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THE CONGRUENCE LATTICE OF SIMPLE TERNARY ALGEBRAS
JUHANI NIEMINEN

It is shown that the congruence lattice of a simple ternary algebra is distributive and
pseudo-complemented. Some specific structures are characterized, e. g. trees by congruences
generated by prime ideals. It is shown that simple ternary algebras are join spaces and trees
are characterized by prime ideals having a restricted linearity property.

1. Introduction. Let V' be a non-empty set and Q a ternary operation
defined on V. The pair (V, Q)=A is called a simple ternary algebra A, pro-
vided that Q satisfies the following demands:

(1) Qa, a, by=a, a, beV;

(2) Q(a, b, ¢) is invariant under all 6 permutations of a, b, c¢V;

(3) Q(Q(a, b, ¢), d, e)=(Q (Q(a, d, e), Qb,d,e), c), a, b, c,decV.

The purpose of this paper is to illuminate the properties of congruence rela-
tions on a simple ternary algebra A. At first we characterize the congruence
relations on A by means of ideals of A, and show that the lattice C(A) of
all congruence relations on A is a distributive lattice. Thereafter we consider
some relations characterizing trees and similar structures, and finally we show
that the operation Q on A determines a join space over V. A few properties
of this join space are characterized by means of ideals of A.

The connection between simple ternary algebras A and partial lattices is
considered e. g. by Avann [1]. The class of finite graphs having the same
betweenness structure as simple ternary algebras are characterized in [6] and
a few properties of the ideal structure of these algebras are given in [5]. Join
spaces are defined in [7] and further considered by Varlet in [12]. We shall
use here the basic notations of Nebesky given in [4]. An observation on
congruences on a specific class of finite simple ternary algebras is given by
Zelinka [13].

2. The structure of the lattice C(A). A binary relation 6 on a simple
ternary algebra A is a congruence relation on A if it is reflexive, symmetric,
transitive and has the substitution property over the operation Q, i. e. if
(ay, b)), {ag, by), (ay, by €H then (Q(a,, ay, as), Q(b,, by, b)) €.

Let {/ and W be two non-empty subsets of V and s an element of V,
then Q(U, W, s) - {Qu. w, s)lueU and we W}). A non-empty set WcV is an
ideal of A whenever Q(W, W,s)c W for every s¢ V. According to (1), W is
an ideal whenever Q(W, W,s)=W for every s¢V. Let # be the family of
all ideals of A. As shown in [5], W(A)=(#", Q) is a sinlxyle ternary algebra
over the ideals of A, where QU, W, K)={Qu, w, k)|ueclU, weW, k¢K} for
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116 J. NIEMINEN

all U, W, Kew. Let S=9 U {@). Then IA)=(F, v, A) is the lattice of
ideals of A, where UAW=UNW and Uv W=W when U= and if U,
W@, UvW-{t|Qu,w,t)=t for some u¢U and some w¢W, ¢V}
The concept of an ideal of simple ternary algebras is based on the definition
of Nebesky given in [3].

Let A (V,Q) be a simple ternary algebra and x¢V an arbitrary ele-
ment. As shown by Avann [l, Lemma 3], one can associate with A a par-
tial lattice L(A, x) having the following properties: (/) The order relation is
given in L(A, x) by b-—c<>Q(x, b, c)—0b. (i) The zero element of L(A, x)
is x. (iii) L(A, x) is closed with respect to the meet given by bAc=Q(x,b,0).
(iv) The existence of an element m, where b, c——m, implies the existence of
the join bve Q(m, b, ¢). (v) If bve exists, then dA(bve) (dAb)V(dAC).
(vi) For all triples b, ¢, d€V there exists (bAC)V(bAd)V(cAd)=Q(b, ¢, d).
Note that the partial lattices L(A, x) and L(A, v) need not be isomorphic
when x=y.

