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ON NEUMAN’S PROBLEM FOR A CLASS EQUATIONS
WITH NONNEGATIVE CHARACTERISTIC FORMS

NIKOLAI D. KUTEV

In this paper we prove the existence, the uniqueness and the regularity of a classical
solution to Neuman's problem for a class of equations of second order with nonnegative cha-
racteristic forms. We use the method of elliptic regularization.

1. Introduction and results. After the paper of Keldish [6], the boun-
dary value problems for equations of second order with nonnegative characte-

ristic forms
n

Lu= ¥ @i+ S b(0u +c(xou=£(x),
fj=1 /=1 .

i

~

(1) S afx)EE -0 x¢Q, R,

=1

were investigated by many authors. In 1956 G. Fichera [9], [10] gave the ba-
sis to the general boundary value problems for (1). Following Fichera we clas-
sify the boundary of the domain € into four types 0Q=23,c2,Uul,UZ,
according to the sign of function &(x) »2‘;'=,(b"(x)»——2‘;.',,ay'(x)v,, where » is the

inner normal to the boundary of the domain and
Zy={xc02; I} _,a"(xp»;>0},
2, ={x€002\2y;  b(x)<O0},
I ={x€0Q\2;; b(x)>0}
Zo={xc0Q\2s; b(x)=0}.

In the paper of E. Radkevich [7] was investigated the boundary value
problem

(2) U.‘;‘ : al/(x)v . /+l(x)utnp(x) on I, u(x)=¢(x) on I,

for the equation (1). Under the assumption for the regularity of the coeffici-

ents of the equation and the boundary value operator, he proved the existence

of the weak solution for the boundary value problem (1), (2), when /(x)<C0,

ix)—b(x)<<0 on I, and uniqueness when ¢(x)—27_ & (x)+X7 a¥ (x)-.¢,<0
{ £

in £. In [5], for Neuman’s problem for the equation (I), where the existence
of the Lipshitz solution with bounded, in Sobolev’s sense, first derivative was
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EQUATIONS WITH NONNEGATIVE CHARACTERISTIC FORMS 355

proved under the assumption that ¢(x)<—M, where M is a large enough positive
constant. The question of the existence and the uniqueness of the classical
solution to the second initial-boundary value problem for degenerate parabo-
lic equations with coefficient unit before u, was investigated by G. Fateeva
[8], in a cylindrical domain Q> (0, 7) with a boundary 00 <(0, 7)¢>,. For
quasilinear degenerate parabolic equations, in the same paper, was established
the validity of the results obtained in the linear case in domains of the type
0%<(0, 8) for 4>0 small enough.

The object of this paper is to prove the existence and the uniqueness of
the classical solution to Neuman’s problem for equation (1). Let the bounded
domain Q¢R" with a boundary /' is C'*3* smooth diffeomorphic of a ball, /
is nonnegative integer, 0<<4i<C1. The operator L is defined with (1) in the do-

main 2’ >0Q. We assume
(i) the operator L is with real coefficients of the class C/+'+%(Q),a"/(x)eC¥L2');
(i) 27_,a(x)&& =0, x¢2, &R", o(x)<0, xeQ;
(iif) 7'e25.
On /' is defined the boundary value operator B

3) Bu~ X ok(x)us,+olou— p(x)

with coefficients of C/*?+*/"). We assume that o(x)==0 and the vector field
(o', 0%, ..., ¢") is not tangential to /" and concludes an acute angle with the

inner normal ». The set of « in which the operator L is not strictly elliptic

we denote with .1 - {x€Q; X a(x)&$/ =0 for some &R”", &0}

Theorem . Let for the operator L be true (i)—(iii), and for the boun-
dary value operator (3) and the domain Q the assumptions above. If A=-9Q,
then there exists a constant C, <0, so that when c(x)—=C, in the neighbour-
hood of A, the boundary value problem (1), (3) has a unique classical solu-
tion of the class C'(Q).

Let the domain £ is C'*?"7 smooth diffeomorphic of the domain
2,\{2,, where @, €, are concentric balls with radii respectively r, and r,
On the boundary of the domain @, 0@~ I U/, is defined the boundary va-

lue operator

B‘u = > Oh(x)u‘k—L U(.V)” — l]i(x) on ] '1,
k1
(4) n
Bou= X tMxX)uy, +u(xu=w(x) on I,
k=1
with coefficients of the class C'*?*%. We suppose that the vector fields (o',
o3, ..., d"), (r', 7% ..., ") are not tangential and conclude an acute angle re-

spectively with the inner normal to /7, and 7°,, o(x)--0, #(x)=0.

