
null-tail? — ¢, :

nullotail"+! — ¢,

where ¢, - f[1, l-tail], ¢,+, ~fo[l, g,-taill, n=1, 2,...

B. We will demonstrate that 421 -gI.

Bl. Let x=(x,), then #l:x=/f:x=x, (according to the definition of
the functional form f). Since null-tail:x=7, it follows from (1) that g! :x
=1l:x=x, hl:x.

B2. Let x=(x,, X, then Al:x=/f:x=f:(x,, [f:(%))=f:{xp Xg)=f:X.
Consequently gl:x-—#Al:x.

B3. Suppose the equality

)

(2) gl:/xl,. RS 1) hl 2/X1,.. oy Xptq)

holds for every &, |=k=n—1. Let x (x,,..., Xnq,). From the above assump-
tion: Al:(Xg ..., Xp4,)=&1:(Xy, ..., Xny,). Besides nullotail: (xg ..., X,4q)
. = nnlletail’':(xq, ..., Xaay)=F, nullotail®:{x,,..., Xayy) == T, hence
gl:(Xg . vvy Xnt1)=qn_1: (X", Xnt,)- In addition Al:x=/frx=f:(x), Al:
(Xgy -+ Xnt1)), according to the definition of /f. Since: nullotail: x= ... =
nullotail”: x =F, null-tail**!: x — 7, it follows that gl:x-g,:x=fo[1, g._,otail:x
filxy Guy:tail: xX)=Ff:{Xy, gn-g:{Xg -) Xnga))=F:(%p ql:(Xg ..., Xns1))
filxy Al:(Xy ..., Xnyy)) —h1l:x, consequently Al:x-—gl:x. Inductively it
follows that the equality (2) holds for any %, &= 1.
B4. Points B1, B2, B3 and the definition of /f imply 421 —gl.
C. We will demonstrate that g1 /Z1.
Let x, x ¢ Ob be such an object for which gl:x=-). Therefore there
exists an integer »n such, that nullotail:x- ... = nulltail”': x=F, null-tail”: x
7. Consequently x - (x,, ..., x,» and from points B2 and B3 it follows
gl —hl.
D. The equality gl -4l follows from the relations 41=g1 and gl-—=~#l [1].

304 A. A. RADENSKY

~22. Proof of Theorem 2. A. The recursion theorem [1| and the defi-
nition of g2 give:
g2 =mull - #;
nullotail — ¢, (2);

(3) e e e AN
null-tail” — g.(2):

with ¢, (2) apndls(f-l,), ga(#) = apndl=[f1, gn ((2)-tail], n=2, 3,... .

B. We will demonstrate that 22 - g2.

Bl. Let x= &, then A2: x -af: x & (according_to the definition of the
functional form af). Since null:x=7, then g2:x—=¢g :x—g =h2:x.

B2. Let x—{x,), then h2:x=af:x={(f:x}) (according to the definition of
af). In view of the fact that null : x=~F, nullstail : x =T it follows g2:x

g(#): x - apndlo[f-1, #]:x=apndl :(f:x,, &)~ f:x)=h2:x. Consequent-

ly g2:x=h2:x.

B3. Suppose the equality:

(4) g2:(x ..., X)=h2:x1,...,%,

holds for every k&, | -k<n—1. Let x=(x,,..., X,). From the above assumpt-
ion: h2:(x, ..., ha)=g2: Xy, ..., X,. Besides that we have null: (x,, ..., Xp)

nullotail: Xy, ..., Xp)= ... —nullotall” 2:(Xy, ..., X~ F, nulltail”': (xg

., Xa)— T, hence g2:(Xy, ..., Xn)=¢n(%):(Xqg .., Xa). In addition A2:x
=af:x=(f:X,, ..., f:X,), according to the definition of af. Since nullotail : x
= ... =null-tail* ': x=F, null-tail”: x 7, then g2:x=¢.(#):x -apndl-[f>1
Gn_ (2)-tail]: x=apndl:(f-1 : x, ga_,(£)-tail: x) apndl:(f:x,, gay(Z):(xy,...,
xn)=apndl:(f:x,, 82:(Xy,...,x,)) —apndl:(f:x, af : (Xy,..., Xn) apndl: (f:x,,
fiXoyeooy fiXg)={f1X,,f:Xq, ..., f:Xn) ~h2:x. Consequently h2:x--g2:x.

Inductively it follows that the equality (4) holds for any k, k= 1.

B4. Points Bl, B2, B3 and the definition of af imply /£2=g2.

C. We will demonstrate that g2 42. Let x, x ¢ Ob, be such an object
that g2:x is defined. Consequently x @ or x={x, ..., X,), n L From
points Bl and B3 it follows g2:x=h2:x, so g2<h2.

D. The equality g2 ~ A2 follows from the relations 42- g2 and 82 h2.

23. Proof of Theorem 3. Let y, y¢ Ob is an arbitrary object, then
h3:y-(bu fx):y=f:(x, y) and g3:y—fo[x, id): y= f:{x:y, id:y) =f‘:<x Ty
). 1f y— |, then h3:y—f:(x, |)=f: 1= and g3: | =f:(x: 1, 1> =fr1

1. Ity | then g3:y- f:(x, y). Consequently g3 = g3.

24. Proof of Theorem 4. A. Let f,, i—0, 1,2,...are functions which

are defined in the following way:

Def f,— 1,
Def f, = notop - id;
notopef - idof;

notepof” ' —sidof”Y; |, where n=1,2, ...

DEPENDENCIES BETWEEN FUNCTIONAL FORMS 305

For any 4, h ¢ F, let denote £(h) -~ notop -+ id; ~of. It is obvious that
E(f,) = E() ~notop — id; |of —notop —id; | ~ f,. Suppose that for k=1,
2,...,n—1, n>1, the equality f, E(f, ,)holds. Therefore £(f,) notop -id:
Taof = notop — id; (notop—— id ; notopof-~idof; ...; notopof™ - idof” '; |)of
notop —id; notopof ~idof;...: notopof” —~idof": | fu.y Inductively 1t
follows that £(f,) fa., for n- 0, 1, 2,... The extension theorem [l] gives:
(5) g4 — notop - -id;

notopof — idof ;
notopof” —— idof”;

B. On the basis of (5), the rest of the proof of Theorem 4 is the same as
the proofs of Theorems 1 and 2. In a similar way as with Theorems 1 and 2
the relations g4- h4 and #4 -g4 can be demonstrated and since g4 — /4.

REFERENCES

1. J. Backus. Can Programming Be Liberated from the Von Neuman Style? A Functional
Stvle and Its Algebra of Programs. Communs. ACM, 21, 1978, 613641

Centre jor Mathematics and Mechanics Received 10. 12 1979

1090 Sofia P O.Box, 373

2) Cn. Cepanna, xu. 4

