Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



MINIMAL TOPOLOGICAL RINGS
DIKRAN N. DIKRANYAN

A Hausdorff topological ring is called minimal if its topology is minimal in sense of
Zorn among all Hausdor.f ring topologies on the given ring. The minimal topological rings
are closely related to the compact ones. The aim ol this paper is to examine some permanence
properties of the minimal rings and to give proos of some results concerning the relation-
ship between minimal rings and Krull dimension announced by the author in [19].

The minimal topologies on a given set X with a given property have
been studied by various authors. Banaschewski [4] developed a general
approach to minimal topologies on algebras. Doitchinov [15] and Ste-
phenson [16] gave examples of non-compact minimal topological groups.
Prodanov [11] studied the minimal precompact topologies on Abelian groups
by means of the Pontrjagin’s duality.

A Hausdorff topological ring (A, t) is called minimal, if every ring topo-
logy on A, which is strictly coarser than r, is not Hausdorff. Examples of
non-compact minimal rings were given in [5] and [6]. Some permanence pro-
perties of minimal rings were established in [3]. Mutylin [2] studied minim-
al commutative rings without proper closed ideals. Minimal topological fields
were stulied much earlier (see for instance (8] and [9)).

In section 1 of this paper we introduce the notion of E-minimal topo-
logical ring as a minimal object in a category E of Hausdorff topological
rings and continuous homomorphisms. Some permanence properties of E-minim-
al rings are established by passing to dense subrings, quotient rings, matrix
rings, products and direct sums.

Section 2 is devoted to study Lpc-minimal rings, where Lpc is the cate-
gory of topolbgical rings whose completion is strictly linearly compact. In
particular the minimal precompact topologies are included. The Lpc-minimal
topologies on Noetherian rings are described in Theorem 2.2, on integral do-
mains respectively in Lemma 2.7 and Theorem 2.8. The aim of the second half
of the section is to establish a relationship between Lpc-minimality and Krull
dimension. Theorem 2.12 gives a topological characterization of dimA=n for
a complete local Noetherian integral domain A with a countable residue field.
This is a partial generalization of the following theorem from [6].

Theorem A. Let A be a compact Noetherian integral domain. Then
dim A=1 iff every subring of A is minimal in the induced topology.

The generalization was obtained as an answer to a question put by J. M.
Smirnov. The source of theorem A was the following theorem due to Pro-
danov [I1].

Theorem B. The relative topology of every subgroup of an infinite
conpact Abelian group G is minimal iff G is algebraically and topologically
isomorphic to some of the groups of p-adic numbers.
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Theorem 2.15 gives a topological characterization of the Krull dimension
of a countable Noetherian integral domain.

Tliroughout this paper the rings always possess a unit, ideal means two-
sided ideal and the local rings are not necessarily Noetherian. The Krull di-
mension of a commutative ring 4 is denoted by dim A, the completion of a
topological ring A is denoted by A

1. E-Minimal rings, definitions and permanence properties. The aim of
this section is to introduce the notion of E-minimal ring and to examine the
main properties of the E-minimal rings. Here E is a subcategory of the cate-
gory H of all Hausdorff topological rings and continuous homomorphisms.
The following abbreviation will be used: A¢E instead of A¢Ob(E) and ¢ ¢E
instead of A4, B¢ Ob(E) and ¢ ¢ Morg(A, B).

Definition 1.1. A subcategory E of H is called convenient, if the fol-
lowing conditions are fulfilled :

(C1) If

Ay

is a commutative diagran in H, ¢ is an open epimorphism and v is a con-
tinwous isomorphisn, then B¢ E implies @ ¢ E. Moreover &¢E implies y ¢E.

(C2) If B¢H, A is a topological subring of B and i:A — B is the ca-
nonical embedding, then B¢E implies ACE and i¢E. In the case A is dense
in B, A¢E implies B¢E and i¢E.

(C3) If f:B— C is a continuous epimorphism in H, and A is a dense
subring of B such that the restriction f|, belongs to E, then f¢E.

Examples 1.2. Here we give examples of convenient categories.

(a) Let P be the full subcategory of H consisting of all precompact to-
pological rings (a topological ring A is called precompact, if the completion
A is compact). Obviously P is a convenient category.

(b) Let L be the full subcategorv of H consisting of all topological rings
possessing a fundamental system of neighbourioods of the zero which are
open ideals (such topolegies will be called linear, see [13)). It is a well known
fact that P is a subcategory of L (remind that all rings in H possess unit).
Clearly L is a convenient category.

(c) Let B be the full subcategory of all bounded rings in H (see [8]).
Then B is convenient and L is a subcategory of B. Also the categories B,
and B, of right bounded  and respectively left bounded rings in H are con-
venient. :

(dy Let 1B be the full subcategory of all locally bounded rings in H
(see [8]). Then 1B is convenient and B is a subcategory of 1B.

(e) The ecategory H is convenient.

(f) Let m be a cardinal number and A¢H. The ring A is called m-topo-
logical ring (see [3]), if the intersection of every family I of neighbourhoods
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of the zero with card I'<m is a neighbourhood of the zero again. Denote by
H, the full subcategory of H consisting of all m-topological rings. It is easy

to verify that H  is convenient. In particular H,, =H.

(g) All examples given above are full subcategories of H, or briefly full
convenient categories. Now we shall consider an example of convenient cate-
gory which is not a full subcategory of H. A homomorphism of topological
groups f:A — B is callad almost open, if, for every nzighbouriood of the
zero in A, flU) is dense in some neighbourhood of the zero in f(A). Let E
be a full convenient category, denote by E’ the category with the same ob-
jects and all almost open continuous homomorphisms as morphisms. Now E’ is
a convenient category and not a full subcategory of H.

Next we give an example of non-convenient category. Remind at first the
definition of strictly linearly compact ring, we shall write briefly s.l. c.. A to-
pological ring A is called s.l.c., if A¢L, A is complete and for every open
ideal @ of A the quotient ring A'Q satisfies the descending chains condition.
More information about s. 1. c. rings can be found in [14] and [17].