Theorem 2. Let for the operator L be true (i)—(iii), and for the do-
main 2 and the boundary walue operator (4) the assumptions above. Then
there exists a constant q,<0, so that when c(x)=q, in the neighbourhood
of 1, the boundary value problem (4) has a unique classical solution of the

class C'(9).
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Theorem 3. Let for the operator L and the domain (2 be true the
assumptions in Theorem 2. Then there exists a constant g, so that when
c(x)=g, in the neighbourhood of A, the boundary wvalue problem

n

Bu ) u"(x)urk+a(x)u=q¢1x) on I,
k=1

() Byt —=u—y(x) on I,

for the equation (1) has a unique classical solution of the class C'(L).
To prove the theorems above we will use an elliptic regularization of the
equation (1)

(6) Lu=Lu-+eau, >0,

where 1 is Laplace’s operator.
In part 2 which is the basic in this paper, we prove that the solutions of
the boundary valve problems (6), (3), (4), (5) and their derivatives up to the

order /+1 in & are uniformly bounded. The proof is done by means of Bern-
stein’s global a priori estimates, because as it is well known from [5], for the
equations with a nonnegative characteristic forms, are not true Bernstein’s
more elementary inner estimates.

In 3 are proved the theorems in 1.

In conclusion we must note, that the results in this paper do not coin-
cide with the results in [7], where only the existence of a weak solution for (1),
(2) is proved. As for (8], it is a special case of the equation (1) and the
estimates used a priori differ considerably from those in 2.

Acknowledgement: The author of this paper wants to express his
acknoledgement to T. Genchev for the problems suggested, as well as for
his constant scientific guidance.

2. A priori estimates. In this part we shall need the following inequali-
ties and identities (see [2]): L(v,v,) v,Lv,rv,bulA¢A2zlfj:_,a:,-(y,),’_(vg), -CV Y,y
for any two functions v,2¢C¥(2), (2], @&/ <X} a/s&88,  a/n'y/ for any

& mRY, (B _aYuc o P<MIp_ 3% alu, .. for l=1, 2,..., n, where M
J=1"x,"%%; i L o

is a constant which depends on the maximum of the second derivatives of

a'/{x) in 2. Besides we shall use the short notations u, Uy, by, bf;‘_‘ and

the case of repeated indexes we shall understand an addition from | to ~. In
our further reflexions with M,, K; we shall mark the constants which are in-
dependent of e.

Let ur(x)cC'+3+4(Q) (see [1]) be the solution of (6), (3).

Lemma 1. max u'(x) —K,.

2

Proof. Let @(x)¢C'+*+/(£2) be a function, for which B®-—-¢ on I. We
consider the function 2*(x) -u*(x)—®(x) N, where N is a constant, which can
fit us. The following inequalities are true: L.2*f—L® -cN 0 (when N is
large encugh, depending on f, @ and the coefficients of the operator L, but
independent of ¢) and Bz = - o(x)N 0. According to the maximum principle
it follows, that if Z(x) attains a positive maximum in an inner point P, of
the domain (2, then L,2(P))< 0. If z*(x) attains a positive maximum in a point
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P, trom theorem 2’ [11] (see also [13]) it follows that Bz¢(P,)<<0. These
inequalities show that z¢(x) cannot attain a positive maximum in £. In the
same way is proved that —wu(x)+®(x)—N cannot attain a positive maximum
in ©. Thus lemma 1| is proved. By analogy are proved

Lemma 1. For the solution v:(x) of (6), (4) is true the estimate
max, | vi(x) - K, where K; is a constant (independent of e).

Lemma 1. For the solution w+(x) of (6), (5) is true the estimate
max; wi(x) =K, where K| is constant (independent of e).

To prove the uniform estimates (independent of &) for the derivatives of
the functions wu:(x), v(x), w(x) we must restrict the size of the coeffi-
cient ¢(x).