Lemma 1. Let b be a congruence relation on a simple ternary algebra
A —(V, Q). Every congruence class CcV of B is an ideal of A.

Proof. C is an ideal of A if for every two elements a, b¢C and for an
arbitrary s¢V it holds: Q(a, b, s)¢ C. Because a, beC, (a,byeh. (a,a)(s,s)eh
follow from the reflexivity of 6. By applying the substitution property, we
obtain (Q(a, b, c), Q(a,a,s))€eh. But Q(a.a.s)—-a, and the relation (Q(a, b,
s), ayeh implies that Q(a, b, s)¢e C.

Let €, be the family of all congruence classes of a congruence relation
H on A. As well known, C,nC, =@ for every two classes C,, C,¢%, when
C,+C, and U{C|Ce%,} - V.

Theorem 1. A family A of non-empty ideals of a simple ternary
algebra A (V,Q) is the family of all congruence classes of a congruence
relation B on A if and only if A satisfies the conditions (i) — (iii):

(i) KyNnK,— @ for every two ideals K,, Kq¢X when K\+K,;

(i) U{KIKex'} -V,

(iiiy In W(A), QZ, U, WycK for every three ideals Z, U, W¢X and for
some K¢

Proof. Let # be the family of all congruence classes of a congruence
relation # on A. Then (/) and (&) hold trivially. As shown in [5], Q(Z U, W)
is an ideal of A. Because Z, U and W are congruence classes of 8, (z,,2,),
(U, wy), (w,, w,)€H for every elements z,¢Z, u, U and w, ¢ W, where i1, 2.
According to the substitution property, (Q(zy, &, @), (s, Us, W) €H, whence
any two elements of the ideal Q(Z, U, W) are in the relation 6. Thus
Q(Z, U, W)c K for some K¢A".

Conversely, let ¥ c# be a family satisifying the conditions (i) — (iii).
We define a binary relation S on A as follows: (a, b)eS<>a, b ¢ K for some
Ke . According to (if), any element £¢V belongs to some ideal of ', and
thus S is reflexive. The symmetry and the transitivity of S follow from ().
Finally, (iii) implies the substitution property of S, and hence §is a congru-
ence on A. This completes the proof.

As shown e. g. in the book [10, Section 56] of Szdsz, the congruence
relations of an algebra A constitute a lattice C(A) with the operations\/and A
defined as follows: Let b, ¢ € C(A); then (a, b)ebAq > (a,a)eh, ¢, and further,
la, b)Y e\ @ <>there is a [finite sequence x, x,, ..., . Y, Yae1 elements of A
such that Zx, x, 1) belongs either to H or to ¢ for every value of jj 0.1,
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...,ma=x, and b=x,+1. Now we are able to prove a theorem on the struc-
ture of C(A).

Theorem 2. Let A=(V,Q)be a simple ternary algebra. Then C(A)
is a distributive lattice.

Proof. Let 6,9 and y be three congruence relations on A. As well
known, it is sufficient to show that 6A(eVy)=(OA@)V(8Ay), from which
the distributivity of C(A) follows.

Let (a,b)¢ebOA(pVy), and so {a, b)€b, p\/yp. The latter relation implies
the existence of a sequence x,, ..., X,+1 with properties reported above. We
assume now that (x,, X,:1)€¢ and denote Q(xq X, Xn+1)=X,. Because (x,, x,),
(Xni1s Xnii)s (Xp Xnt1) €@, we obtain  now (Q(xg, Xn Xn+1),Q (X0 Xnt1y Xn+1))
(X, Xn+1)€q. Analogously we see that (x, Xn+1)€6. Without loosing the
generality, we can assume that (x, 1, x,)€y. Because (xq, Xo), (Xn+1, Xnt1) €9,
we obtain (Q(x,, Xn+1, Xn—1), Q(Xo, Xn+1s X)) ={(x,_,, x,)€y. Further, the rela-
tions (Xn_1, Xn—1)s {Xgs Xns1)s {Xns1, Xns1) €0 imply that (x,_,, xn+1)€6, and by
transitivity of 6, (x_,., x,) €6, too. By continuing this process we obtain a new

