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A CLASS OF INTEGRAL EQUATIONS INVOLVING /-FUNCTIONS
R. N. KALIA

Inversion integrals have been found for some integral transformations f,:.K(t‘x)g(t)dtf;f(,x-)

(0<<a-—x-=1). As Mellin transforms are the important tools to solve this class of integral
equations one has, by necessity, to use such kernels which have Mellin-Barnes’ integral re-
presentation. H-function falls in this category. We have found the solution to the above equu-
tion when K is the H-function or the -function.

1. Introduction. Sixteen years ago Johnson [5] considered the class of
integral equations

1
(L.1) [K(tx)g(t)dt—f(x) (O<a=x=1),
with K as a solution of
(1.2) M )y zM(@d+a)y-O0.
=1 =1

These solutions have Mellin-Barnes integral representations (see Nerlund [8])
Johnson [5], in the second instance studied a slightly more general integra

viio 1" I(b;— Bs)

1 . 1 .

R@ =5 1. lli,_‘"‘ziT,.l_‘o;s) (pzrds,
.

where the B,’s and D,'s are real.

We shall find a solution of (1.1) with K as the H-function of Fox [3].

As a simple transformation reduces (1.1) to the integral equation [YK(x —#)g(£)dt
f(x) (O~ x--a< o), our solution of (1.1) with H-function and Y-function as
kernels indirectly involves (1.2).

Earlier, Ta Li [6] has solved (1.1) with Cebichev polynomial kernel. T. P.
Higgins [4] and E. R. Love [7] solved (1.2) with Gauss hypergeometric
function as kernels.

2. Preparation for main results. To find the form of the inversion in-
tegral of (1.1) we rewrite it, in the standard form of a convolution with res-
pect to the Mellin transformation, viz.,

2.1 TK XU (tx—)g(OV(E—1)dt=f(x)V (x 1),
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INTEGRAL EQUATIONS INVOLVING H-FUNCTIONS 105

where U(x)=1 for x>0, U(x)=0 for x<0, and V(x)=1—U(x). From Erdé-
Vi [2) M{X*[Vf (x) fo(¥)dy s s}=g(s+a)g(l—s—a+B) and M{f(x™); s}
g(—s), we have
M{K(x)U(x—1); —s} M{g(x)V(x—1); 1+s}=M{f(x)V(x—1); s}.

The inverse Mellin transforms are assumed to converge for the individual
transforms. Substituting s—1 for s in the last equation and rearranging,
we have

(2.2) M{g(x)V(x—1);s}=M{f(x)V(x—1); s—1})M{K(x)U (x—1); 1 —s}.

A formal solution of (1.1) is then

r+ioco
g =L T IMFOVIx 1) s— 1Y MUE(OU (x—1); 1—s}] x~*ds.

However, we would prefer to express g in the form of a convolution simila¥
to (2.1). We cannot use the general formulas, Erdelyi [2,6.1:(13), (14) an
(4)] directly since the inverse Mellin transform of M{k(x)U(x—1); 1—s} wil
not in general converge. There are two methods of modifying (2.2) which' maY
allow us to form a convolution. In the first we must find a function &
such that M{A(x)V(x—1); s}=P(s)/ M{k(x)U(x—1); 1 —s}, where P is a poly-
nomial in s. In the second we insert

() I(s)=(—1+sN—2+8)...(—J+ ) (—1+5)/I(s)
in (2.2). We then let P(s)=(—1+sX—2+5)...(—j+s) and define

h(x)= 5 :4“’ [M{KCOV(x—1); 1 —S}(s)] 7 (— j+ s)x—*ds,

provided the integral converges for some positive integer j and M{A(x)V(x—1)
st (- j+ /[ TI(SM{K(x)U(x—1); 1 —s}]. In either case (2.2) becomes
M{gx)V(x—1); s} =M{A(x)V(x—1); s}PYM{ f (x)V(x—1); s—1}.