Lemma 2. Let .1:=0Q. Then there exists a constant ¢,<0 so that,when
c(x)=¢, in a neighbourhood of .\, the following estimates are true
(7) max Deu(x) =K, al=1.

Without loss of generality we may assume that £ is a ball with a radius
R and a centre 0, and the operator is strictly elliptic in 0. The concentric to
© a ball ©Q, is chosen a sufficiently small radius 7, so that the operator L is
strictly elliptic in £, The boundary of £ and ©, we shall denote respect-
ively with 7" and 7I",. From lemma 1 and Rernstein’s inner a priori estimates
(see [2]) we obtain (7) in the domain £, To prove (7) in G, G=2\ 02, we
make a polar change of the variables. For convenience we preserve the pre-
vious mention considering that x,, x,,..., x,_; are angular variables and x,

is a radial variable. In the new variables the assumption about the vector field
(o', 02, ..., o") denotes that o%(x)<<0 on [I'. We consider the auxiliary func-

tion z,(x) -exp (dx,) and >0 is chosen so that ; c+a"y+b"8--0. This
is possible because according to (ii) ¢(x)<<O in £. Thus we have
Lzy—=(—a™8—b"d—c)exp (dx,)= —c/2>0 in Q,
Bz, (—o"6d—o)exp(dR) - —d"6>0 on I

In the following calculations, for convenience, we shall omit the index « We
define the function

(8)

n—

1
z(x)=|m, X u‘;[,+'_’uz+u,.T(u)]exp((R—x,.)E,)+N,,zo-f-N(;u?,
k=1

where 7w 4X7_10%(x)ux, +40(x)u—4o(x) and H(x), B(x), o(x)cC'HH+H(G) are

smooth extensions in G, respectively of the functions o*/0”, a/5%, ¢ /0" defined
on /. The positive cons.ant m, is chosen so that
n—1 n

my X uj+2u? + usTu+n, Z u
k=1 k=1

n—1
(9) 2m, h‘.zl Ayl y + 4701t 4+ @i Tu),

0
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-, 3m n;_‘l i, i \’: 2
=3 = A Upillyj+ 37 Upill ; — M‘k"'l uy—M,,
m, max (2, (4n2H,)?); H, max BE(x) |,

x€G, 1=k=n

where M, is a constant depending on the coeificients of L, B and £ (but in-
dependent of ¢). The positive constants :,, N, will be determined for our pur-
pose, so that z,(x) does not attain a positive maximum in G. For Bz, wehave
the estimate
. n ; nTl 0
Bz, = (- &0") X ui-+2m, k:-‘x u((Bu)., + B, ﬁx;]u)

+4u,Bu,+ Bu,Tu+ u(T(Bu)+|B, Tlu)+ N,Bz,+ N’ ,Bu?.

From the choice of the operator 7" we have 4u,Bu,+ Bu,Tu -0 and from the
boundary conditions (Bu)«, =(¢).,, T(Bu)—1(¢), k~1,..., n—1 on I Since
[B, d/dx,), |B, T] are differential operators of first order, when &, is large enough
depending on the coefficients of the commutators, the inequalities Bz, >0 on
I will be true. According to the maximum principle z,(x) can not attain a po-
sitive maximumon /. Let us prove that z (x) cannot attain a positive maximum
in an inner point of the domain G.

Lz, =1+ Iy+ I3+ 1) exp ((R—xn)&,)+NolLzy+ N'oLu?,

n

1 n
I =(a™s}—- 68 )(m, X up+2ui+u,Tu+n)<M;Z ul+u,
k=1 k=1

n n—1
L= -2 4“'11 avs,(2m, k_‘_]‘ Unlipj + 4llgll, j+ Ua( T+ 1L, Tt)
J= =
m ’I\Tl ] j '
=3 2 QU+ QY Ul My ‘-\:‘“ M

n—1

a=2m, k.‘.‘.l AUy 4@ U pilh g j+ 2015 Th),

3m, n—1 n .
g = @uylegt 3@ Unitln, —My I ug—My,
k=1 k=1
n—1 .
¢ “ { 1
Il =2m, Z | - ayu,; ~biu;—cpu otk - fal

