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LAX-TYPE EQUIVALENCE THEOREMS WITH ORDERS
FOR LINEAR EVOLUTION OPERATORS

W. DICKMEIS

Lax-type equivalence theorems concerning the numerical solution of temporally inhomo-
geneous initial-value problems by difference schemes with arbitrary stepsizes are deduced in
terms of the theory of discrete approximations. In this general setting it is shown that stabi-
lity is not only sufficient but also necessary for convergence provided the difference scheme
is consistent (analogous to the fundamental result of P. L ax 1954 56). Moreover it is shown
that also consistency is necessary for convergence if some slight additional assumptions are
made upon the differential equation. Both Lax-type theorems are given with orders, i. e., the
concepts of stability, consistency, and convergence are equipped with orders.

1. Introduction. In this note, we are concerned with linear initial-value
problems of the form

(1.1) Lty =Aut), u(s)=feX, 0-s<t.

where X denotes an arbitrary Banach space, A(f), £=0, are closed linear ope-
rators with domain and range in X, and the initial-value f¢ X is supposed to
be given at time s 0. Following up our previous investigations on Lax-type
theorems with orders (cf. [4 -6]), the main points of the present note are that
not necessarily equidistant but arbitrary (time-) steps 7; are admitted in the
construction of discretisations of (1.1), and that the entire reasoning is given in
terms of the theory of discrete approximations (for this theory see e. g.[13, 14]).
To this end, some preliminaries and notations are given in Sec. 2. The basic
definitions of consistency, stability, and convergence with orders are then for-
mulated in Sec. 3 in such a way that equivalence theorems of Lax-type hold
true also in this more general situation. Thus, Thm. 1 states that stability is
not only sufficient but also necessary for convergence, provided consistency
is given. Moreover, under some stronger assumptions upon problem (1.1) (cf.
(3.6)), consistency is not only sufficient but also necessary for convergence
(cf. Thm. 2), all concepts taken with orders. Sec. 4 concludes with an elemen-
tary example in connection with a time-dependent heat conduction problem.
Although in numerical analysis one is primarily interested in sufficient conditi-
ons for (certain rates of) convergence, their necessity indicates that they are
adequate and in a certain sense minimal.

Acknowledgements. The author would like to thank Prof. R. J.
Nessel as well as Prof- P. L. Butzer for their critical reading of the ma-
nuscript and for many valuable comments. This work was supported by the
DFG-research grant Bu 166/32, which is gratefully acknowledged.

2. Preliminaries and notations. For Banach spaces X and } (with norms

oy and o/, respectively) let [X,Y] denote the space of bounded linear
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operators from X into Y. Concerning the initial-value problem (1.1), the Sobo-
lewski — Tanabe theory states that under some regularity conditions upon the
operators A(f) the solution is given via a family of evolution operators (or
propagators) {£(t, s); 0=s=t}C[X]): =[X, X by u(f)=E(¢, s)u(s)=E(t, t))f, t=s
(cf. [7, p. 103 ff], [11, p. 55 if] see also [1, p. 188 fi]). These evolution operators
satisfy the principle of Hadamard, namely,

(‘2.1) E(t, r)— E(t, s)E (s, 1), 0 -r -s—t,
(2.2) E(¢, t)=1[(: — identity on X)), 0-=t¢,
and are uniformly bounded on (0, 7}, i e,

(2.3) E@, ) flx=L\f x feX, Oss<t-T.

Here [0, 7] denotes an arbitrary but fixed, finite or infinite interval. Obviously
conditions (2.1—3) are generalizations of those semigroup properties, that the
solutions possessin case of a properly posed initial-value problem (1.1) for
time-independent A(f) = A

A numerical solution of the initial-value problem (1.1) then calls fordiffer-
ence schemes {O(Z, s)} which furnish an approximation to the corresponding
evolution operators Thus one approximates E(Z,,f,) by iterated difference ope-

rators H}"OD(t,_H, ty), whereby the (time-) points #; define a (finite) partition
0=t,<t,<.---<t,y<t,~—T of the interval [0, 7]. Here the iterated difference
operators are only cons1dered for those subclasses Z,c Z(: =set of all parti-
tions of [0, 7)) which satisfy the stability condition

(2.9 Z¢Z, ) Zas: —ZN|a, b)cZ, 0~a<b=T.