Definition 1.3. A topological ring A is called strictly linearly pre-
compact, if A¢L and the completion A is s.l.c.

We denote by Lpc the full subcategory of strictly linearly compact rings
in H. The conditions (Cl) and (C3) hold in Lpec, (C2) does not. For instance
the formal power series ring Q[[7]], where Q is the field of rational numbers,
is in Lpc (endowed with the (7)-adic topology), but the subring Z of integers
is discrete, hence Z¢Lpe. However Lpc satisfies the following (weaker) con-
dition :

(C2%) If B¢H and j:A — B is a dense embedding (A¢H) then B¢E iff
A¢E. In both cases j¢E.

Definition 1.4. A subcategory E of H is called quasi-convenient, if
(C1), (C2*) and (C3) hold.

The category Lpc is quasi-convenient.

Now we are able to introduce the notion of E-minimal ring, where E is
a quasi-convenient category.

Definition 1.5. Le E be a quasi-convenient category and (A, )¢E.
We call the topological ring (A,t) E-minimal ring and the topology r—
E-minimal ring topology, if every topology v on A with v'=rt, (4, v)¢E
and id 4:(A, 1) — (A, v') belonging to E, coincides with t.

Obviously (A, 7) is E-minimal iff every continuous isomorphism fi(A )—
(A, 7,) in E is open. Every compa:t ring in E is E-minimal. H-minimal rings
are exactly the minimal ones. Every P-minimal ring is minimal and every Lpc-
minimal ring is L-minimal. The converse of the latter is true in Noetherian
integral domains (see proposition 2.5.). H'-minimal rings are similar to the
B,-complete topological groups (a Hausdorff topological group G is called B,
complete, if every continuous almost open isomorphism f:G — H, where H
is a Hausdorff topological group, is open).

Let B be a topological ring aad A be a dense subring of B. The embed-
ding A — B is called essential, if for every non-zero closed ideal J of B
SN B=0 holds.

Proposition 1.6. Let E be a quasi-convenient category, B be a
Hausdorff topological ring and A be a dense subring of B. Then A is E-
minimal iff B is E-minimal and the embedding AC B is essential.
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The case E=P is contained in [5], the case E=H is partially contained

in 3] and the case of topological algebras—in [4]. The proof is similar to
that in [4] and will be omitted. There is an analogue to proposition 1.6 in
(2] too. By proposition 1.6 every dense subring of a minimal topological di-
vision rino is minimal. Examples of minimal topological division rings can be
fourd in [9] and [8].

Proposition 1.6 provides many examples of H’-minimal rings too. From
[7] every complete metrizable Abelian group is B,-complete, hence every com-
plete metrizable topological ring is H’-minima/l\. By proposition 1.6 a metrizable
ring A is H'-minimal iff the embedding AcA is essential. Similar result is
trus for locally precompact topological rings (i. e. topological rings with locally
compact completion), since every locally compact Abelian group is B,-com-
plete [7].

Co]rollarv 1.7. A topological ring A in Lpc is Lpc-mininal iff the
embedding Ac A is essential.

Proof. It follows from 1.3 that the completion 4 is s.l. c.. Since every
s.1 c. ring is Lpc-minimal[1],it remains only to apply proposition 1.6. Q. E.D.

The f llowirg lemma is used as a technical tool in section 2.

Lemma 18. et E be a_guasi-convenient category and A be an E-mi-
nimal integral demain. Then A is an E-m’nimal integral domain, too.

The proof is similar to the proof of lemma 2 in [2] and will be omitted.

The next step is to establish procuctivity for E-minimal rings. It is natur-
al to impose on E the following procuctivity concition:
(P) If A ¢E (acl), then 114, A, ¢E.

Obviously (P) hol s in H, B. B,, B,,L, Lpc, and P. In IB only finite products
exist as well as in Hm‘ when m>a,.

Theorem 19. Let E b2 a full convenient category satisfying (P) and
{A}.r be a finily of rings in E. Then the product A= 0.A, and the di-
rect sin A'=3%,A, enlowd with the Tichonov topology are E-nininal
(E’-minimal) iff for every at¢l A, is E-minimal (E’-minimal). If v is an E-
min'nal topolozy on A (A"), then there exist E-minimal topologies 1. on
each A, such, that v=1l ¢/7,.

Proof. We shall make use of the following property of the ring topo
logies on A. Let r be a ring topology on A and for every a¢/ 7, be the in
duced topology on A, by the canonical embedding A, — A, then 1=,
In fact, suppose

(1) X — x(x, x,€A)

is a convergent net in (A, ), it is enough to show that x, tends to x in
M1, too. For every «¢/ define e,¢A by

I, B=a
Multiplying (1) by e, we note that the a-th coordinate of x, tends to
the a-th coordinate of x in (A, r,). Hence x, tends to x in (Il Aa, aerta).
Thus Il r,~7 is proved.
Let for every a¢/,r, be an E-minimal topology on A, we have to show
that ¢ - It is E-minimal. Clearly (A, r)¢ E by (P). Suppose o is a topology
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on A with =7 and (A, c¢)€E. Then for every a¢/ the induced topology o, on
A, is coarser, than 7, and (A., 6.,)€E by (C2). The minimality of z, implies
6.=1,. On the other hand ¢=Il,,0, by the previous considerations. Hence
o=Mr0.,=1,=1=0, s0 o=t and the minimality of (A4, r) is established.
Since A’ is dense in A and every closed ideal ¢ of A has the form
Q=1 (L.=8NA, is a closed ideal of A, for a¢/), the embedding
A’ — A is essential. By proposition 1.6 the Tichonov topology on A’ is
E-minimal.