F(Tu+du,)[—aiju,; — bl — calt — Clin+f )+ tuad(Tu)
m, u—\:l

-
2 k==l

Q' Uil ) — A Upglly

n—1 n—1 n
—m,c X ul—-2cu’-8clu,  Hru, —M. I ui- M,
e | k=1 Y T |
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From the choice of m, we have 8u,Xi=16%(x)u, |~ (my/2)2; lu;-+ul. Therefore

m n‘ 1 ' n—.l ) % n
[,=—="1 % a'upitin;— @ Uniltnj—(my/2)c £ uf—cul—Mg X u?— M.
- k=1 k=l

k=1

We choose N, large enough, so that NyLz,—(M,+ My exp (R x,)) 1 be-
cause of (8). When ¢(x)--¢; in the neighbourhood of .1, where ¢;— —M;— M,
-M,— M, will be true the estimate

n
(10) Lz,= X a‘upiur;+1>0.
=1

The above inequality denotes that 2z,(x) cannot attain a positive maximum in
an inner point of the domain (. Because of the relation between Cartesian and
polar coordinates and from what was proved above, on /7, will be valid

max; [D“u 1\7,, a —1,in polar coordinates. When V, is large enough, the
function z,(x) cannot attain a positive maximum on /7, either, i.e. z,(x) does
not attain a positive in G. From (9) 7 u?< K,. This estimate will be true in
Cartesian coordinates too. Thus lemma 2 is proved.

Lemma 2. There is a constant q,<0, so that when c(x)=q, in the
neighbourhood of A, for the solution v«(x) of (6), (4) we have the following
estimates max, Dv(x) =K], a =1

Proof. Without loss of generality we assume that ( is the domain
.\ {2, where ©,, ©, are concentric balls respectively with radii r,, r,, boun-

daries /', /', and centre in 0. We make a polar change of the variables and
for convenience reserve the previous mentions, so that x;, Xy, ..., x,_ are

the angular and x, is a radial coordinate. In the new variables the assump-

tions about the vector fields (¢!, ¢2, ..., ¢"), (¢}, ¥% ..., ") denote that ¢"(x)<<0
on /7, and r*(x)>0 on I',. We consider the function
(11) Yo(x)=—exp (8(r, — Xn)(— Xa+75)),

where 4 is chosen so that J2- c+a"3?-+b"--0. As in lemma 2 we prove that

LY, >0 in @, B,Y,>0o0n [', B,Y,>0 on I, For convenience we omit the
index ¢. We consider the function

n—1

(12) Yi(x)[my Zuj+2ul-+u,Tu+nlexp((ry—Xa)(Xn—ra))+N, Yo+ Nou?,
k=1

where 77 - 4X7-165(x)Ty, L4h(x)r—4o(x) and #(x)eCH2+4(Q) are smooth exten-
sions in £ of the functions ¢*/0”, t*/¢" define respectively on 7'y and /7, By
analogy #, pcCi+2+4(£2) are smooth extensions respectively of o/0", @ 6" on I
and r't", y/t" on I, The positive constant m, is chosen so that we have the
inequalities (9) for the solution ©(x) of (6), (4). Following with minor changes
the scheme of the proof of lemma 2, we have when &, N, are large enough
the estimates

8 B,Y,>0 on I, B,Y,>0 on I,
(1

n
E y| = p a"/u.,u.,+ 1 in Q
R=1
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under the assumption that c(x)<<g,<0 in the neighbourhood of A. From (13)
it follows that V,(x) cannot attain a positive maximum in £, and from (9)
and from the choice of Y|, we obtain the proof of lemma 2’

Lemma 2”. There is a constant g,<0 so that when c(x)<g, in the
neighbourhood of A, for the solution w:(x) of (6), (5) we hawve the estima-
tes max; Dew(x)<=K], a -1

Proof. As in lemma 2’ we consider the functions (11), (12), but only in
the definition of the operators Tkw=4.‘.];::6"(x)w,k+4H(x)'w—4g(x) for the

coefficients H%(x)cC'*?/(£2) we assume that they are smooth extensions of the
functions ¢%/6” on I'y and a"*/'a™ on I',. The functions #, o€C**2+4(£2) are smooth
extensions respectively of 6/¢”, ¢/0” defined on /',. We will prove that },(x)
cannot attain a positive maximum on /', so that for our purpose we will
prove that (Y,), >0 on /7. Without loss of generality we assume that v 0

on /. From the boundary conditions we have N

n—I1

aY S
-1 u;ﬁ +2m, X Uplipn -+ 4Ulplinn
k=1

o, (ri—r9)s,

x
T

F U T1)+ Uy T+ Nybd(ry—ry)

n—1
=(ryr)é Ul + dua i+ X @M uy)/a™ — Mol — M+ N,d(r—r,)

L

=(ry—ry)& 2 M — M, +du,( f— b"uy)/a™ + Nyd(ry—ry) >0

on I',, when &, N, are large enough. Our next reflexions are similar to those
in lemma 2.