Furthermore, since numerical calculations may only give and may only
start off with a finite number of data (e. g. approximate values on a finite
mesh), the numerical operators (¢, s) are assumed to belong to [ X, X;], where
X, is a Banach space for each #¢[0, 7] (with norm | o!,). Thus one requires
operators p,¢[X, X7 in order to begin the numerical calculation ll,,.,D(t,,H, tj)
for any initial-value f¢ X" as well as to compare the numerical result with the
exact solution E{(z,, t,)f¢ X. These operators should satisfy (cf. [14, p. 8, 28))

(2.5) pf =M fix feX, 0t<T,
_ pAX)-— X, i. e, p, is surjective, and
(2.6) | inf |f x=M ki, heX, 0<t-T.
/€X.p, f=h

Bounds for the approximation error
n—1
(2.7) u DAt ’j)Pt,f Pt,,E(tm to) f t {tj}7=0 ¢ Z,

will be given in terms of the (modified) K-functional, defined for subspaces
Uc X (with seminorm o ;) by

K(t,f):  K(t.f: X, U): inf{lf—& ix+? & vl
LEU

for £=0, f¢ X. It has the properties (cf. [2, p. 161 fi])
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I fx feX s=0,
(28) K(S,f)‘_; S\lf (4] f( U) Sn.O,
lK(t.f), feX, O0=s—t,

and is an abstract analog for the classical modulus of continuity in concrete
spaces. Indeed, in case X- Cus , the space of vniformly continuous, bounded
functions on the real axis R with usual sup-norm, one has for 0<g=r, reN
(: - set of natural numbers)

K(t, f: Cus, Clr) - O(""), t—-0-+,
(2.9) if and only if
feLip, B: ={f¢Cup; [Ts—1f c=0(),8-+0+}
(cf. [2, p. 191 ff]). Here [T,f](x): =f(x+d), x,8¢R is the translation opera-
tor and
Chg: ={f€Cuns fP€Cup 0<j--r} with |f ,:=]f"

3. Main definitions and results. Stability and consistency with orders
read as follows in the (foregoing) framework of discrete approximations with
arbitrary stepsizes.

Deiinition 1. The difference scheme {D(t, s)¢[X,, X,|; O=s<t-—-T} is
said to be stable of order O(1/y) if for any {t}}} ,:=2Z¢Z,CZ, he X,

n—1
3.1) DAt t,)h‘,";;"fz) Rl
where S is a positive constant and v a positive function on Z, with (cf.(2. 4))
(3.2) St =1, ) - Z¢Zy 0t—T,
(3.3) S Zap) = Sip(Z), Z¢Zy 0—a—b-—T.

Since j2oD(ty+1, t)): =1€[Xz), 0=t,—= T, condition (3.2) obviously is no
restriction.

Definition 2. The difference scheme {IXt, s)¢€|Xs, Xi|; O-=s=t--T} is
said to be consistent with the evolution operators {E(t,s); 0=s- -t -Tjc[X]
on Uc X of order ), if for any geU, {t)1_ i =Z2¢€Zy 0 -j-n—1

(3.4) '[D(t;41, t/)Pf/—PtHlE(tw u IDNE(), to)g 14y Cltyn—t)et, t41) & o
where C is a positive constant and ¢ a non-negative function on {s,t); 0- s
p t;;; Tl_.