Assume 7, is an E’-minimal topology on A, for each a¢/. We have to
show that r=1II 7, is an E’-minimal topology on A. Suppose ¢ is a topology
on A with (A,0)¢E and the identity

@ (A, 1) — (A, 0)

is continuous and almost open. For every a¢/ the induced topology o, on
A, is coarser, than 7,. Moreover the identity

(3) (Aa 1) — (Ao 02)
is almost open. Indeed, let V, be a z,-neighbourhood of the zero in A,, we

have to verify that [V,], is a o.-neighbourhood of the zero in A, (here [ ],
denotes the closure with respect to g,). At first we prove that

(4) [Va}aa= [Va]an AaZ[VaX 'I=$I=a Aa']ana'

Only the second equality in (4) has to be verified. Obviously the left
side is contained in the right one. Now take
XE[V,,X ’H Aa']onAa-

then x(a’)=0 for a’ ¢/ \{a} and

(3) x=Ilim x,,

where x, ¢V, <1, +,A,.. Multiply (5) by e, then x=xe,=lim,x,e,, where
x,e.€ V.. Hence x¢[V.],NnA, and (4) is proved. Since V, xII, =, A, is a -
neighbourhood of the zero in A and (2) is almost open, the closure
[VaxIl, +.A.],is a o-neighbourhood of the zero in A. Hence [V.], is a o.-
neighbourhood of the zero in A, by (4). Therefore (3) is almost open. By the
minimality of r, we have o¢,=1,. Hence

= gr.=lo.=~0=r1,

so o=t Therefore (4, r) is E’-minimal. The minimality of the direct sum fol-
lows as well as above.

Suppose now, that (A, l/7,) is E-minimal. Let for a,¢/ o, be a topo-
logy on A, with ¢, =7, and (A., o.,)€E. Set =0, XII,+, 7. then (A4,7)¢E
by (P) and "< Hence v"=r and ¢, =7,. Thus r,, is E-minimal.

Let (A, /) be E’-minimal, we shall show that for every a¢/ 7, is
E’-minimal. Consider for «,¢/ a topology o, on A, with (A., ¢.)€¢E and
such that the identity

(6) (AGJ' ta.) - (Aao' oaq)
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s continuous and almost open. Set 7' =g, XII +, 1., then (4, )¢E by (P).
Let V=V, U be a neighbourhood of the zeroin (A, r), where V, is a neigh-
bourhood of the zero in (A.,7.,) and U is a closed neighbourhood of the
rero in (Il,., A, I, 7,). Then [V],':[V,,‘],““XU, hence [V],» is a t’-neigh-
bourhood of the zero in A, since (6) is almost open. Therefore the identity
(A, 1) — (A, 7') is continuous and almost open. By the minimality of z we have
t'=17 and o, =7,. Thus 7, is E’-minimal.

It remains to prove the last statement of the theorem. Let ¢ be an E-
minimal topology on A, then for every a¢/ (A, t.)¢E, where ¢, is the induc-
ed topology on A, by 7. By virtue of (P) (A4, IIz,)¢E and =1l 7., hence
r=1I,/7,. The minimality of each z, was established above. If 7 is an E-mi-
nimal topology on the direct sum A’, then we form Il,/7, as before. From
(A, I 7)€eE we have (A, IIt,)€E by (C2). Now Ilsz,~v on A" and the
minimality of ¢ implies t=1II,¢ 7. Q. E.D.

The cases E=L and E =P areobtained in [5]. The second case is partial-

ly obtained in [1] too. In [3] the m-product of topologies Iz, is consider-
ed, where m is a cardinal number (a fundamental system of neighbourhoods

of the zero in H?J,tu are all intersections of families I of neighbourhoods of
the zero in M,7, with card I'<m). It is proved (theorem 5, [3]) that if

{Aulaer is a family of rings in H , then (Il A, H?era) is H,, -minimal iff for

every a¢l (A, 1.) is Hm-minimal. The reguirement of existence of a unit is

weakened in [3]. However it is impossible to remove it completely, since
Doitchinov [15] gives an example of a minimal Abelian group Z such, that
7% 7 is not minimal. If we consider Z as a topological ring with zero multi-
plication, then 7 is a minimal ring and ZxZ is not a minimal ring. For topo-
logical rings with a unit the product theorem from [3] can be obtained from
the proof of theorem 1.9. It is enough only to prove in addition the following

property of the ring Hm-topologies r on the product Il A, 1= Hg‘, 7., where

7, is the topology induced on A, by r.

Finally we remind in connection with theorem 1.9, that productivity does
not hold for B,-complete groups ([18)).

We begin now studying the minimal topologies on matrix rings. Theorem
1.10 below shows that they can be described in a very simple way. Let (4, 1)
be a topological ring and 2 be a natural number. We denote by A, the mat-
rix ring of square matrices of order n and by * the Tichonov topology on
A,. It is natural to require the convenient category E to be closed under
forming the matrix ring endowed with the Tichonov topology. That’s why we
consider the following condition, where »n is a natural number and E is a sub-
category of H:

(M,) For every (A4, 1)¢E we have (A, ) ¢E.

Clearly all categories considered in the examples above satisfy (M,) for
every natural number 7.

Theorem 1.10. Let E be a convenient category satisfying (M,) and
(A, 7) be a ring in E. Then (A, 1) is E-minimal (E’-minimal) iff (A, ") is
E-minimal (E'-minimal). For every E-minimal topology X on the matrix ring

n?

A, there exists an E-minimal topology o on A such that =o".
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Proof. For a matrice M of A, we denote by (M), the element of M
standing in the k-th row and in the /-th column (k=1, 2,..., n; (=1, 2,

, n). Now denote by £y, the matrice of A, with (Ex.),i=0;,.68; (i=1, 2,
ee.yny j=1,2,..., n), where 4, is the Kroneker symbol. We establish
first the following property of ring topologies on A, Let X be a ring topo-
logy on A, and ¢ be the induced topology on A by the embedding a — aEy;
(a€ A), then ¥=0". To prove that take a net {M,} in (4, Z), which tends
to M¢A,. It is enough to prove that {M,} tends to M in (A4, ¢"*). Since =
is a ring topology, the net {<,M.E,;} tends to Ey,ME, in 2 (k=1, 2,...4n ;
l=1,..., n). In other words the net (M,)..Ey tends to (M)s.E,, in 2. By
the definition of o this means, that (M,)., tends to (M), in (A4, ¢). Hence
{M,} tends to M in (4, ¢") and T=¢" is verified.