Lemma 3. Let A+ Q. Then there exists a constant cy=c, so thal.
when c(x)<cy in a neighbourhood of A, we have the estimates

(23) max  Deur(x) = K, a 2.

Proof. The proof of (14)in ©, follows from lemma 1 and Bernstein’s in-
ner a priori estimates. To prove (14) in G we make a polar change of vari-
ables. We use the mentions in lemma 2. We consider the function

n I n

g] Uin Tatt + nglexp (R x,)&) - Ny2,(x),

2o(xX)=|m, X wu: +2 X ul 4
2 { hpwat . P k=1 M aai
where
n--1 i
(15) Ter 4| X 0‘(x)u,,,,+u(x)u-~‘»(x)],., k=1,..., n—1,
f==1
n—1 n—1 ¢ """l '
(16) Ta—=4— X AY( X H’*u.bwhﬁuum.‘ ‘- I.J' A”u\',/
fw=1 ne=| i

n—1 n
Y Bu,—BY X
(w] ' [

1
U*u.. b p)+ Cu—F|.
1
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The functions #%(x), f(x), o(x) are introduced in lemma 2 and the functions
Al(x), Bix), C(x), F(x)cC'+1+4((Q) are smooth extensions respectively of a’//a™,
b a™, ca™, fa™ from I' to G. The positive constant m, is chosen so that

n—1 n n n
my £ u; +2 X w3+ I Uknlwtt+ng - I oui,
kp=1 k=1 k=1 =1
n—1 f n . n s
(17) 2m, X aYUrpillip;+4 I QUknillan;+ X @Utpn A Trid);
kp=1 k=1 k=1
3 n—1 g n . n
=5 m S @urpiling;+3 I @Uinllen;  Ms T Uy, — M,
kp=1 k=1 kp—1

my=max (2, (4n*H,)?),

where /, is the maximum of the coefficients before the derivatives of the
highest order in 7, We will prove that z,(x) cannot attain a positive maxi-
mum in the domain G and on boundary /°, in an appropriate choice of the
positive constants %, N,. For Bz, we have the estimate

n n—I1
Bz,=(—¢0") I up +2m, = turp((Bit)s,
kp=—1 kp =1 r
5 n
Do, S L
LB, 3%,9%, Ju)-+-4 = WpnBlirn R (Twu)Buy,

n

+ X uga( T(Bu)--[B, Tplu)+ N,Bz,.

From the choice of 7,, and from the boundary conditions, we will have 7,u
~4U,,=0; (B”)I,,x,, =(¢)XsXp kp—1,2 ..., n—1, on I'. Because the commutators
[B, 0?/0xx0x,), |B, T:| are operators of second order, when &, N, are large
enough depending on the coefficients of the commutators, we will have the
estimate Bz, N,Bz,—M,;>0 on ['. According to the maximum principle
2y(x) cannot attain a positive maximum on I' We will prove that zy(x)
doesn’t attain a positive maximum in an inner point of the domain G.

I,Z, ;(Il +12 FI"‘* /‘)exp((R— .V,')E._,)-J_'—N‘LZ"
n—I1 n n n
I =@ b)) m, k:: u}p+2k2_4| ul, + k‘_l Upn T o) = My, k‘.".? lui’ +M;,

n—1 n
avE2mg X Unplinpi+4 X Upnlirn,
kp=1 k-

n
Lams 2
- 1

J==1

n . - . e o
S urTrt)j+ X trn;Tatt]: 9 S @ urpiling,
- A==l kp==1
n n
+ 2 a'/uk,.,u.,.ﬁ-M,z p; ui.
I Apmt ¥
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n—1 n
I3=2my I Quppillip;+4 X @YUsnillin;