With the aid of the general formulas in Erdelyi [2, § 6.1] we form from P
a differential operator which operates on f and which is a polynomial P in the
operators, d/dy, y~'d/dy, d/dy y? and so forth. The coefficients of P are ra-
tional functions of y. The inversion integral, which is found from, Erdélyi
[2, 6.1:(14)], viz.,

M{xu?yﬂf,(x'y)fz(y)dy:s}~'g1(S+a)g-,(S+a+ﬂ+l).
is then
gOVIE—D)=[ ANV (tly—1DP* (D) f (y)V (y—1)dy,

where [ is one of the operators; and this is equivalent to
1

23) 8= [A(Ey)PD) f (y)dy.
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This gives us the form of the inversion integral. It is easier to show that (2.3)
is the inversion of (2.1) by substitution rather than justifying the above steps.

The outline of the proof runs as under:
Let / denote the formal integral obtained by substituting (2.3) into the

integral (2.1), that is
1 1
[(x)=[K(t/x)dt [ h (t/y)P*(D) f(y)dy-
Using Dirichlet’s formula, we have

1(0)= [PD)f (¥ dy [K (1) (1y)

If J denotes the inner integral, then / and the differential operator are related-
Simplification, followed by a j-fold integration by parts leads to the func-
tion f(x). /

3. Definitions: /H-function, ¥-Function and Their Mellln-Transforms/
The Fox’s H-function, defined first by Fox [3] slightly differently is given by

(ap, "”)J e MLl T —aitas) (uzyds
(bb‘ ﬁb)

T 2ai y—ioo Hﬁ’:,.;lr‘('l “‘bi‘i;;!iéj Ilf=n+|l‘(ai““i5)
under sets of conditions which are too lengthy to be presented here. We shall
write this function as AH(zz). The Mellin-Transform of the above function is
given by

R(z)= Hpy" [uzl

N7, i) Ny I'(l—a;—a; s)

— » u>0,
Wi TV —=b;—B:8) 117y @i +a;s)

M{H(uz);z} —u—"*

min Re (b,/8,) 1 =i=m<Re(s)<a;'—max Re (a,/a) | =i=n
and 6>0, |arguz|<ba/2 or §=0, |arguz|=b6a/2 and Re (¢ + 1)<0, where

v & S { 1 3 {
=2 a— X a+ I B X B, o= 72—([J~q)+ X b, X a,.
i==1 i=n+1 =1 i=m+1 =1 i=1

The Y¥-function, defined by Varma (9], is given by
l oo oo

By Wx) - ()= ST T TY)

n M- Mp
< T e g (T L Sy (T "0 T . d T,
0O<n,~1, &§+1/2>0, r—1....,p; m+n>p).

(3.2) M{W(x); s} D(s)=As - 1/2)(m+uy+ - - o duy—m— - M)
R § R
yol rl2 o] & Up/2)S+ up/d+1/2) jomt DG4 ms/2— /A4 1/2)

valid for
min( —»,— /2, 1 mr=m—(y+ D/ul sksn+1/2)< R(sX(& + D+ n /) si=p
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From (3.2) we obtain, on using Mellin’s inversion formula and Erdelyi
[2,6.1(2), p. 307], the following Mellin-Barnes integral for the ¥-function:

Eeed 17 e 12 mt gt e p e e —

(3‘3) 11/(ax): lIl': ,p .1 in(ax):ﬁ ’_f,.w 2 m+py Hp—My np)
> i"I D(vp2+4524+1/4) {1 T(3p/24upS2—up/4+1/2) B I(5/2—n; 5/2+u;/4+1/2)
o T p2—=51243/4) py TGp/2—ups/24up/A+1/2) ;—y T'(5/24n:;5/2—n;/4+1]2)

r=1

If we use the same symbols as in Erdeélyi [1, pp. 49—50], we have for
(3.3) the following notations

s _¢ 1 8 3
(3.4) a=0, g=m+ -\l-.“k‘ -:-’hv =§(-‘~ Ni— ‘:-"!‘k_m)=—
n

n p
=278 T (uy)* 11 (n,) "%
k=1 i=1

So, the integral (3.3) does not converge for complex z, where z=28qa—1 x—1,
For 2>0 it converges absolutely if y is so chosen that —gy<1+441; and
there éxists an analytic function of z, defined over |argz|<a, whose values
for positive z are given by (3.3).
We are set now for the main results which we write as theorems.
4. Main results. Theorem 4.1. The solution of
1