Assume 7 is an E-minimal topology on A, we shall show that r* is E-
minimal. Let 3 be a topology on A, with (A4, 3)¢E and =7 Then the
induced topology o on A is coarser than t and (A, ¢)¢E. By the E-minima-
lity of r we get o=t By the above property 1" =0"<X<7", hence I=1"
and the E-minimality of 7** is established. In the case 7 is E’-minimal we use
the same argument. It remains only to prove that the identity (A, 1) — (A4, o)
is continuous and almost open, if the identity (A,, ™) — (A, ¢”) has the cor-
responding properties. This is easily established as in the proof of theorem 1.9.

One proves that r is E-minimal (E’minimal) if ¥ is E-minimal (E’'minim-
al) in the same way as in theorem 1.9.

It remains only to prove that all E-minimal topologies on A, are of the
type considered above. Suppose that X is an E-minimal topology on A, and
o is the induced topology on A. Then (A, ¢)¢E by (C2), hence (4, ¢%)¢E by
(M,). Since 3=¢", the minimality of X implies S=¢"". Q. E. D.

An H -version of this theorem is proved in [3].

Theorems 1.9 and 1.10 show that the class of E-minimal rings is closed
under forming products, direct sums and matrix rings. Now we consider a
subclass which is closed under forming quotient rings with respect to closed
ideals.

Definition 1.11. Let E bea quasi-convenient category. An E-minim-
al ring (A, 1) is called E-totally minimal ring and the topology t is called
E-totally minimal ring topology, if for every closed ideal ¥ of A the quo-
tient ring A/ is E-minimal.

Obviously every compact ring in E is E-totally minimal. It is easy to
prove that the ring A is E-totally minimal iff A¢E and every epimorphism
f:A— A, in E is open. Clearly E-minimal rings without proper closed ideals
are E-totally minimal. In the commutative case for E=H they are exactly the
dense subrings of complete minimal topological fields [2]. H-totally minimal
rings will be called for brevity totally minimal.

A subring A of a topological ring B is called totally dense,if for every
closed ideal  of B[ANJ]= holds.

Proposition 1.12. Let E be a quasi-convenient category and A be a
dense subring of the topological ring B. Then A is E-totally minimal iff B
is E-totally mininal and A is totally dense in B.

Proof. Let A be E-totally minimal and  be a closed ideal of B. Then
for §;=[3NA] we have ANGY, = and the quotient ring A/SM is E-minim-

al by the E-total minimality of 4. Hence the embedding A/SM — B/, is
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essential and B,"‘l is E-minimal by proposition 1.6. Now §{/3, is a closed
ideal of B/Q, which intersects A/q,, in a trivial way, hence J,=J. This
proves the total density of A in B and the E-total minimality of B at the
same time.

To prove the sufficiency we have to show that for every closed ideal
of A the quotient ring A ¢ is E-minimal. Set { =[]z then B/ is E-minim-
al and A/ is a dense subring of B/Y. By proposition 1.6 it is enough to
show that this embedding is essential. Let & be a closed ideal of B/ which
intersects A/Q in a trivial way- If ¢ :8 — B/ is the canonical homomor-
phism, then &, =¢ (L) is a closed ideal of B with J;NA=¢ by the above
property of ¢,. Since A is totally dense in B, we have J,=[J1NnA]=[€]=3,
hence ¢, is the zero ideal of B/S. Then theorem is proved. Q. E. D.

From this proposition we obtain the following total minimality criterion:
a precompact topological ring A is totally minimal iff A is totally dense in
the (compact) completion A.

The notion of E-total minimality can be introduced also in a convenient
category of topological algebras (satisfying (Cl), (C2) and (C3)) and an ana-
logue of proposition 1.12 can be proved.

Our next goal is to establish productivity for E-totally minimal rings.

Theorem 1.13. Let E be a full convenient category satisfying (P) and
{Aa}“m[ be a family of rings in E. Then the product A:II"(Q[A,, and  the

direct sum A'=.‘:”(9[A,, are E-totally minimal (E’-totally mini nal) iff for ewvery
a€ the ring A, is E-totally mininal (E'-totally minimal).

Proof. We have only to apply theorem 1.9 and definition 1.11., and to
remark that every closed ideal of A4 has the form ;}:Hu(\)[&. where each J,

is a closed ideal of A.. Q.E.D.

Theorem 1.14. Let n be a natural nunher, E be a full convenient ca-
tegory satisfyina (M) and A be a ring in E. Then A, is E-totally mininal
(E’-totally mininal) iff A has the sane property.

Proof. We hase oaly to adoly tieoran 11D and definition L.11, ani to
remark that every closed ideal of A, has th» fbrm J, where ¥ is a closed
ideal of A and 3, is the ideal of all matrices in A, with coeificieats from .
Q. E.D.

The last two theorems show that the class of E-totally minimal rings is
closed under forming products, direct sums, completions, matrix rings and
quotient rings with respect to closed ideals. A closed subgroup of a minimal
Abelian group is minimal, too [11]. The following example shows that an open
(and consequently closed) subring of a totally minimal ring may be non-minim-
al. Let % be a field and L =k(T) be the field of formal power series of
one variable over k. Then the topology of L generated by the usual valua-
tion of L is minimal [8]. The ring A=k[[/]] of formal power series of one
variable over £ is an open subring of L and the induced topology on A is
not minimal, if % is infinite [4].

2. Lpc-minimal topologies on commutative rings. This section has two
general lines. The first one is to describe by means of )-adic topologies and
sM-adic completions all Lpc-minimal topologies on two clasces of commutative
rings — the class of all Noetherian rings and the class of all locally Noethe-
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rian integral domains. The results in this line generalize similar results about
minimal precompact topologies on locally Noetherian integral domains in [6].
On the other hand we obtain a description of all L-totally minimal topologies
in the classes mentioned above. In the second line some relations are estab-
lished between Krull dimension and Lpc-minimality.

Throughout this section all rings are commutative. If A is a ring and M
is an ideal of A, then the 9N-adic topology on A will be denoted by ™ and

the 9M-adic completion of A will be denoted by /T,m.

