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FACTORIZATION OF LINEAR OPERATORS,
MAPPING (DF)-SPACES INTO (F)-SPACES

HEINZ JUNEK

The main question of the paper is the following: In which rate global properties of an
operator acting between locally convex spaces are determined by its behaviour on the bounded
subsets ? A statement of this type is Grothendieck’s Theorem: A linear continuous operator
mapping a (DF)-spaces into a Banach space is (weakly) compact, iff it maps bounded subsets
into relatively (weakly) compact sets. The paper generalizes this statement to other properties
then (weakly) compactness, in fact, to such properties, which can be formulated in the lan-
guage of operator ideals (Theorems A and B). Overmore, the results of this paper yield simple
criteria for the factorization of operators through Banach spaces, for the idempotency of ideals
and statements concerning the structure of the system of bounded subsets of metrizable lo-
cally convex spaces.

1. Introduction. In the recent years the theory of ideals of operators
acting on Banach spaces was used to investigations of locally convex spaces.
This is not very surprising, because problems of the theory of locally convex
spaces (as nuclearity, compactness etc.) were one of the springs of the theory
of operator ideals. Fundamental results in this field were obtained by A. Gro-
thendieck during the fifties and by A. Pietsch during the sixties. After
this only a few new results were known. Now, it seems, that the reach theory
of operator ideals put a new light to the theory of the locally convex spaces,
especially of (F)- and (DF)-spaces. Here we use the theory of operator ideals
to answer the question, in which kind global properties of a linear operator
acting on certain locally convex spaces are determined by its behaviour on
the bounded subsets.

Let us recall the definition of operator ideals. Only for the sake of simpli-
city we assume in all the following the completeness of the considered locally
convex spaces. If £, F are locally convex spaces, then by S(E, F) we denote
the set of all linear continuous operators from E into F and by F(E, F) we
donote the subset of all finite dimensional operators.

I.I. Definition (see [6]). Let C be a class of locally convex spaces
containing all finite dimensional subspaces of the members of C. An opera-
tor ideal # over C is a class of linear continuous operators acting between
the spaces of C such that the following holds :

(i) The components AE, F): -AnL(E, F) are linear subspaces of 8(E, F)
containing F(E, F) for all E, F¢ C.

(i) If Re B(E, Ey), T¢AE, F,), Q¢ 8(F,, F) then QTR¢ ME, F) for all
E E, F, Fy¢eC.

For C we will consider the class BAN of all Banach spaces and the class
CLCS of all complete locally convex spaces and we will call the ideals BAN-
ideals and CLCS-ideals, respectively.
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To obtain statements of the type of Grothendieck’s Theorem men-
tioned in the summary we give the following preliminary definition. Let # be
a BAN-ideal and £, F locally convex spaces. An oeperator 7 ¢ £(E, F) is said
to have the weak #A-property, if for all Banach spaces B, B, and all opera-
tors R¢ 8(B,, E), Q ¢ 8(F, B,) the product Q7TR: B,—E—F—B, belongs
to #4(B,, B,). The operator 7 is said to have the sfrong #-property, if there
are Banach spaces B,, B, and a factorization

T
E———~F
.| $

A(
M TS 2

BT _p,

of T with operators R¢ £(E, B,), Q¢ £(B,, F) and T, ¢ #A(B;, B,). By A® and
AS we denote the classes of all operators having the weak or the strong #-
property, respectively. Of course, the strong #-property implies the weak #-
property, #°C #®. The main problem consists in finding of sufficient condi-
tions, such that the weak s-property implies the strong one. Theorems of
his type are called “factorization theorems”. This will be done in the next
section. Let us supply the above definition by the following consideration.
By a CLCS-extension of a BAN-ideal & we mean a CLCS-ideal #°*' satisfying
the equation s°*{(B,, By)=A(B;, By) for all Banach spaces B,, B,.

1.2. Proposition. The smallest and the greatest CLCS-extension of
a BAN-ideal +# are the classes A° and A%, respectively.

