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ON THE AXIOM OF PLANES AND THE AXIOM
OF SPHERES IN THE ALMOST HERMITIAN GEOMETRY

OGNIAN T. KASABOV

We prove analogues of Cartan's criterion for constancy of sectcional curvature to an ar-
bitrary almost Hermitian manifold. As a consequence we establish for such a manifold analo-
gues of a Cartan’s theorem. Our results generalize some theorems in [2; 5; 7; 8].

1. Introduction. Les NV be an n-dimensional submanifold of an m-dimensional

Riemannian manifold M with Riemannian metric gand let [~7 and |7 be the Levi-
Civita connections on M and N, respectively. It is well known, that the
equation

aX, V)=F Y=V P

where x, v ¢ X\, defines a normal-bundle-valued symmetric tensor field, called
the second fundamental form of the immertion. The submanifold NV is said to
be totally umbilical, if a(x, y)=g(x, y)H for all x, y ¢ XN, where N=(1/n) trace a
is the mean curvature vector of N in M. In particular, if « vanishes identi-
cally, NV is called a totally geodesic submanifold of M.

For x ¢ XN, &¢ XN we write p é=—A:x+ D, &, where — A.x (respective-
ly, D.%) denotes the tangential (respectively, the normal) component of &,
A normal vector field & is said to be parallel, if D &=0 for each x¢ ¥N.

The manifold M is said to satisfy the axiom of n-planes (respectively,
n-spheres), where n is a fixed integer 2<=n<m if for each point p ¢ M and
for any n-dimensional subspace a of 7,M there exists an n-dimensional to-
tally geodesic submanifold N (respectively an n-dimensional totally umbilical
submanifold N with non-zero parallel mean curvature vector) containing p,
such that 7,N=a. ,

In his book on Riemannian geometry [I] E. Cartan proved the follow-
ing theorem.

Theorem. Let M be an m-dimensional Riemannian manifold, m>?2,
which satisfies the axiom of n-planes for some n, 2<n<m. Then M has
constant sectional curvature.

In [4] Leung and Nomizu have substituted the axiom of n-planes with
the axiom of n-spheres and have proved a generalization of the above men-
tioned Cartan’s theorem.

Analogous results for Kaehler manifolds have been proved in [2; 5; 8]
and in [7] it has been studied a similar problem for some almost Hermitian
manifolds.
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2. Preliminaries. Let M be an m-dimensional Riemannian manifold with
Riemannian metric g and let p be its Levi-Civita connection. The curvature
tensor R associated with p has the following properties:

1) RIX, Y)=—R(Y, X) for X, Y eT,M,

2) R(X, V)Z+R(Y, Z)X+R(Z, X)Y =0 for X, YV, Z¢ T ,M.

3)RX, Y, Z U)=—R(X, Y, U, Z) for X, Y. Z, UeT,M
where R(X, Y, Z, U)=g(R(X, Y)Z, U).

The curvature of a two dimensional plane in 7,M with an orthonormal
basis X, Y is defined by K(X, Y)=R(X, Y, Y, X).

It is easy to compute, that if N is a totally geodesic submanifold of M
or a totally umbilical submanifold of M with parallel mean curvature vector,
then R(x, vy, 2z, £)=0 for all vectors x, y, z2¢ T,N, §1T,N and for each
point p ¢ N.

Now, let M be a 2m-dimensional almost Hermitian manifold with Rie-
mannian metric g and almost complex structure J.

A subspace a in 7,M is said to be holomorphic (respectively, antiholo-
morphic or totally real) if Ja=a (respectively Ja | ). For the dimension £ of a
holomorphic (respectively, antiholomorphic) subspace « of T,M we have k=2n,
1 <n<=m (respectively, 1 =k=m). If the holomorphic (respectively, antiholomor-
phic) sectional curvature in each point p¢ M, i. e. the curvature of a holo-
morphic (respectively, antiholomorphic) subspace a of T,M does not depend
on a, then M is said to be of pointwise constant holomorphic (respectively, anti-
holomorphic) sectional curvature in p.