We shall often make use of the following lemma, which combines results
from [1] and [17].

Lemma 2.1. Every s.l.c.ring is a product of local s.l.c. rings endow-
ed with the Tichonov topology. In particular every s.l.c. integral domnain
is local. The topology of a s.l.c. local ring with maximal ideal I is coars-
er thaﬂ TsJJ‘z.

Theorem 22. Let A be a Noetherian ring,
) N 2=

be an irreducible primary decomposition of the zero ideal in A and t be an
Lpc-minimal topology on A. Then there exist a finite nunber uniquely de-

termined open maximal ideals I, ..., M, of A, such that
) Umo U
and T=Tgm where M= N7_My. There exists a unique ideal P of

:Zl,,, satisfying
(3) AnP=(0)
and maximal with this vroperty, such that the canonical embedding

4 A— AgyB

induces on A the original topology r. Moreover 3 Crad (2, ). Conwversely, if
My, ..., M, are maximal ideals of A satisfying (2) and for M= N;_ M,
the ideal S} of ,{m satisfies (3), then the topology induced on A by the

embedding (4) is Lpc-minimal. If in addition R Crad (Z‘JR) holds, then the
ideals My, ..., M, are open

Proof. By the definition of Lpc the completion A with respect to r is
s.l.c. By lemma 2.1 there exist a family {A.}.s of s.l c. local rings such

that A=11,,A,. If the maximal ideal of A, is M, (a €/), then the topology of
A, is coarser than ™om by the same lemma. The canonical image of A, in
A is a closed ideal, hence A,N A=(0) for every a¢/, since the embedding

A c A is essential by proposition 1.6. The ring A satisfies the ascending
chains condition, that is why the family of non-zero ideals {A.N A}u¢s is fi-
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nite, hence / is finite. Let A= M7 A, where A, is a local s. 1 c. ring with

maximal ideal M, (k=1,..., n). Set

My= A o XA g XM X A1 X ..o XA, (R=1,2,..., n),
k

/

clearly ﬁ}k is an open maximal iceal of A. By lgmmn 2.1 the topology of
A iscoarser than I} rgn =70 where M= Nj;_, M, Therefore r=zg,, where

1=A NM. It is a well known fact that Ton s Hausdorff iff (2) holds. The
identity 7:(A, 19)1) — (A, 1) is continuous, hence we can extend it to a conti-
nuous homomorphism £ :A,m‘a A of the corresponding completions. Now
.ng is s. l.c. [14] and ?(ﬁ,_‘);) is dense in A. Since 7(;\\})1) is also s. lLc,
it follows that i(Asm) is complete, hence closed and ¢ is an epi-
morphism. If R=ker 7, then .—1;;1‘))1»13 algebraically and  AnYP = (0)
Since the quotient topology of Agp/*B is s. I. c. (hence L-minimal), the

isomorphism A= Esm% is topological too. Thus the embedding (4) induc-
es on A the original topology @ By proposition 1.6 the embedding (4) is
essential, hence the ideal R is maximal with the property ANnP=(0)
(A“R is a Zariski ring, hence every ideal of A*“} is closed). Suppose £, is an
ideal of /Al,m with AN 9O.=(0) and the embedding A — /Alm Q. induces on A
the original topology r. Then /T,m‘g is a completion of A. Since the comple-

=

tion is unique, there exists an isomorphisi g:/T\“t B — j’”t““ such that g/,

=id, Hence =g, and the uniqueness of B is established.

The maximal ideals Agy, are ﬂjkkA\\Jt(ﬂJh—-An‘)th). Since WM, is open in
(A,7) we have SBcw)mA’:m (k=1, 2,..., n), hence Pcrad (.4’:“9. [t remains to
prove that the ideals My, ..., M, are uniquely determined. Infact, they are the

sole open maximal ideals of (A, r). Assume W’ is an open maximal ideal of
(A. v), then MY’ is also ryp-open, hence McM’ and MM for some k=1,

2,..., n. The first part of the theorem is proved.
Let M, ..., M, be maximal ideals of A satistying (2) and for

M=1I7_ M, the ideal P of ,211“3 satisfy (3). Then /’f,m/‘B is a complete local
Noetherian ring, hence s. 1. c. Thus AA‘“E ‘B is Lpc-minimal. By (3) the embed-

ding (4) is essential, hence by proposition 1.6 the induced on A topology is
Lpc-minimal. The last asscrtion can be established as absve. Q. E.D.
The existence of ideals with (2) and (3) is provided by the Zorn's
lemma. Therefore on every Noetherian ring there exist Lpc-minimal topologies.
Corollary 2.3. The minimal preco npact topologies on a Noetherian
ring can be described as in theorem 2.2., all maximal ideals being neces-
sarily of finite index.
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If A is a Noetherian ring with irreducible primary decomposition (1) of
the zero ideal, then there exist minimal precompact topologies on A, iff there
exist maximal ideals M,,..., M, of A of finite index satisfying (2).

Corollary 24. The L-totally minimal topologies on a Noetherian ring
A are described as in Theorem 2.2 the condition (3) replaced by
(3*) BN A=0 and for every ideal A of A with ADP B+ (AN A)A,m= A
holds.

Proof. First we prove that every L-totally minimal topology (on an ar-
bitrary ring) is Lpc-minimal. Let ¢ be an open ideal of A._Suppose 4o
>...D2¢,D ... is a descending chain of ideals in A/Q. Set@=[]7_,8, then
/8> 8/¢D ... D,/ ... is a descending chain of ideals in A/g with
zero intersection. Hence they generate an L-topology on A/¢ which is neces-
sarily discrete, since A/€ is L-minimal and discrete at the same time. Hence
both chains are stable.

Now to L-totally minimal topologies on A we can apply theorem 2.2.
The notations being as there it remains to prove that A is totally dense in
Ag}‘t/ﬂg iff (3*) holds, which is straight-forward. Q. E. D.