We omit the simple proof and refer to [6, 29.5]. By this proposition, A% = #*
would imply the uniqueness of CLCS-exteusions. At last we give a simple but
more interior criteria for the weak and strong s-property, respectively. Let £
be a locally convex space. By B(E) we donote the directed from below sys-
ttem of all bounded, absolutely convex subsets of E. By ‘U(E) we denote the
directed from above system of all absolutely convex neighbourhoods of zero
of E. Let A¢ B(E) and U € U(E) be given. By paand py we denote their
gauge functionals. Let us define the linear spaces E(A)=u >, nA and E/U

E p;'(0), which can be normed by x 4=pi(x} and 'x , = py(x), respect-
vely. Their completions we denote by E, and E,, respectively. There are ca-
nonical linear continuous mappings C,:E,—E and C,:E—Ey, which are
defined by C,x- x and Cyx- x, respectively. The product of these operators
we denote by C,,=CyC,:E;~—E,. Futhermore, if A, B¢ B(E) with AceB
and U, V¢ V(E) with VceU for some ¢> 0, then there exist canonical mappings
Cup:Es—Ep and Cyy:Ey —E,. These mappings are unique defined by. the
equations CzC,=C, and CpyCy~ Cy.

1.3. Proposition. Let 4 be a BAN-ideal. An operator T ¢ 8(E, F)
belongs to 4® if and only if for all A¢ SB(E) and all U ¢ ‘U(F) the product
C,TC, belongs to ME, F). The operator T belongs to #° if and only if
there are U ¢« V(E), A¢ @(ﬁ) and Tyt AEy, F,) such that T=C,T,C,.

We omit the simple proof.

2. Factorization theorems for closed ideals. In this section we answer
our main problem, to find sufficient conditions for A®- 4, in the case, when
4 is a closed BAN-ideal. A BAN -ideal # is called closed, if for all Banach spaces
B,, B, the ideal components A(B,, B,) are closed in 8(B,, B,) with respect to the
uniform operator topology. At first, we have to correct our problem, because
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A%-=s" for all BAN-ideals. This can be seen as follows. Let £ be an infinite
dimensional Banach space and £, its associated weak topologized space. The
identity map 1:E,——FE, belongs of course to #® for all 4. But if this map-
ping would belong to #4° too, then there would be a bounded weak neighbour-
hood. Therefore, £, would be normed. This is possible only for finite dimen-
sional £, a contradiction. Therefore, we correct our question as follows:

Find sufficiently large classes &,, K, of (complete) locally convex spaces
and general assumptions on the ideal &, such that A®(E, F)—=ASE, F) for
all E¢ K, and F ¢ Q,.

It will be seen, that the classes of (F)-and (DF)-spaces or the larger class
of the quasinormable spaces are very convenient to answer the problem. Let
us recall the definitions.

2.1. Definition ([3, 14. Ill. 1, Lemma 6]). A locally convex space E
is called quasinormable, if for every neighbourhood U ¢ U(E) there is a
V€ U(E) such that for every «>0 there is a bounded set M.cC E satisfying
the inclusion VceU~+ M..

22. Definition ([3, p. 64]). A locally convex space E is called a
(DF)-space, if it has a countable increasing fundamental system of bounded
convex sets (B,) and if theintersection V— N 7_Un Of every countable system
of neighbourhoods U, ¢ ‘V(E) is a neighbourhood of zero, assumed that V
absorbs each bounded subset of E.

It is known and easy to see, that each (DF)-space is a quasinormable
space. An (F)-space is a complete locally convex space E containing acount-
able basis of neighbourhoods of zero. The intersection of the classes of the
complete (DF)- and (F)-spaces coincides with the class of all Banach spaces.
Not every (F)-space is quasinormable.

23. Definition ([6]). A BAN-ideal & is called injective, if for arbit-
rary Banach spaces B; (i- 1, 2, 3) and operators T ¢ 8(B,, B,), S ¢ #(B,, Bs)
the in equality 'Tx =|Sx for all x ¢ B, implies T ¢ #(B,, B,).

The ideal # is called surjective, if T ¢ 8(By, By), S¢ #(By, Bs) and
(U)c S(U,) implies S ¢ #(B,, B;), where U, denotes the unit ball in B;-
(i=1, 2).

By using standard arguments one can see, that the injectivity and the surjec
tivity, respectively, of an ideal # means, that the property 7 ¢ # is invariant
under changing the domain aad the image space of 7, respectively. The ideal
Q of all compact operators and the ideal I® of all weakly compact operators
are both, surjective and injective. Now we are ready to state our theorems.

Theorem A. Let # be a closed surjective ideal. For all quasinormable
complete spaces E and all Banach spaces B we have A¥(E, B)—#%E, B).

Theorem B. Let A& be a closed, injective and surjective ideal. For
all complete (DF)-spaces E and all (F)-spaces F we have A%(E, F)— A5E, F).

The proof of the theorems requires some propositions of the theory of
BAN-ideals, on the one hand, and some insight to the structure of quasinor-
mable spaces, on the other hand. We start with the first one.