sequence Xj, X, ...,X,,;, where x;=Q(x,, Xn+1,x;). Moreover, (x,x ,>€8

holds for every value of j, j=0,...,n, as well as either (x), x;._H)E(p or
(X}, X, €y. By combining these results we obtain (x;, x, )€OAP)V(OAY),
where x| = Q(xo, Xo» Xn+1)=Xo and, analogously, x;+1=x,,+1. This completes
the proof.

In the following we characterize the minimal congruence relation 6,, col-
lapsing two elements a, b¢V. Before we need a lemma.

Lemma 2. An equivalence relation E on a simple ternary algebra
A (V.Q) is a congruence relation on A if and only if {a, b)¢E implies
(Q(a,t,r), Q(b.t,r)€E for any pair r,teV.

Proof. If EF 'is a congruence on A, the assertion follows from the re-
flexivity and the substitution property from E. Thus, let E be an equivalence
on A and (a, b), (¢, d), (f,» @ € E. We will show the substitution property of E.
The property of the lemma gives the following sequence: (Q(a,c, f), Q(b, ¢, f)),
(Q(b, ¢, ), Qb.d, ), (Qb,d, ), Q(b,d, g))€ E, and from the transitivity of £
we obtain (Q(a, ¢, f), Q(b, d, g))€ E. This completes the proof.

Theorem 3. Let a,beV of a simple ternary algebra A and let 6,, be
a binary relation on A defined as follows: (c, d)€8,,<>there are two ele-
ments z, y €V such that z—Q(a, b, 2),y=Q(a, b, y).c=Q(z, ¢, d) andd=Q(y, ¢, d).
Then b,, is a congruence relation on A and the least one collapsing a and b.

Proof. It holds for any f¢V and for any z= Q(a, b, 2) that Q(z, f, f)

f, whence #,, is reflexive. Obviously b,, is symmetric. Next we show that
(Qc.p.s) Qd, p, s) €8, for any two p,s¢V. Let z and y have the pro-
perty of the theorem, and because (¢, d)€8,,, c=Q(z, c,d) and d=Q(y,c, d).
Then Q(z, Q(c, p. s), Qd, p. $)=Q(Q(z, ¢, d), p, s)=Q(¢c, p, s) and similarly
Q(v, Q(e, py s), Q. p, 5)=Q(d, p.s). Thus (Q(c, p, ), Q(d, p, s)) €8,,, and the
desired property follows.

Finally, we show the transitivity of 6,,. Let (£, r), (r, m)€8g,. According
to the definition of 8, t=Q r,u), r=Q(t r,2), r=Q(r,m, w) and m=Q(r,
m. x), where u, z, w and x have the property of the definition with respect
to @ and b. We form a new element ¢=Q(r,z, w). This element has also the
property of the definition with respect to a and b, i.e. Q(¢g,a, b)=Q(a, b,
Qr, z, w)) - Qr, Q(z, a, b), Qw, a, b))-G(r, z, w)=q. Moreover,Q(¢, r, q)=
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=Qt. r.Q(r, z, w))=Q(w, Q¢ r, 1), QU, r,2)=Q(w, r, 1)=r, and similarly,
Q(r,m,g)=r. We consider now the situation in the partial lattice L(A, r)
because the manipulations are simple to perform in the lattice formulation.
In L(A, 7), Q(r.t, u)y=t=tAu, Qim,r,x)=mAx=m and Q(t,r,q)=r=0=¢
Ag=mAq—=Q(m,r, q). As above we see that Q(Q(u, q.1), a, b)=Q(u, g, t)=h
and Q(QAx, g, m), a, b)=Q(x, g, m)=k. Moreover, h=Q(u,q,t)=uAq)V(gAtL)
V(EAu)y—tv(uAg),and Qh,mt)=rAE)N(mAL)V(EAmM)=tv(mALt)V(kAm)
—tv(mAt)yv(mAuAnqg)=t because mAqg=0. Similarly, Q(k, m,t)=m, and
the transitivity of 6, follows. According to Lemma 2, f,, is a congruence
on A.