Remark. In the case A is a Noetherian integral domain in theorem 2.2.
there exists a unique open open maximal ideal 9. Indeed, by (3) the ideal B

is prime (AN {0} is multiplicatively closed), hence P—rad Zmzsml,cfmx ..
xﬁ)tn,zfm implies n=1. Therefore theorem 3 from [5] as well as corollary 1

from [6] describing the minimal precompact topologies on Noetherian integral
domains can be obtained from corollary 2.3. Moreover, theorem 2.2 describes
the L-minimal topologies on Noetherian integral domains. It suffices to prove
the following proposition (we have mentioned before that every Lpc-minimal
topology is L-minimal).

Proposition 2.5 Every L-minimal topology on a Noetherian integral
domain is Lpc-mini nal.

Proof. Let A be a Noetherian integral domain and r be an L-minimal
topology on A. It is enough to show that (A, r)¢Lpc, since for every linear
topology o on A o<t implies (A, ¢)€Lpc. The following definition is given in
[1] and [12]. An iceal § of A is called sheltered, if the intersection of all
non-zero ideals of the quotient ring A/ is a non-zero ideal. Denote by 7* the
linear topology on A having as a fundamental system of neighbourhoods of
zero all r-open sheltered ideals of A. Obviously r*=r and 7* is Hausdorff
[17). By the L-minimality of r we have r=t* Now take an open ideal J of
(A, v). From [17] it follows that there exists an (open) sheltered ideal € con-
tained in &§. The ideal @ is irreducible, hence & is primary. It is easy to
prove, that the radical of @ is a maximal ideal (see for instance [12]).
Thus the quotient ring A/@ satisfies the descending chains condition, still
more A/ does. This proves (4, r)¢Lpc. Q. E. D.

Before passing to integral domains recall a definition [10]. A local Noe-
therian integral domain 9[ with a maximal ideal 9 is called analytically irre-

ducible, if the completion ‘Z‘JR has no zero divisors. We introduce the follow-
ing notion.
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Definition 2.6. Let (A, t) be a non-discrete topological ring in L.
We call the ring A analytically irreducible and the topology t-analytically
irreducible, if the conpletion A has no zero divisors.

By lemma 1.8 every commutative L-minimal ring is analytically irreduc-
ible. From now on we write a. i. instead of analytically irreducible.

The ‘ollowing lemma enables us to study the a.i. topologies on integral
domains by means of localization with respect to maximal ideals Wt such that
the M-alic topology is Hausdorff.

Lemma 2.7. Let A be an integral domain and t be an a.i. Lpc-topo-
logy on A. Then there exists a unique open maximal ideal W of A with
T=Tgn- There exists a unique a.i. Lpc-topology v on the ring of quotients

A,m which induces on A the original topology r. Moreover, v is Lpc-mini-
mal iff v is.

Proof. The completion A is s.l.c. and has no zero divisors. By lemma
2.1 A is local. Let 9t be the maximal ideal of A, bv lemma 2.1 the topo-

logy of A is coarser than rz. Since A is dense in A4, the ideal M=ANM is
open and maximal in 4. Obviously the topology induced by " on A s
coarser than ryp, hence r=ryp. The uniqueness of M follows as in theorem 2.2. .

As in theorem 2.2 we have a continuous epimorphism i: Afm — A with

-

i/ 4=1id,4. We may assume A:A\m:f’f‘m since ryp is Hausdorff by T=1gn By
Anker i=0 it follows A‘\R N ker i=0, hence A‘WR is embedded into A as a
dense subring. Denote by 7’ the induced topology on ‘4‘U2 by this embedding.

Since A is s.l. c. integral domain (by lemma1.8)7 is a.i. and Lpc. The unique-
ness of 1 follows by the uniqueness of the completion.
Now suppose ¢ is an arbitrary a.i. Lpc-topology of A‘)J‘C we show that

the induced topology r on A is a.i. and Lpc. Obviously r is a.i. By the
first part of the proof o=ty where 9 is the maximal ideal of the local

ring Ag‘m. It is easy to prove that A is dense in (A‘)Jt‘ t‘m'), hence A isdense
in (ASR’ o), thus (A4, 7)€ Lpc.

Assume r is Lpc-minimal, then the embedding A=A is essential, still
more the embedding A‘)JE:A is essential. Therefore ¢ is Lpc-minimal, too.
Conversely, suppose M‘)Jt' ') is Lpc-minimal. Then the embedding Am:A is
essential. Since the embedding A:Am is essential even in the case A‘JR is

provided with the discrete topology, the embedding A=A is essential, too.
Hence 7 is Lpc-minimal. Q. E. D.

Theorem 28. Let A be a local integral domain with finitely generat-
ed maximal ideal W and t, be Hausdorff. Then there is a decreasing
bijection o between the set of all a.i. Lpc-topologies on A and the set W
of all prime ideals 3 of the W-adic completion Agn satisfying

(5) AnNP=0,
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such that for every N¢ W the embedding (4) induces on A topology o(3R).
The topology o(B) is Lpc-nininal ifi W is maximal with the property (5).

Proof The completion Am} is a complete local Noetherian ring [10],

hence s.1.c. Clearly for every ¢ W the topology o(3) induced on A by
the embedding (4) is a.i. and Lpc. On the other hand for every a.i. Lpc-to-
pology r on A we have =19n by the previous lemma. Hence there exists an

open and continuous epimorphism i A,m—> A such that f|A=idA,where2 is

the completion of (A,7). Now for P=ker i clearly PeW and r=o(R). The
uniqueness of P can be established as in theorem 2.2. Obviously for B, Q¢ V
with R= L we have o(P)=o(L). It remains to prove the last assertion. By
proposition 1.6 for R ¢ W the topology o(R) is Lpc-minimal iff the embedding
(4) is essential which is equivalent to the maximality of ¥ with respect to
(5). Q.E.D.

Remarks 1. If in theorem 2.8 ryp is a. i, then zyy is the maxmal a. i

Lpc-topology on A. In the general case there are only a finite number of
maximal a.i. Lpc-topologies on A, they correspond to the minimal elements
of W.