kp=1 B 1
LR 3m, "T' .
+ X a1 gn g Tiu), = 2' b Q' Uppillgp
k=1 kp—=1
n n
. o) i 2
+3 3 a'/u;,,,,uk,,,—Mx b uy —Mg,
k=1 kp=1 P

n—1
lo=2my I urp(—aitpy— ey — ajui;
kp=1

n

— by, — bl Clirp|2) + ka (4upn+ Tru)( Q¥

Qg —afu— b, biei—Clikn2)

n—1

n n
RS “ 9 m, 8 -
+ I tel(Tw)O( I uj )— M) 5 = AUrpillrpy
k=1 kp -1 ko1
n B n—1 n
— 2 aVlUppilien; — Myc I uy,—2c I u?,
A=1 kp=1 k=1
n—1 n—1
8¢ I Wugau;j —8 cup(— I AMbruy,
kij=1 k=1

n—I1 n
X AVuy —-M, I oul — My
ij=1 kp=1 7

m, "5V n )
— 5 Y aluppiling; X aUrnilirny
kp -1 k-1
( n—1 n n
B ’ T, B S S Y2
my Z)C - u” C - uk" Ml3 - u” Ml"
kp==l k=1 kp=1

When ¢(x):-c¢, ¢, in the neighbourhood of 4, c,= Mg—M,,—M;, -M,, and

N, is large enough, from the inequalities (10) we have Lz,'a.‘.lg’

+ 1. From the proof of (14) in ©, and because of the relation between polar
and Cartesian coordinates, when N, is large enough, 2,(x) doesn’t attain a po-
sitive maximum on /. From (17) we have 2} _ui —K,. This estimate will be

true in Cartesian coordinates too. Thus lemma 3 is proved.

Lemma 3. There is a constant g~ q, S0 that when c(x)--q, in the
neighbourhood of .1, for the solution v«(x) of (6), (4) we have the following

estimates

(18) max  Deve(x) - K, |la =2.

2

Proof. We consider the function
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n

(19) Yo(x) —exp ((’1’xn)(xn-'2)52)[”12k-‘-:1 ui,,
p—
-2 X w2 + I upa T+ ny)+ N Yi(x)
k=1 E—1

and using a similar argument as in lemma 3, we prove the estimate (18).

Lemma 3”. There is a constant g, q,, so that when c(x)=g, in the
neighbourhood of .1, the following estimates are true max; Dew(x) =K,
a =2.

Proof. We consider the auxiliary function VY,(x), as in (19), (15), (16),
so that the functions 6%(x), #(x), o(x) are introduced in lemma 2”. We will
prove that Y,(x) doesn’t attain a positive maximum on 7%, so that for our
purpose we prove that (Y. >0 on I’y

n n—1
(Y'.’)-\’n = ::Z(rl_r‘z) k.‘-l u;,,":’ 2m‘) k;;‘il UrpUrpn

n

n n
+4 3 upiliknnt I UWeanTri+ X Upa(Trid)s+ N ( ¥y -
k=1 k=1 k

From the boundary conditions ux, 0, Thu- 0, kp=1,2,..., n—1, on I,
hence when &, is large enough
n n—1

(Yo)e, = Ex(r—12) k}Jl ul, +4 I Urnll knn

n—1 N n—1
+ 3 (a"’ ’a’l")ukrtil+4unn[unnn_ Xz (a""/(a"")“)a”"u,,,[
i=1 Ri=1

n—1 ¥ 5 n A

+ Y (a (I"")uﬂi/l_Mls k.‘.al ll;m—%—Nl( Yl)_‘."._/wm
=1 =
n n—1 ; n y

& (ry—1y) kEl uj, +4 k).l (rn/a™ ) :‘1 Q" Up)x
o = =

n n—1
- 4(upn/a™ . 'El QUi )n— HUnn/a™)| ‘El Q" U
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On further reflections it follows as in lemma 3.