Let 6 be a congruence on A collapsing a and b. If (¢, d)€8,,, then (z, a)
={(Q(z, a, b), Q(z,a, a))¢H, and similarly, (y,a)¢eH, whence (y,2)€bH as well.
Further, (c,d)=(Q(z, ¢, d), Q(y.c,d))€b, and thus 6 =86,,, which shows the
minimality of 6,,, and the theorem follows.

Obviously the set {ul|, u=Q(u, x, y)ueV}, where x and y are fixed ele-
ments of V, is an ideal of A—=(V, Q); we denote it by /[x, y]. The following
theorem shows that C(A) is pseudo-complemented.

Theorem 4. Let A=(V,Q) be a simple ternary algebra and 6 a con-
gruence relation on A. We define a binary relation 9* on A as follows :
(x,¥)€0* <>in the ideal [[x,y] of A every congruence class of b consists
of a single element. Then ©* is a congruence on A and it is the pseudo-
complement of 6 in C(A).

Proof. Clearly 6* is reflexive and symmetric. Let (x, y)€6* and r, p be
two arbitrary elements of A, and assume that the ideal /[Q(x, 7, p), Q(y, r, p)]
contains two elements @ and & such that (a, b)¢b. Let us consider the ele-
ments Q(«, x, y) and Q(b, x, y). Because # is a congruence relation, (Q(a, x, y),
Q(b, x, y))eb. Thus Qa, x, y)=Q(b, x,v), since (x, y)eb*. Now Q(Q(a, x,y),
r,p)=Q(Q(x, r, p), QUy, r, p), a)=a because a ¢ [[Q(x, r, p), Qy. r, p)]. Similarly,
Q(Q(b, x, y), r,p)=>. But as Q(a, x, y)=Q(b, x, y), we obtain a=Q(Q(a, x, y),
r,p)— Q(Q(b, x,y), r, p)=b. Therefore (a, b)¢t implies a-—-b for every two
a, bel[Q(x, r,p), QLy, r,p), and so (Q(x, r,p), Q(y,r, p))eb*. After proving
the transitivity of 6%, Lemma 2 implies now the congruence property of §*.

Let (x.v), (v,2)€6* and assume that a, b¢/[x, 2| such that (a, b)¢6. As
above, we can conclude that Q(a, x,y)-Q(b, x,y) and Q(a.z,y)  Q(b, z, y).
In the partial lattice L(A,y) these results mean that aAx=b0Ax and aAz
=bAz. Now, Qa, x, 2)=(aAx)V(xA2)V (aA2)=(bAX)V(xA2)V(bAZ)
- Q(b, x, 2). Because a,b¢l[x, 2], a=Q(a, x,z) and b-—=Q(b, x,2) and so the
defining property of 6* holds for [/[x, z], whence (x, 2)¢b*. Accordingly, 6* is
a congruence relation on A.

Clearly (x, y)eHhAO*<>x-y, whence BHAg* is equal to the least element
0 of C(A). On the other hand, if 8 A@ -0, then (x, y)€e only if (a, b)¢H and
a, bellx, y] together imply @ b. Therefore §* =-¢ and so H* is the pseudo-
complement of § in C(A).