Let’ us mention that (3.4) is equivalent to
(3:5) DA, s)psg—piEXL, $)8 o CU[t—s)a(s,8) [ &lu

for any two-point partition s, f}=Z¢Z, provided the evolution operators
satisfy
(36) E(t, s)ge U for any g¢ U and

' E(L, s)glu—L* g v, 0-.s t=T.

With this terminology one may state the following Lax-type equivalence
theorems with orders.
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Theorem 1. Let the evolution operators {E(t, s); 0=s=t=T}c[X] sa-
tisfy (2.3), and let the difference scheme {D(t, s)¢[Xs, X/]; 0=s=t=T)} be
constistent of order O(g). Then the following assertions are equivalent :

(i) The difference scheme is stable of order O(1/y);

n—1
(i) 1 D(t 1, )pe, f—Pe, Eltrs )] 1, 23 K@(Z), )
j=0 n Yy

forall fe X, {t)}j-.—=Z¢ Z,, where Kis a positive constant and B(Z): =X} o(t;+:
—4) oty ti11).

Theorem 2. Let the evolution operators {E(t,s); 0=s<=t—T)} C}X | sa-
tisfy (2.3) and (3.6). The following assertions are equivalent for a difference
scheme {D(t, s) € [X;, X,); 0=s<t<=T}:

(i) The difference scheme is stable of order O(1)y) and consistent of
order O(¢) on U;

n—1
(ii) 11D (¢, ) i f—Pe Eltn 0 1= 3 K@HZ), f)
J=(

for all fe X, {t)}_,—Z¢Z,, where K is a positive constant and ®*(Z): =y(Z)

Ut — Aty i) Ze, e
Proofs. For arbitrary g¢ U, {t);_o=Z¢cZ, stability (2.4), (3.1) and con-
sistency (3.4) deliver

n—1
i llolxt1+ 1y t/)Ptug—pt"E(tm tO)g l’,,
j=

n—1

n—1
= Z R D(tysy, 1) [D(trsy, tk)plk "Pt.HE(tH-h ta)] Elt, o) t,
k=0 j=k+1

n—I1 S I
’;E (()S/ W(Zt ot )ClEes1 = i) (Er, tas1) o= w2 Co*(2) g v
Hence for arbitrary f¢ X conditions (2.3,5) yield

n—1
U D(t s ), f =Pt Eltn )] 1,
J=(

n-1
sanf {0 I D(2,40, t/)pfolf—gl_pan(tm to) [ f—&) ‘,
gEU  j=0

n—1
+ /"oD(t/H.tl)Prug Pe Eltn to)8 1,

~ inf{[';g,(';)—}-ML]“f—g:[xJ.-q&) Co* (2) g )= iz K@NZ) ),

where K: =M+ML+C (cf. (3.2 -3)). Thus the proof of Th. 2, (i)== (ii) is com-
plete, likewise that of Th. 1, (i) ) (ii) in view of (2.8) and (3.3).
Conversely, to prove (ii) — (i) one has for arbitrary f¢ X using (2.3, 5, 8),

n— n—1 y "
“l D(’/o Iy t])PA.f [ ‘"uD(,/ thy ’l)pl..f—PlnE(’m to)f t "F"' p'nE(tm to)f ‘rn
J=0 /-
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SK

. S ML
S et ML= f

W Z)
(ci. (3.2, 3)). Therefore condition (2.6) implies for any k¢ X:

I D(t,“,t,)h . = inf W Dty t)pr, o SEEMD g

< h 4,
pr,/=h J=0 Z) Py S=h / x== '/(Z) fo

where §':  SM/(K+ML). Thus stability of order Ofl/y) is necessary for the
convergence assertions (ii) in both theorems.

To complete the proof of Th. 2 one has to establish the necessity of the
consistency of order O(g@). But applying the convergence assertion (ii) to par-
titions |s,¢] Z¢Z, and elements f¢ U, condition (3.6) yields (cf. (2.8))

DAt spof—p B0 S)f (G, WNZ) S o ASKIEshols 0 wlh) £ o

thus consistency (3.5) with C*=K in view of (3.2).
Remark. To prove Th. | it would be sufficient to have

(2.4 ZeZ, - ~Znla, T|¢ Z,, O -a--T.