A connected Riemannian (respectively, Kaehler) manifold of global con-
stant sectional curvature (respectively, of constant holomorphic sectional cur-
vature) is called a real-space-form (respectively, a complex-space-fc m).

An almost Hermitian manifold is said an RK-manifold, if R(X, Y, Z, U)
“RUX, JY, JZ, JU) for all X, Y, Z, UeT,M, peM.

For a two dimensional subspace a of 7,M with an orthonormal basis X, Y
the angle 6 ¢ [0, 7/2] between a and Ja is difined by cos =g (X, JY).

We shall need the following theorems:

Theorem A [3]. Let M be a 2m-dimensional almost Hermitian mani-
fold, m=2, and let T :(T,M)*—R be a four-linear mapping, which satisfies
the conditions:

1) forall X, Y, Z, UeT,M

(X, Y, Z U)y=—T(Y, X, Z, VL),
(X, Y, Z U)+TY, Z. X. U)+T(Z, X, Y, U) 0.

X, Y, Z U= -T(X. Y, U Z);

2) 7(X, Y. Y, X)=0, where X. Y is a basis of an arbitrary two di-
mensional subspace a in T,M, for which the angle between a and Ja is one
of the numbers 0, n/4, =/2.

Then T =0.

Let for all X, Y, Z, UeT M

R(X, Y. Z, U)y=g(X, U)g(Y, Z)—g(X, Z)g(Y. U).
RAX. Y. Z Uy—=g(X. JU)g(Y, JZ)—g(X. JZ)Y. YU)=28(X. JY)QZJU)-

Theorem B [3]. If M is a 2m-dimensional RK-manifold, m=2, with
pointwise constant holomorphic sectional curvature ¢ and with pointwise
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constant antiholomorphic sectional curvature K, then the curvature tensor R
has the form

(2.1) R=KR,+(c—K)Ry3.

As is proved in [6], if the curvature tensor of a 2m-dimensional connect-
ed almost Hermitian manifold has the form (2.1) and if m =3, then ¢ and K are glob-
al constants. On the other hand, it is proved in [3], that if the curvature ten-
sor of an almost Hermitian manifold M of dimension 2m =4 has the form (2.1)
with global constants ¢ and K, then either M is of constant sectional curva-
ture ¢ =K or M is a Kaehler manifold of constant holomorphic sectional cur-
vature. Hence we have:

Theorem C. Let M be a connected RK-manifold of dimension 2m=6.
It M has pointwise constant holomorphic sectional curvature and pointwise
constant antiholomorphic sectional curvature, then M is one of the following :

1) a real-space-form ;

2) a compex-space-form.

3. Criterions for constancy of the holomorphic and the antiholomorphic
curvature at one point.

Lemma 1. Let M be an almost Hermitian manifold with dimension
2m, m=2 and for a point p¢ M
(3.1) R(X, JX, JX, ¥Y)=0 ‘
holds for all X, Y ¢ T,M, with gX. Y)=g(X, JY)-0. Then M has constant
holomorphic sectional curvature at p and
(3.2) R(X, Y, Y, X)=RUX, JY, JX),
where X, Y are as abowve.

Proof. Taking two arbitrary unit vectors X, Y in 7,M with g(X, Y)

g(X, JY)=0 and applying (3.1) for the vectors X+aV, aX—Y, we obtain
(3.3) H(X)—aH(Y)+(a?—DR(X, JX, JY, V)+(a2—1)R(X, JY, JX, Y)
+a?K(X, JY)—K(UX, Y)=0,
where H(X)=R(X, JX, JX, X) denotes the holomorphic sectional curvature,
determined by X.

Let a=1:
(3.4) H(X)—H(Y)+K(X, JY)—K(UX, Y)=0.
From (3.3) and (3.4) it follows
(3.5) H(Y)=R(X, JX, JY, Y)+R(X, JY, JX, V)+K(X, JY).