The cartesian l,-product (1--p- ~) of a sequence (.X,),en of Banach
spaces is the Banach space

/\';-"lp((Xn)nE N) = {x=(xn)n€N Xy € Xm j|x]i=]| (\ Xn ‘) p<°°}-
The canonical projections pr,: X-+X, defined by pr(x,)=x, and the cano-
nical injections inj,: Xy— X defined by inju(x,) :(d..Xr)nen are continuous.
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24. Proposition. Let # be a closed BAN-ideal. If (T,), (R,) are two
sequences of operators T, ¢ #(X,, Y) and R, ¢ MX, X,) satisfying 7 | ||T,
<o, B2 R,|<co, then for all 1=p=cc the operators

31l X,)—Y defined by X(x,):=3X7_ | T,Xn
A: X1 ,(Yn) defined by A(x)=(R.x)belong to #.

Proof. By assumption we have @,:=T,pr, ¢ A(,((X,)), Y). The series
V:=3X* &, converges in the uniform operator topology because of X7, |®,
=32 IT,pr, /=X, |T, <co. Therefore, we have ¥ ¢ A(/,(X,), Y). Now, the
statement follows from

k R oo
P(x,)=lim X @,(x,)=lim 2 T, x, = X T,x,==23(x,).
koo n=I1 k—oo n=1 n=1
By the analogous method one proves .1 ¢ .

The following lemma is based on an idea of [8] and generalizes a method
of construction of neighbourhoods in (DF)-spaces. Let M be a subset of a
linear space E. By abs conv M we denote the absolutely convex hull of M.

25. Lemma. Let E be a linear space. If (U))i=0 is a decreasing se-
quence and (M,)i—o is an increasing sequence of subsets of E with M,={0},
then the sets V= ng (Ui+M,) and W=abs conv Uz 27 U;_, N M,) satisfy
the following conditions :

() If E= U= M, then VC W.
(ii) In general the inclusion is satisfied only approximately in the follow-
ing sense.

For each x ¢V there is a sequence (w;) such that

a) w; € 207 (U,—ynM;)  for all i1,
b) x - Zr_ 27w, €Uy for all n=1.

Proof. For any x¢ V and every i=0 there exist partitions x=u;+m;
with u; ¢ U, and m, ¢ M;. For n>1 we put Xx,:=m,—m,_,. Then we have

(]) 'El X,'+Un:7mn+un:x-

From x, ¢ 2M, and x,—u,_,—Uu, € 2U,_, we obtain x, ¢ 2(U, N M,). Define
w, -~ 2"x, ¢ 2"*Y(U,_,NM,). Equation (1) implies x—237_ 27" w;=u, ¢ U,. This
shows (ii). In the case (i) there is a =0 such that x ¢ M,. For this £ we have
up=x -my € 2M, N UrC 2(M,N U,-,). Theorefore, 2*u, ¢ W. From w;¢ W and
A 2-142-%=1 we get x=2 27w, +27*2%u, ¢ W.

Proof of Theorem A. Let 7 ¢ A%(E, B) be given. By U we denote
the unit ball in B. Its preimage U:=T7'(Up) is a neighbourhood in E. We
choose a summable decreasing sequence (»;) of positive real numbers and define
a,: —=2-"v. Because E is quasinormable, there is an increasing sequence (M,)
of absolutely convex bounded subsets M;CE with M,={0} such that the set

Vi= naU+M,
i=0
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‘s a neighbourhood of E. From VcaU it follows | Tx|=a, py(x) Therefore,
by 7,(Cyx): -Tx for x¢ E a linear continuous operator 7,:FE,—Bis defin-
ed. We will show 7'y ¢ A(Ey, B). For i -1 let us consider the bounded sub-
sets A;=2"Ya;, \UN M,) of E. By assumption on T, the operators 7,: =TC,,: E ,,

— B belong to #. The inclusion 4;c2—'a; \U=v, U implies T(A;,)Cv; Usg,
therefore 7, —», . Let Z--1,((E,)). By proposition 2.4 the operator

148

» Tx

1

t

X Z—B, X(x)=

I\

belongs to #4(Z, B). Let U, be the unit ball of the Banach space Z. To com-
plete the proof, it is sufficient by definition 2.3, to show the inclusion 7(Cyx)
= T(V)c X(4U2). By the preceding lemma for each x ¢ V there is a sequence

of elements w, ¢ 2+ (¢, U N M,)=4A, (i=1) such that

X — .E' 27w, ¢ a,U for all n 1.
Using this and 7(U)c U it follows [Tx—X?  T(27‘w;) =an therefore 7x
=37 T(2w,). On the other hand, the sequence z=(2 ‘w;),., belongs to 4U-
because of |z =32 p, (2 'w)=sup;ip,(w)<4. But Yz=3= T(2~w)=Tx.
This shows 7(V)c 3(4U ).