Now we are ready to prove a theorem about the Boolean property of
C(A). Following Grdtzer and Schmidt [2, Def. 3] we say that a con-
gruence relation # on a simple ternary algebra A is separable if forall a, b¢ Vv
there exists a sequence X, X, ..., X, Xap1 Of eclements of the ideal /[a, b),
Xy - @, Xpy1 b, such that for every ¢ either (x, x/;41)€b or (x, x;,1)¢6 and
x. yellx, xi), (x, y)€8 imply x=y,i=0,1,...,n.

heorem 5. The congruence lattice C(A) of a simple ternary algebra
A (V. Q)isa Booleanlattice If and only if all congruences on A are separable.
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Proof. Let all congruence relations on A be separable. The definitions
of separability and of 6* imply that (x,y)€t8\/b* for every pair x,yeV, i e.
Hv6*=1 in C(A). Because HAH*=0 and C(A) is distributive, it is Boolean,
too. The converse part follows from the definition of 6*

The observations given in Theorems 3, 4 and 5 generalize the corres-
ponding results proved by Gritzer and Schmidt in [2] for distributive lattices

3. Some Special Cases. In this section we will consider some congruence
relations which are characteristic for specific classes of simple ternary al-

ebras.
8 An ideal P¢# is called prime, if Q(x,y, 2)¢P implies |{x, y,z}]\_P|=<1,
where | B| denotes the cardinality of the set B. At first we prove two simple
lemmas.

Lemma 3. Let Pbe aprimeideal of the simple ternary algebra A=(V, Q).
Then VN\_P is a prime ideal of A, too.

Proof. Let Q(x,y,2)¢ VNP If [{x,v,2}nP|=2 and, let us say x, y¢P.
then Q(x, y, 2) ¢ P because P is an ideal of A, which is a contradiction. Hence,
the lemma.

Lemma 4. Let P be aprime ideal of a simple ternary algebra A=(V, Q)
and 9 P) a binary relation on A defined as follows: (x, y)¢O0( P)<>x,y¢P
or x,y€V\ P. Then W P) is a congruence on A.

Proof. The relation 6(P) is obviously an equivalence on A. Let (a, b)
¢6(P) and p, r¢ V. Because a and b belong to one class of 6(P), there are in
each of the sets {a,r,p} and {b,r,p} always two elements, say {a, p} and
{b.p}, belonging to the same class, say P, whence Q(a,p,) and Q(b, p, )
belong to the same class (in this case to P). Hence (Q(a, p, r), Q(b, p, 1)) € 6(P),
and lemma follows from Lemma 2.

A simple ternary algebra A=(V, Q) is a tree if forany x¢V the partial
lattice L(A, x) is a tree, i. e. no two non-comparable elements a and & of
L(A, x) have a common upper bound in L(A, x).

Theorem 6. A simple ternary algebra A=(V, Q) is a tree if and only,
if 8 P] is a congruence relation on A for every prime ideal P of A, where,
(x, Y)EO[P)<>x=y or x,yEP.

Proof. Assume that A is a tree. The definition of 6] P] implies that
6 P] is reflexive, symmetric and transitive. The substitution property is valid
for 6] P] if we can show that Q(a, b, x)=Q(a, b, y) for any pair a, b¢ V\ P and
for every two elements x,y¢€P; the other cases concerning the substitution
property follow from the ideal property of P.

We consider the situation in the partial lattice L(A, a). Then Q(a, b, x)=bA x
and Q(a, b, y)=bAy. Because A and L(A, a) are trees and b is a common
upper bound of bAx and bAy, these two elements are comparable. We sup-
pose that b Ax>bAy. The element xAy exists in L(A,a) and bAX>SHA y
=bAxAy. If xAy=0Ax, then bAx=bAy=bAxAy, which contradicts
the assumption bAX>bAY. If xAy>bAy, then xAy and bAy are compa-
rable and y is their common upper bound in L(A, a@). Thus bAy=bAxAy
and because bAx>bAyY, then also b>xAy, whence x Ay=bAxAy=>bAY.
On the other hand, xAy=Q(a, x,y)¢P as P is an ideal of 4. Since now
b>xAY, Qa, b, Qa, x,y))=xAyeP and as Pis prime, a or b belongs to P,
which is a contradiction. Hence x Ab=yAb, and the first part of the proof
follows.