Analogously H(X)=R(X, JX, JY, Y)+R(X, JY, JX, Y)+K(X, }).
Substituting X by JX and Y by JY we get

(3.6) H(X)=R(X, JX, JY, Y)+R(X, JY, JX, Y)+K(X, JY).
From (3.5) and (3.6) we see that
(3.7) H(X)=H(Y)

and combining this with (3.4) we find (3.2).

Let m>2 and U, V be arbitrary unit vectors in 7,M. We choose
X ¢ span {U, JU}! n span{V, JV}L. According to (3.7) we have H(U)=H(X)
- (V) and the lemma is proved in the case m>2. In the case m =2 we put
¢c=H(X)=H(Y) and using (3.6) we see that H(aX+B8Y)=c, where a?+p2=1.
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Hence it is not difficult to find that the holomorphic sectional curvature in
p is a constant.

The following lemma is trivial.

Lemma 2. Let a be a two-dimensional subspace in T ,M such that the
angle between a and Ja is 7/4. Then « has an orthonormal basis X, (JX+U) N2,
where X, U are unit vectors in T,M with gX, U)=g(X, JU)=0.

Lemma 3. Let M be a 2m-dimensional almost Hermitian manifold,
m =2 and for each point p¢ M (3.1) holds for all X, Y ¢ T,M with aXy)
—g(X, JY)=0. Then M is a RK-manifold.

Proof. We put 7(X, ¥, Z U)=R(X, Y, Z, U)—RUX, JY. JZ. JU) for
all X, v, Z, U¢ T,M. Obviously T has the propérty 1) of theorem A. Let a
is a subspace in pr such that the angle between a and Jais 0. If 80, a
is a holomorphic plane and if a=span {X. JX} we have T(X, JX, JX, X)-0.
If ==/2, « is an antiholomorphic plane and we can choose two vectors X.
Y € T,M such that « —span{X, Y}, g{X, Y)—g(X, JY)=0. According to lemma
| we have T(X, Y, Y, X)=0. Let 6—==/4 and let X, (JX+U)\2beanortho-
normal basis of « as in lemma 2. Then T(X, JX+ U, JX+U. X)=0. Accor-
ding to theorem A we have 7 =0, which proves our assertion.

Lemma 4. Let M be a 2m-dimensional almost Hermitian manifold,
m =2 and for a point pe¢M

(3.8) RX, Y, Y, 2)=0

holds for all X. Y. Z ¢ T,M with g(X, Y)~=g(X, JY) - gX, Z) g Y, Z)=0
Then M has constant antiholomorphic sectional curvature at p. :

Proof. According to lemma 1 M has constant holomorphic sectional
curvature ¢ at p. We apply (3.8) for the vectors X +JX, ¥, JX—X, where
X, Y€T,M are arbitrary unit vectors with g(X, Y)=g(X, /¥Y)=0 and we
get K(JX, ¥) -K(X, Y). As in the proof of lemma 1 we have

(3.9) HIX)— R(X, JX, JY, N+ R(X, JY, JX, Y)+K(X, JY).
Hence applying the first Bianchi's identity we obtain
(3.10) H(X)=2R(X, JX,JY, )+ RUJX. JY, X, Y)+K(A. JY).

The substitution of ¥ with JY in (3.9) gives
H(X)=R(X, JX, JY, Y)—R(X, Y., JX, JY)+K(X, Y).
Combining this with (3.10) we derive
(3.11) Q2H(X) = 3R(X, JX, JY, V) + KX, V) + KX, J}Y).
Let m=2. We put K=K(X, Y) and from (3.9), (3.10), (3.11) we have
R(X, JX, JY. Y) {c—K}: R(X, JY, Y) ~‘,l;4 {c = K} RUX, JY, X, })
1 .
3 {K—c}.
We put R’ - KR.+(.3K
Xy X)=R(X, Xo. X5 X,)., whenever X,, X3 Xj Ay are chosen among the
vectors X, JX, JY. Y. Consequenty R - R’ and the lemma is proved in the
case m— 2.
Let m>2. We choose a unit vector Z, normal to X, JX, Y, JY. Because
of (3.8), from R(X+Z, Y, t, X—2Z)=0 we get