The stronger condition (2.4) was only used in the proof of Th. 2 to have that

(or any {4)] o=Z¢Z, also any two-point partition {Z, ¢, .} belongs to Z, (ci.
t3.5) = (3.4)). In [10] it was shown by a counterexample that it is not possnble
fo drop (2.4) completely for the special case of equidistant stepsizes.

4. An example. Let us consider the initial-value problem

u(x t)= a(t) u(x, 1), XEtR, 0=s =1,
(4.1) dx:
u(x. s)=f(x)€Cus—: X,

where a(f) is a positive continuous function on [0, oc). The corresponding evo-
lution operators are given by

I4
(4.2) E(t,s): W(la(u)du), Os:2t--T:=~
with Gauss-Weierstrafl integral
(WAL f)(x) = (4aty 2 [ f(x+ u) exp {—u?/dt)du.

The operators (4.2) satisfy conditions (2.1--3) and (5.6) with L- [*=1 on
U  Cly. Let us consider the explicit difference scheme

(4.3) DAty s):-[1—-2iit, W+ ity s\ Ts+ Ty,

where i(f,s): & *['a(u)du, O<s- t. This scheme is defined on (4 >0)
Cy:o={fs:8Z2 +R; fy y:=sup f(8)) <~ ~|
J€Z

0Z:  |x€R; x 9, jeZ(:=set of integers)}.
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Thus taking p;f:=f sz (:=restriction of f¢Cys on 0Z), one has (2.5, 6) with
M=M =1. Since the difference operators (4.3) are contractions whenever
0=A(f, s)=1/2, one has stability (3.1) of order O(1) (with S=1) on the classes

,/'ﬂ'l
[ a(w)ydu=0*2, 0=j—-n—1}
t.

J
and also on each (sub-) class (0<o=12)

(4.4) Zy:={{t), € Z;

g1
(4.5) Z,:={{t}; ¢ Z; [ alwdu=00* 0=j=n—1}
.
J

Consistency (3.5) (and thus (3.4)) may be shown by means of Taylor’s formula
with C*(=C)=1 and

(t—S)p(s, )= % (6.1(_;,‘3 +1) [ja(u)du]e

t
on U=Cyg for 0<i(t,s)=1/2, and even with (f— s)g(s, t)=14—5[fa(u)du]3 on
5

U=Cps for it, s)=1/6.
Thus Ths. 1, 2, (i)= (ii), show that the approximation error is bounded by
3K(®(2), f; X, U) with (cf. (4.4—5))

1 n\—l 1

f,’.‘l
V=g 2 Wt T O] @l g€ 2o U=Cp
J

j+p 't
NZ)="5 (o+-é-) nét, -0 € Zo U=Cly,
4 . 1 .
W(Z)= 5 (3 6)* = g1 1%, ti}joo € Zve U= Cpp.

In view of (2.9) one therefrom abtains rates of convergence for the approxi-
mation error depending on the smoothness of the initial-value f¢Cyg, measured
in terms of the classical Lipschitz spaces Lip,j.

Let us mention that the orders of convergence for this particular example
are not best possible. Since problem (4.1) is of parabolic type, one may use
methods similiar to those in [12] (see also [9]) for equidistant stepsizes, and
therefore improve the orders of convergence (see [3]).

Apart from numerical applications Lax-type theorems in Banach space
terminology may also be applied to certain probality — theoretic “difference
methods”. This leads to the weak law of large numbers, the central limit theo-
rem, and the stable limit laws (with orders) see [3; 9] for the case of indepen-
dent, identically distributed random variables). The results presensed here may
furthermore be applied to the case of not necessarily identically distributed,
but independent random variables (see [8]).
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