Lemma 4. Let A+%. Then there exists a constant c¢,<c,_, so that
when c(x)<c, in the neighbourhood of .\, for u=Il+1 we have the follow-
ing estimates max, Dw(x)I=K, lal- u
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Proof. Lemma 4 is proved by induction with the auxiliary function

2 (x)=exp((R xn)i)m, I (Dtu)y

n =pu

-2 X (DLDR uy+ X T D2 DP ut-n, )+ N2, .
a-pg “ n n

=l atp =pn

B+0 B-+0
We use the mentions introduced in lemmas 2, 3. The operators T,z Tup
(x, d/dx,, ..., d/0x,_,) are defined on /° by the condition 7 ;(u)= —4D D% u,

where the derivatives of the type [ u are replaced with their equivalent ex-
pressions in which we have derivatives only in the variables x;, x,, ..., X, 1.
This is possible from the boundary value operator, the equation (6) and the
derivatives of the equation (6) up to the necessary order. In G the coeffici-
ents of 7., are smoothly extended of the class C'*!'*/((). The positive con-
stant 7, is chosen so that

m, max(2, (4n'+rH,)?),

m, ¥ (D:up+2 X (D2D¢ 'u)7 - 3 T",,(u)D';,D{"u+n,. X (D)3,
a=pu n a=p

at+pf =n atB =p
B0 A0
2m, X a/(DD. u)fDD, u)-+ 4 :7‘1 n"(Dg,Df”D,lu)(D;,D‘f,,D,/u)
= a+Bl=u

A+0

3m
L X aT. ). D:DP D‘lu - 7" Y a’(D2Dy u)([)";,[)_.,/u)
arfl=mn ’ n ] 4

al=npn
)

e
£3 X al(DLDY DDy, DY Do) M,
a+Bl=m n ' : n

A+0
where A, is the maximum of the coefficients before the derivatives of the
highest order in 7,; By analogy we prove

Lemma 4. There is a constant ¢, g, SO that when c(x) q, in the
neighbourhood of .1, for w: 41, the following estimates are true:
max,, Dev(x) =K', a u

Lemma 4. There is a constant g, -g, 1 so that when c(x)=-g, in the
neighbourhood of .1, for wu -l+1, the following estimates are true:
max,, | Dw(x) =K', a|=u.

3. In this paragraph from the uniform estimates which are proved in 2 we
will establish the existence and the uniqueness of a solution of the class
C!(¢2) of Neuman’s problem for the equation (1).

Proof of theorem 1. Let u,(x), uyx) are two classical solutions of
(1), (3) and u(x) wu,(x) wu,(x). Then u(x) is a solution of the homogeneous
boundary value problem
(20) Lu--0 in © Bu-=0 on [I.

According to the maximum principle it follows that, if u(x) attains a positive
maximum in an inner point 2, of the domain 2, then Lu(P,)< 0 which con-
tradicts (20). If u(x) attains a positive maximum in a point Pyc/’, from theorem
2’ [11] (see also [13]) it follows that Bu(P,)< 0, which is impossible because of
(20). In the same way it is proved that —u(x) cannot attain a positive ma-

"': (D':u’a—Mqu

al = u
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ximum in €, whence follows the uniqueness of (1), (2). To prove the existence
of solution of the class needed, we denote ¢,=min(cy, €y, ..., Ci+1). When
c(x)--c, in the neighbourhood of .1, from the a priori estimates in 2, the so-
lutions u+(x) of the boundary value problem (6), (3) are uniformly bounded
with their derivatives up to the order /41 in ©. Using the Arzela-Ascoly
theorem and the diagonalization argument, we can find a sequence ¢, - 0, so
that Deu’™ @ Deu in © for a I Therefore letting & -~ 0 in (6), (3) we see
that u(x)  lim, _ou'#(x) is a solution of the class C'(22) of (1), (3).

The proof of theorems 2, 3 with minor changes follows the scheme of the
proof of theorem 1.

Remark. Let £ be any domain in R” with C'+3+/ smooth boundary and
d92n .1 be situated on a plane part of the boundary of the domain . If the
operator [ satisfies (i)—(iii), and the boundary value operator satisfies the
assumptions in 1, then the conclusions in the theorems 1, 2 and 3 are valid.
For our purpose, as in 2 we prove the uniform estimates of the solutions of
the regularized problems in the coordinate system with an axis Ox, coincid-
ing with the direction of the normal to 02N .1. The case when 02N is a
sufficiently small part of the boundary is reduced to the one considered
above, using a smooth change of the variables, so that the boundary in the
neighbourhood of d©2n .1 becomes part of a plane.
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