R, A simple calculation shows that R(\\. X,
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(3.12) KX, Y)=K(Y, 2Z).
Let m - 3. We shall show that
(3.13) R(X, JX, Y, Z)=R(X, Y, Z JX)=0

and the case m=23 will follow as the case m=2. From RaX+JZ, aJX—Z,
a/X—Z, Y)=0, where « takes the values 1 and —1, we find

(3.1 RN, JN, Z, )+ R(X, Z, JX, ¥Y)=0
and from R(Y, N+ JX, X+JX, Z)=0 it follows
(3.15) RX. Y Z JX)+R(X, Z, Y, JX)=0.

Using (3.14), (3.15) and the properties of the curvature tensor we get
R(X, Y, Z, JX)=0 and together with (3.14) this gives (3.13).

Now let m>3. We take arbitrary antiholomorphic spaces a, § in T ,M
with orthonormal bases X, Y and Z, U respectively such that X 1V, JY and
Z 1 U, JU. Let V, W be unit vectors in span{X, JX}-n span{Z, JZ}' and
VI W, JW. According to (3.12)

(3.16) KX\ V)=K(V,W)=K(V,2).

Let A¢span{V, JV}' n span{Z, JZ}- n span{U, JU}* be a unit vector.
From (3.12)

(3.17) KWV, Z)=K(Z, A)=K(Z, U).

Analogously
(3.18) KX, V)=K(X, Y).

From (3.16), (3.17), (3.18) it follows K(X, Y)=K(Z, U) and the lemma is
proved.

4. The main results. Let M be a 2m-dimensional almost Hermitian mani-
fold, m=2.

Axiom of holomorphic 2n-planes (respectively, 2n-spheres). For
each point pe M and for any 2n-dimensional holomorphic subspace a of T,M
there exists a totally geodesic submanifold N (respectively, a totally umbi-
lical submanifold N with nonzero parallel mean curvature vector) containing
p, such that T ,N=a.

Axiom of antih olomnrphic n-planes (respectively, n-spheres). For
each point p € M and for any n-dimensional antiholomorphic subspace a of
1',M the.e exists a totally geodesic submanifold N (respectively, a totally
umbilical submanifold N with parallel mean curvature wvector) containing p
such that T ,N=a.

Theorem 1. Let M be a 2m-dimensional almost Hermitian manifold,
m 2. If M satisfies the axiom of holomorphic 2n-planes or the axiom of
holomorphic 2n-spheres for some n, 1~n<m, then M is an RK-manifold
with pointwise constant holomorphic sectional curvature.

Proof. The condition gives R(X, JX, JX, V)=0 for all vectors
A, Y e T ,M with g(X, Y)=g(X, JY)=0 and for each point p ¢ M and the theorem
follows from lemma 1 and lemma 3.

Theorem 2. Let M be a 2m-dimensional almost Hermitian manifold,
m ~2. If M satisfies the axiom of antiholomorphic n-planes or the axiom of
antiholomorphic n-spheres for some n, 2~n-—m, then M is an RK-manifold
with pointwise constant holomorphic sectional curvature and with pointwise
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constant antirolomorphic sectional curvature and consequently the curvature
tensor has the form (2.1).

Proof. By the condition it follows R(X, Y, Y, Z)=0 for each point
pe€M and for all X, ¥V, Z¢ T ,Mwith g(X, Z)=g(Y, Z)=g(X, })=g(X, JY)=0.
Now the theorem follows from lemmas 1, 3 and 4.

3y theorem C and theorem 2 we derive

Theorem 3. Let M be a 2m-dimensional connected almost Hermitian
manifold, m -3. If M satisfies the axiom of antiholomorphic n-planes or
the axio:m of antiholomorphic n-spheres for some n, 2—~n--m, then M is one
of the following:

1) a real-space-formn,

2) a complex-space-forin.
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