Let us consider a partial lattice L(A, z) and assume that there are two
non-comparable elements @ and & having a common upper bound ¢ in L(A, 2)
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Because ¢ exists, there is also an element avb in L(A, 2). The intervals
[aAb,a] and [b,avb] of L(A, z) are ideals /[aAb,a] and /[b,avb] of A,
respectively. As @ and b are non-comparable, [@aAb,a]Nn[b, avb]=3. Now
we can apply [5, Thm. 1]: there is in A a prime ideal P such that /[aA\b.a]
cPand Pnllb, avb]=@. According to Theorem 3, (b,aVvb)€bans.a be-
cause Qa,avb,b)=Q(a,b, Qg, a,b))=Q(g.a,b)—-avb and Qanb,anb,
b)—Q(Q(z, a, b), Q(g. a, b).b)-Q(Q(z.¢q,b),a b)— Q(b,a, b)-—b. Since now
llaAb,a]c P, every congruence relation having P as a congruence class
must also collaps the elements av b and b, whence the relation H[P] does not
hold in A. Thus the assumption is false, and A is a tree. This completes
the proof.

Theorem 7. Every congruence on a simple ternary algebra A is the
meet of maximal congruences W F) if and only if for every collection k of
ideals satisfying the conditions (i)— (iii) of Theorem 1 it holds. for any
two disjoint ideals k,m¢k there exists a prime ideal P of A such that
kcP,Pnm=Q and if u¢k then ucp or unP=0.

The proof is obvious. Trees are a class of simple ternary algebras satis-
fying the demands of Theorem 7.

4. Simple Ternary Algebras and Join Spaces. The concept of a join
space was introduced in [7]; Tagamlitzki presented an analogous concept
considerably earlier in [1]. Varlet showed in [12] that every distributive
lattice is a join space with respect to the most general betweenness relation
on distributive lattices. This section generalizes Varlet’s results.

A join operation o in a set / is a mapping of J><J into the family of
subsets of J. The image of (a, b)¢J/<Junderois denoted by aob and called
the join of @ and b. By definition, if Ac/J and BcJ/J, A-B-uUfa-blacA
and b¢B}. An “inverse” operation is defined as follows: ab —{xlaebox}
and A/B=U{a/bla¢A and b¢ B}.

The system (J, o), where J is an arbitrary set, is a join space if the join
operation satisfies the following postulates: JS1: aob+@; JS2: acb=boa;
JS3:(aob)oc=ao(boc); JS4: a/bnc/d+ (P implies aodnboc+@; JS5:
alb+Q.

At first we prove a lemma.

Lemma 5. Let A—(V.Q)be a simple ternary algebra and let a and
b be some fixed elements of V. Then the set D,, —{x|x€¢V,Q(x,a,b) a} is
an ideal of A.

Proof. We consider the situation in the partial lattice L(A,b). Then
Q(a, b, x)—aAx—aforevery x¢D,, [a), hence Dab [a). If now 2, veD,,.
then Q(s,z,Vy) (SAVIV(SA)V(zAY) -a because zAy -a, and thus
Q(s, 2, ¥)€D,, for any s¢V. Hence D,, is an ideal of A.

Theorem 8. Let A (V.Q)be a simple ternary aglebra. Then (Vo)
is a join space with respect to theo —operation defined as follows:
aob—Ia, b].

P r[()o f.' The postulates JS 1, /S 2 and /S 3 hold obviously fora-b l[a, b).
ab - {x|. xe VQ(x,a,b) ~a} D, and at least a¢D,,. whence JS5 holds.