2. By Zorn’s lemma every a.i. Lpc-topology on A majorizes some Lpc-
minimal topology on A.

3. It was proved in corollary 2.4 that every L-totally minimal topology
is Lpc-minimal. Hence the L-totally minimal topologies on integral domains
can be dealt with lemma 2.7 and theorem 2.8. By lemma 2.7 the L-totally mi-
nimal topologies on integral domains can be studied locally, by theorem 2.8
they can be obtained by embeddings (4), only (3) must be replaced by (3%).

If in theorem 2.8 the quotient ring A/M is finit2, then gy is precom-

pact and all a.i. Lpc-topologies are precompact. That’'s whv all Lpc-minimal
topologies in this case are minimal. In this way we obtain theorem 1 from
[6], which characterizes the minimal precompact topologies on integral domains.

Corollary 29. Let A be an integral donain and Y be a finitely ge-
nerated maximal ideal of A with height M=1 and gy be Hausdorff. Then

™ S Lpc-mininal iff ran IS @i
Proof. Suppose ™ is a. i, then Zﬂ)l is complete local Noetherian integ-

ral domain with dim f{w=l. Hence every non-zero ideal of Z*).Tt is open and
intersects A in a non-trivial way. The minimality of ™ follows from theo-

rem 2.8. The necessity follows from lemma 1.8. Q. E. D.

This corollary is a correction to corollary 2 from [6], wh2re a.i. was not
suggested. Corollary 3 obtained there is wrong too. It can be replaced by the
following statement: on a one-dimensional Noetherian integral domain A hav-
ing a.i. rings of quotients A*)R with respect to all maximal ideals 9, the

Lpc-minimal topologies are exactly the 9t-adic. On the other hand, the Lpc-
mnimal topologies on almost Dedekind integral domains are exactly the -
adic, where 9 is a maximal ideal.

In what follows the relationship between Krull dimension and mijnimality
is examined.



162 D. N. DIKRANYAN

Proposition 2.10. Let A be a s. 1. c. integral donain with dim A=1.
Then every dense subring of A is Lpc-mininal.

Proof. By proposition 1.6 it is enough to show that every dense sub-
ring of A is essentially embedded. Suppose B is a dense subring of A. By
the Zorn’s lemma there exists an ideal £ of A with B(12=0 and maximal
with this property. Since B\ {0} is multiplicatively closed, £ is a prime ideal.
By lemma 2.1 A is local hence from dimA=1 it follows ¢=0 (the maximal
ideal of A is open, hence intersects A in a non-trivial way). This proves the
essentiality of the embedding B=A. Q. E.D.

The following proposition is a partial converse to the previous one.

Proposition 2.11. Let A be a conplete local Noetherian integral do-
main and A, be a dense subring of A with card A, <c. If the induced topo-
logy on A, is Lpc-minimal, then dim A=1.

Proof. Suppose dimA>1, then we shall establish that the embedding
A,—A is not essential which contradicts the Lpc-minimality of A, by virtue
of proposition 1.6.

According to Cohen’s structure theory of complete local Noetherian inte-
gral domains A contains a complete regular ring S such that:

i) A is finite S-module;

ii) S is a power series ring S=/[[x;, X5, ..., X,]l, where / is a coeffi-
cient ring of A and x,, X, ..., X, are analytically independent over / [10].

The ring / is a complete local Noetherian integral domain with maximal
ideal p/, where p is the characteristic of the residue field of A. Now i) im-
plies dimS>1, whence n=1. If n=1, then

dim/+1=dimS>1,

hence dim/=1 and / is not a field. By the completeness of / card /=¢. Set
S,=1 if n=1 and S;=/[[x,, ..., xn—1]] if n>1, then card §;=c. Let %N be the
maximal ideal of S, then card ®=¢. For every »¢N denote by 3, the prin-
cipal ideal of §=35[[x,]] generated by x,—». Since S is a unique factoriza-
tion domain, 3, is a minimal prime ideal and for every », w¢MN, v==u we
have B,=P,. By virtue of the lying over theorem of Cohen-Scidenberg we
can find a family {Q.},«v of distinct minimal prime ideals of A. Every non-
zero element of A is contained in at most a finite number ideals £., by the
primary decomposition theorem. Now card t>card 4, provides an ideal Q,
with A, N0, =0. Since A is a Zariski ring, {, is closed, therefore the embed-
ding A,;=A is not essential. Q. E. D.

It follows from the preceding proposition that the (x,,..., x,)-adic topo-
logy on the ring of polynomials &[x,, ..., x,] overa finite field is not minim-
al, if n>1.

The following theorem is a partial generalization of theorem A (see the
introduction).

Theorem 2.12. Let A be a complete local Noetherian integral domain
with maximal ideal Mt and card (A/M)<c. Then for every natural number n
the following conditions are equivalent:

a) dimA=n;

b) for every dense subring A, of A and for every decreasing chain of
a. i. Lpc-topologies v, >t,> ... >1, on A, where v, is the induced on A,
topology, m=n holds;
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) there exists a subring A, of A with the above properiies and
card A, <c.

Proof a) = b). Let A, be a dense subring of A and vy, ..., 7, be as
in b). Denote by A, the completion of (4}, 7,) (2=1, 2,..., m), in particu-

~ k
lar A,=A. For k=1, 2,..., m the identity (A,, ;) — (A,, 7,) is continuous,
after passing to theAcorrespo,r\xding completions we have an open and conti-
nuous epimorphism 7,: A — A,. Now P,=keri, is a prime ideal of A with
A (1R,=0 and

©) 0=P,=Pp= ... <Bn

By the density of A; in A MMNA=0 holds, hence P,=M in (6). Thus
m<=dim A=n. Observe that this implication was proved without the restriction
card (A/M)<e¢

b) = c). First we clarify the topological meaning of card (A/M)<c. De-
note for brevity card(A/M)=rt. Let d(A) be the least cardinal number such,
that there exists a dense subset of A with cardinality d(4). We shall prove
that d(A)=max {N,, 7} and this is true without the restriction r<c.