[R(t/x)g(t)dt=f(x) (O<a<x=<l),

x

where R is the H-function defined by (3.1), is given by
g(O=[ T@y=(~DY [ ¥~ ()ldy,
where D =d/dy, j+e>1 and
T@/y)=u"' HEZT g™

—1 {(1 —An+1l,p —Cn+1,p» ﬂn-H-P)}' {(1——0,.—0,'. an)}' (0' l) .
X[pty I{(l--bm+n.q—ﬁm+x.q- Bmi1.9)b {(1 —bp—Bms Bmw)} (—J 1)]

where {(1 —Ani1.p—@n+1.p Gnt1p)} denotes the p—n parameter pairs (1—a,+,
— Ap+1s "n*l)' (l —Ap+2— Ap+2y (LAY NP (l—a,—a,, a,), and {(l —a,—a, an)}
denotes the n parameter pairs (1—a,—ay, @), (1 —ay—ay, a,),..., (1—a,—a,, a,).

In the solution it has been supposed that fU+V is sectionally continuous
for 0<a=x=1 and f{1)=0 for O<k=.

Note 1. We can weaken the restriction of fU+) to be just integrable
instead of sectionably continuous. In order that the inversion integral be con-
vergent, it is needed in addition to being integrable that the resolvent kernel
be bounded almost everywhere.

Note 2. We were interested in such convergence conditions which made
6§ 0. Integral involved is still convergent, for the exponential function in the
asymptotic expansion of the quotient of gamma function in the definition in-
tegral disappears in this case.

Putting a;— 1(j=1.. .., na+l,o.op)B=1(j=1c...mm+1,...,9),
we have the following



108 R. N. KALIA

Corollary 4.2. The solution of

1057 (41 (7)) et =x) (0<a=x=1)

is given by

Lo — — — 0. 1) r
g ) —pu—! Gq.L”H—l'P n(ut —1 ( an+l.p)v( an)'( % ) -D J— dy.
qt)=u ,f" Lo+t 'y I(_bmw)_(_bm),(“j‘,)( Y [y y)ldy
where D=d/dy, j+¢@>1. In the solution it being supposed that fu+hY js sec-
tionally continuous for 0<a<=x<=1 and f¥(1)=0 for 0=k<}.
If we particularize the parameters further we get a number of pairs involv-
ing lesser transcendents.
5. An Integral Equation Involving %-Function. We apply the methods
of the section 2 to obtain
Theorem 5.1. The solution of fl Y(t/x)g(t)dt = fix), (O<a--x-—1) where
W(z) is the function defined by (3.1), is given by

l »
&) =Ty~ (=DY [y~ Ay)ldy.
where D-—-d/dy, py<j—i—1 and
T(2)=2"2a Hyx i 2p i
\([2@" ((B/4Tv,2, 1/2)}, {(1/2F 4,2+ 1,4, up/2)}, (—j+1, 1)] (0.1),

{(1/2 48,24 u,/2, n,/2)}

where a, B, i and parameters are given by (3.3) and (3.4) and z=2¢a ' x!
and y occurs in the limits of the contour integral definition for ¥(z). In the
solution it being supposed that f/+' is sectionally continuous for 0<a-=x =1
and f¥1)=0 for 0-=kk=j.

Theorem 5.1 covers a class of integral equations which have the kernel
of the tvpe (3.1) and whose inversion formula involves Fox’s H-function.
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