The Theorem B will be an easy consequence of the following much more
stronger proposition, which yields further interesting corollaries.

26. Proposition. Let #, be a closed injective and #, a closed sur-
jective BAN-ideal. If E is a complete (DF)-space and if F is an (F)-space,
then for each operator T ¢ A%(E, F)n A¥(E, F) there is a neighbourhood V
of E and a factorization T - T"Cy such that Cy ¢ A*(E, Ev) and Tv ¢ AF(Ev,F).

Proof. Let 7 be given. By assumption, there are a countable increasing
fundamental system (A,) of the absolutely convex bounded subsets of E and
a countable decreasing basis of neighbourhoods (U)) of F. Now, we choose

two decreasing summable sequences (»,) and (4,) of positive real numbers and
define

(1) wi=2-v, U:—TWU!) ¢ V(E),
W,: !l/U, "-A..,. ‘A,, V:= F\ Wi

(=0
Obviously, the set V absorbs each bounded subset of E. Therefore, it must be
a neighbourhood of the (DF)-space £. Because the A, are bounded, there are
numbers y, such that Vca,U,+i!A;cyU, From this it follows 7(V)c U
Therefore, by 7y(Cyx) -Tx a linear continuous factorization .
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is defined. Now, we prove 7 ¢ A¥(Ey, F). Let j be fixed. Then we have
VEr U0 N (aU)+ it A)=:V,.
I=J

As in the proof of Theorem A applied to the operator 7,:=C,; T:E——F,. one

checks, that this operator factors through £, in the form T," TvCyvp where
Tv, belongs to #4y(Ev, F).
J
Because of CL" T;'Cr = CU'_T = Tj Trj.C['j. = TVI.CV\’/.CV we have Cl" T\'
J
= Ty Cov, € 4(Ev, Fp). This shows Ty ¢ 4% (Ev, F). ’
7

To prove Cy¢A#(E, Ev), we consider the neighbourhoods W):-U’

+ T(2;7'A)) € ‘U(F) and show

(2) pwX) = pwf(Tx) for all x¢ E and all i—-0.

Because of 7(U;)cU; we get T(u'/,)g W' and PuATX)=pwix) for all x¢E-

Conversely, let us suppose 7x¢ W. This means, that there are elements
u,¢ U, and a, ¢ A; such that 7x—=u+ 7(ij'a;). Therefore, u, ¢ T(E) and there
is a u, ¢ U; such that 7u,=u,. The element w:=u,+i'a; belongs to W, and
we have Tw- Tx. This implies 7T(w—-x)=0, p,(w—x)=0, pw w—x)=0,
pw,(x)=pw (w)=1. This proves (2).

We define mappings R,: CyT:E~——F, and fix j. By assumption, the

mappings R,C, :E,; -’F“.’( belong to +,. For x ¢ A; and all i -~ the following
estimation holds:

RCax w ~ PwdTX) = pw{X)ShipafX)< i
Therefore, we have X7, R,-CA,. < oc. Using proposition 2.4 there is an opera-
tor 1€ &(E,, lw((Fw"l_))) defined by 1x (R,C4,x),¢,, for all x¢ EA/. Further-
more, for all x¢ EA/. the equation (2) implies

Cayvxiv - pv(x) - sup pw (x) - sup p o (TX) Ix .

Because #, is injective, it follows C,; ¢ #,(E,, Ev). But j was arbitrary, there-
fore Cy ¢ AF(E, Ev). This completes the proof of the proposition.

Proof of Theorem B. By the above proposition the operator
7 ¢ A% (E, F) has a factorization 7= 7yCy such that Cy ¢ A¥(E, E,). Applying
Theorem A we obtain Cy ¢ A°(E, Ey). Therefore,

T TvCy ¢ ANE, F)

From proposition 2.6 we get an interesting corollary. The part on BAN-
ideals was proved indepedently by Heinrich [4] using the method of inter.
polation.
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27. Corollary. Let s, be an injective and #, be a surjective closed
BAN-ideal. If E is a complete (DF)-space and F is an (F)-space, then the
following equation holds . (A% N AF)E, F)=(#, #A)¥(E, F). Especially, #, N #,

Ay A,

Proof. Let T¢ (A¥NAY)(E, F)and A¢ BE), U ¢ ‘U(F) be given. By pro-
position 2.6 there is a factorization 7= 7vCy with V € ‘U(E), CvC, € #(Ey Ev),
CyTy € #yEv, Fy). Therefore, C,TC,= CyTy CvC,€ &y £, This shows
T ¢ (4, #4,)®. The other inclusion is obvious. Banach spaces are at the same
time (DF)- and (F)-spaces. This implies the equation -, N #&,=#, ;.