Suppose ¢ is finite, then A is compact and metrizable, therefore
d(A)=N,. It remains to consider the case when 7 is infinite. Then we have to
prove that d(A)=r. )

By the Cohen’s structure theory there is a subring S of A with the pro-
perties i) and ii) from the proof of proposition 2.11. In the case of equal
characteristics the coefficient ring / is a field isomorphic to A/M. By i) there
exist a, ag, .-, a;€A such that A=a,S+ ... +aS. Then the polynomial
ring /[x,, ..., X, is dense in S, hence the ring B=I[xy, ..., Xp ay, ..., aj
is dense in A and card B=rt. Thus d(A)=rt. In the case char A==char A/ the
coefficient ring / is a complete discrete valuation ring. Let #/ be the maximal
ideal of /, then //al is isomorphic to A/M. Choos=z a full system L of repre-
sentatives of //=/ in /. Then card L=t and the elements of / can be (uni-
quely) expressed as convergent series X% /7% where [,¢L (=0, 1,...).
Hence the set A of all polynomials of = with coefficients from L is dense in
/ and card H=7. Now the set FH; of polynomials of xy,.. , X, a;, ..., a
with coefficients from L is dense in A and card A, =7. Thus d(A)<r is estab-
lished in this case too.

On the other hand, {{+ M}, is a family of disjoint open sets in A with
cardinality 7. Hence, d(A)=r and the equality d(A)=r is established.

To finish the proof of the second implication let’s remark that d(A4)<c
implies also the existence of a dense subring of A with cardinality less than
¢. Now we apply directly b).

¢) = a). Let A, be a dense subring of A with the property mentioned in
b) and card A, <c¢ and assume dimA=d. By the Zorn’s lemma there exists an
ideal p of A maximal with the property A, P=0. Then the embedding
A, — A/ is essential, hence the topology induced on A, by this embedding
is Lpc-minimal. By proposition 2.11 depth ¥=1, hence there exists a chain of

prime ideals of A

0=P=P,= ... =P,=P.
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Obviously P, A, =0 (j=1, 2,...), denote by r; the topology induced on A4,
by the embedding A, — A/B, (j=1, 2,..., d), in particular 7, is the induc-
ed topology on A, by the embedding A,—=A. Clearly z; is a. i. Lpc-topology
on A, and 7,>1,> ... >1, By ¢) d=n. Therefore dimA~n. Q. E. D.

Remark. Suppose in the notations of theorem 2.12 dim A=n, then in
every chain r;> ... >t, of a.i. Lpc-topologies the last one —r7,— is Lpc-
minimal. In the case n=1 we have the followinz analogue of theorem A:

Let A be a complete local Noetherian integral domain with maximal
ideal M and card A/M<¢. Then dimA=1 iff every dense subring of 4 is
Lpc-minimal.

In the non-compact case there exist non-minimal subrings of A, even if
dimA=1 (see the example after definition 1.3.).

Now we prove the necessity in theorem A.

Proposition 2.13. Let A be a compact Noetherian integral domain
with dimA=1. Then every subring of A is totally nininal in the induced
topology. R

Proof. Let B be a subring of A, then the completion B is compact,
hence to prove the total minimality of B it suffices to show that B is totally
dense in B. In what follows we prove that B is a Noetherain integral do-
main with dim B=1. Hence by the primary decomposition theorem every non-
zero ideal of B is open and this implies the total density of B in B. Denote
by D the ring of integers in the case char B=0, otherwise if £ is the prime
subfield of B there exists an element ¢ of B which is transcendental over &,
in this case denote by D the ring of polynomials 2[¢]. In both cases D is a
Dedekind subring of B. Let M be the maximal ideal of A, then =DM is
a maximal ideal of D. Obviously the induced topology on D is coarser than
oy but the latter is minimal [5], hence they coincide. Now the completion

D
N

ideal MA is non-zero, hence it is open in A and the guotient ring

A/NA is finite. By (30.6) from [10] A4 is a finitely generated [)\n-module. From

Z)mcg it follows that B is finitely generated 5‘]2' module, hence a Noetherian

ring. On the other hand, A is a finitely generated B-module, hence dim B=dim
A=1. QE.D.

Corollary 2.14. Let A be a minimal precompact Noetherian integral
domain with card A<c. Then every subring of A is totally minimal in the
induced topology. R

Proof. Let A be the completion of A. By theorem 2.8 A is a compact

Noetherian integral domain. From proposition 2.11 dimA =1. Now apply pro-

position 2.13. Q. E. D.
The last theorem characterizes the dimension of Noetherian integral do-

mains with cardinality less than ¢
Theorem 2.15. Let A be a Noetherian integral domain with card A <c.
Then for every natural number n the following three conditions are equivalent:
a) dimA=n;
b) for every decreasing chain of a.i. Lpc-topologies

is a complete discrete valuation ring with maximal ideal N :D"l AM. The
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@) L>L> ... DT,
on A m=n holds;

c) For every Lpc-ninimal topology t on A and for ewvery decreasing
chain of a.i. Lpc-topologies (7) on A with tr,,=t m=n holds.

Proof. a) = b). Let (7) be a decreasing chain of a.i. Lpc-topologies on
A. By lemma 2.7 there exists a maximal ideal M of A with TR Applying

lemma 2.7 and theorem 2.8 we obtain an increasing chain

iBlCS,Ei,: o SB,
of prime ideals of the completion Agﬁ with3;NA=0(j=1,2,.., m).Obvious-

ly they are not maximal. From a) we have dim Zmzheight M=n,hence m=n,
b) = c). Trivial.
c) =a). Let M be a maximal ideal of A, we have to prove that
h =height M =dim A*)Jlé”'

Choose a prime ideal B of ﬁ,m with depth =+4. Since A has no zero

divisors A (| f =0, hence A is embedded in B:ﬁ;m/% and the induced topology

6 on A by this embedding is a.i. and Lpc. Now we can apply to the com-
plete local Noetherian integral domain B theorem 2.12. Q. E. D.

In the case n=1 we have the following corollary.

Corollary 2.16. Let A be a Noetherian integral domain with
card A<c¢. Then dim A =1 iff every a.i. Lpc-topology on A is Lpc-minimal.
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