Let DgnD.+@. and let yeD,,NnD. In the partial lattice L(A,y).
Q(y.a,b)y-aAb—a and Q(y, c.d)—cNd . We will show that the element
bAd - Q(y.b.d) belongs to /[(I.d]ﬂ/[b. c) Now Q(a, bAd. d) (aNOANADN/ (a
AN (BAD) - (aANd)\/(bAA) dAN(aANb) - dAb; a\/b exists because a\/b - a.
Similarly, Q(c, bAd.d)=bAd, and thus bAd¢la, dIn/[b.c]. Thus also JS 4
holds and the theorem follows.
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The following three theorems illuminate the properties of the join space
(V5 ek

A subset B of a jjoin space is convex if a,b¢B implies a-bcB [T7];
see zlso [11], where an equivalent conceptis introcuced.

Theorem 9. Let A=(V, Q) ve a sinpie ternary algcira. A subset BTV
is a convex set of the join space (Vo) if and only if 3 is a1 ideal of A.

Croof. Let B be an ideal of A. Then for any two cloments @,b¢3 all
he clements ¢ for which Q(a, d,¢)=t belong to B, whence 3 is convex.

Converselv, let B be a convex set of the join space (V) <)and a, 0¢B.
Now, Qa. b, s) =¢ and, as well known, Q(a, b, ¢)=¢, whente 7tacacB. Thus
Q(a, o, $)¢ B for any s¢V, whence B is an ideal of A.

A subset B of a join space J isa linear set of .\, if a,0¢ B impliesacoc B
cnd a bc B |7]; this concept was found and studied earlier by Prodanov
in [%] and {9].

fheorem 10. Let A=(V,Q) be a simple ternary algebra. A subset
Bc\ is a linear set of tie join space (Vo) if and only if B=V.

Proof. Trivially V is a linear set of the join space (V) o). Conversely,
let B be a linear set of (V, o). If 0¢B, then b'bC B, and b 0={x| Q(x, b, b)=0b}.
According to (1), every x of V belongs to 6/6 and hence VCB.

[i the simple ternary algebra A is a tree, the prime ideals of A have a
restricted linearity property as siown in the following theorem.

Iheorem 11. Let A be a simple ternary algebra. A is a tree if and
only if for every prime ideal P of A and for any rwo distinct elements
a, bGP it holds: a bcP or blacP.

Proof. Let A—(V,Q) be a tree, P a prime ideal oi A, a,0¢P and a=b.
We assume that x is an element such that a—Q(x, a, b) but x ¢ P, i. e. a/oCP.
Let yeb/a, i. e. Q(a, b, v)=b. We consider the situation in the partial lattice
L(A, x). Qu, b, x)—aAb—-a, whence a=b. According to the assumption a=0,
and thus a<b. On the other hand, Q(a,b,y)=(@A\d)\v(aAV)V(OAY)=a
V(v (aVa)—aV(yA\b)—-b. DBecause L(A,x) is a trec and b —=a,yAb,a
and vA0O are comparable. Moreover, as b>a and aV(yAb)=b, yANb=b,
whence y 6. If b a~{b}, b acP without any proof, and so we can assume
that v >b. Because x<o<y in L(A, x), Q(y, x,0)—-0¢P. Because P is prime,
at least one of the elements x and y belongs to P. According to the assump-
tion, x ¢ P, and thus y¢ . Hence a0 P implies b/acP and the first part
of tiie proof follows.

Let (V,o) be a join space having the property given in the theorem.
If A is not a tree, there exists an element x¢ V' such that two non-compa-
rable elements a and & have a common upper bound in L(A, x). Because
y>a,b, then also aVb exists and avb=y. Accordingly, /[b, a\/b] and
/b, a\/ B] are two ideals of A such that /{aAb,alnl|b,a\/b]=(, whence
there is a prime ideal £ containing /[b, a\/b] and I{a b, ajnP= [5, Thm. 1].
Now Q@Ab, b,avb) =0 and Q(a, b, a\/b)=a\/ b, whichimply thataAbeb/a\V b
and acavbb, respectively. But avb, a¢ P whence b/a\/ b, a\/b/bqP. This is
a contradiction, and so A is a tree.
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