Immediately from 2.7 we obtain:

2.8. Corollary. Eachinjective and surjective closed BAN-ideal # is idem-
votent, i. e. & A=4#.

3. Applications and counterexamples. We consider some applications.
Of course, Theorem A yields the mentioned above Grothendieck’s Theorem
and the results of [2], because it is applicable to the BAN-ideals & and W of
the compact and weakly compact operators, respectively. The idempotency of
these ideals, which follows from corollary 2.8, was proved only in 1972 [7]
and 1974 [1), respectively. There is another corollary, implicitly contained in (3,
Theorem 2. A linear operator 7" is called sfrongly bounded, it there is a
neighbourhood which is mapped by 7 into a bounded set.

3.1. Corollary. Any linear continuous operator from a (DF)-space into
an (F)-space is strongly bounded.

Proof. Without loss of generality we may suppose, that the (DF)-space
is complete. The assertion follows now from Theorem B with /- 8.

3.2. Now we apply the results to another question. In general it is only
a little known about the structure of the system of the bounded subsets in an
(F)-space.

Proposition. Let 4 be an injective, surjective and closed ideal, let
F be an (F)-space. If A¢ B(F) and C,¢ A%F,, F), then there exists a set
B ¢ B(F) such that AcB and C,z¢ #, Cg¢ A%(Fp F).

Proof. We apply proposition 2.6 to the mapping C ,:F,——F. Therefore,
there are a Banach space Y and operators T, ¢ A&(F, Y), T,¢€ A4%(Y, F) such
that C,=T,T,. Without loss of generalily we may assume, that T,(A) is con-
tained in the unit ball Sy of ¥. The set B:=T,Sy) is an absolutely convex
bounded subset of F and we have AcC (A)=T,T,(A)C Ty(Sy) - B. By defi-

nition of B, there is a factorization

and because A is surjective, from Ty¢ A“(Y, F) it follows Cpz¢ A“(Fg, F).

Finally, we have C ,5- T,T, € £
3.3. Let us turn to the theory of s-spaces. Let 4 be an operator ideal.
A locally convex space £ is called an s-space, if for any U ¢ “U(E) there is a
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V¢ “U(E) such that the mapping Cyy belongs to 4. E is called a co #-space,
if for any A ¢ B(E) there is a B¢ B(E) such that C,, belongs to 4. From
Theorem A we conclude a result, which is dual in some sence to [5, Theo
rem 4.1]:

Proposition. /f & is a closed surjective ideal, then any quasinor-
mable co#-space in an #-space.

A BAN-ideal 4 is called symmetric, it T ¢ #(B,, By) implies 7' ¢ 4(B}, B)).
The ideals § and 9@ are symmetric.

Corollary. If £ is a closed surjective symmetric ideal, then the dual
space of each (F)-#-space F is an #A-space.

Proof. By the above proposition it is sufficient to show, that F,is a
coA-cpace. Because the (F)-space F is barrelled, the bounded subsets of F’
are equicontinuous. By assumption on F for any U ¢ VU(F) there is a V¢ U(F)
that VcU and Cyvy:Fy—F, ¢ 4. This implies C},,:(Fy)—(Fv)' € #. On the
other hand, the spaces (F,)" and (Fy) are isomorphic in a natural way to F),
and Fj,, where U° and V° denotes the polar sels of U and V. Therefore, we
have Cyove: Fp,,——F,, € #&. Thus, F' is a co#-space.

3.4. The Theorem A fails in general, if the assumption on E is weakened
to be an (F)-space. Indeed, the (F)-space £—=RN with the pointwise topology
is quasinormable and, of course, 1z¢ £%(E, E). But the canonical spaces £,
are isomorphic to some R". Therefore, 85(E, E) contains only finite dimensio-
nal operators. This shows 1z ¢ £(E, E).

3.5. The Theorem A fails in general, if the assumption of quasinormability
of E is replaced by the metrizability. This follows from [5, 5.3 Cor. 2|.
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