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RELATION BETWEEN WEYL’S AND BOCHN R’S
CURVATURE TENSORS

GROSIO STANILOV

In the paper we study the following three linear mappings: a) C: R — C(R), where R
in an LC-tensor over an n-dimensional real Euclidean vector space (V, g) and C(R) is the
Weyl’s conformal curvature tensor; b) B: R — B(R), where R is a K-tensor over a 2n-dimen-
sional Hermitian vector spac2 with complex structure (V, g, J) and B(R) is the Bochner cur-
vature tensor; ¢) = : R — R*, where R is an LC-tensor over (V, g, J) and R* is the associated
to R K-tensor defined by (3). The main results are: 1) C commutes with the product B e «;
2) If an almost Hermitian manifold (M, g, J) is conformally flat then it is a Bochner flat
maniiold as well, that is ii C(£)=0, then B(R*=0.

Let (V, g) be an n-dimensional real Euclidean vector space. A tensor R
over (V, g) of type (1,3) with

. R(x,v,2)=—R(y, x, 2),

2. R(x,y,2)+R(y,2, x)+R(z, x,y)=0,

3. R(x, v, z,u)= —R(x, y, 11, 2),
where R(x,V, z,u)=g(R(x, y, 2), u), is called an LC (or Levi Civita) — tensor
For every such tensor R by the decomposition theorem of Singer-Thorpe
[1] and Nomizu [2] Weyl's conformal curvature tensor C(R) is defined:

! 28'V)
(N C(R):R—mSAg+mgAg.

where S is the Ricci tensor of R, S(V) is the scalar curvature of V with res
pect to R and by definition

(SALQ)(x, y, 2, u)=g(x, u)S(y, 2)—g(x, 2)S(y, w)+ &(¥, 2)S(x, u)—g(y, w)S(x, 2).

We consider the mapping C:R — C(R) defined by (1). It is easy to prove
that C is a linear mapping and [3]: C2=C, C(SA g)=0.

Let (V, g, J) be a Hermitian vector space of real dimension 27 with com-
plex structure /. An LC-tensor R over (V, g, /) with

4. R(x, v, z,0)=R(x, vy, Jz, Ju)
is called a K (or Kihler) -tensor. For every such tensor R by the decompo-
sition theorem of Mori [4] and Sitaramaya [5] Bochner’s curvature tensor
B(R) is defined;

B 1 SV)
(2) BR)=R—55 Sh 8+ Sy 808

where by definition
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(SA Q) (%, 32, 1) = g(x, W)S( 3, 2)—&(x, 2)S(y, )+ &( ¥, 2)S(x, 1) —&( ¥, W)S(x, 2)
+g(x, J)S(y, J2)—g(x, J2)S(y, Ju)+ g( y, J2)S(x, Ju)—g(y, Ju)S(x, Jz)
—2g(x, IV)S(z, Ju)—2g(z, Ju)S(x, Jy).

We consider the mapping B:R— B(R), defined by (2) which is linear and
[3]: B2=B, B(SAg)=0.

If R is an LC-tensor over (V, g, /) then the tensor R*, defined by
3 R*(x,y, 2, 1)

[R(x, y, z, 0)+ R(x, ¥, Jz, Ju)+ R(Ux, Jy, z, u)+ R(Jx, Jy, Jz, Ju)]

1

- olw

+ = [R(Ux, Jz, v, 2)— Ry, Jz, x, u)+ R(x, 2, Jy, Ji)—R( ¥, 2, Jx, Ju)

+R(v, Jz, Jx, )—R(x, Jz, Jy, ©) +R(Jy, 2, x, Ju)— R(Jx, z, ¥, Ju)]

is a K-tensor [6; 3; 7). R is a K-tensor iff R*=R. It is very important that
R* is a single K-tensor defined by R with R*(x, Jx, Jx, x)=R(x, Jx, Jx, X).
Now we consider the mapping * : R—R*, defined by (3) which is linear
and *2= =.
If S is a symmetric tensor of type (0,2) over (V, g, /) then [3]: SV g)*
=8’ A g where 25'(x, y)=S(x, y)+ S(Ux, Jy).

c
In [3] we have proved the following theorem:

—
2]

4 BoxoC=Box.
By (1) for the tensor R* we have
- 1 25%V)
(5) CRM)=R*— 5,5 STAE+ g1 on=2) 8N 8

and

1 , 28(V)
(CRN*=R*—g=5)S' A&+ ga—n@—1) 81 &

The last equality is a new de-omposition for the K-tensor R* which decom-
position is different from (5) even in the Kahlerian Geometry.

Now we shall give some new applications.

1. For a proper value i of the linear mapping C we have C((R)=4R,
which gives i(i—1)R=0. In this way the existence of the following remarkable
LC-tensors over (V, g) is estabilished:

a) R=0; b) R+0, C(R)=0; ¢) R=0, C(R)=R.

We note that in the case of a Riemannian manifold (M, g):

a) means that (M, g) is flat;

b) means that (M, g) is conformally flat but not flat;

¢) means that (M, g) is an Einsteinan manifold but not flat.

2. For a proper value 1 of the linear mapping B we have B(R*)=iR*,
which gives A(A—1)R*=0.

Thus we establish the existence of the following remarkable Ketensors R
over (V,g J):



168 G. STANILOV

a,) R*=0; b)) R*+0, B(R*)=0; ¢,) R*+0, B(R*)=R*.
We note tlnt in the case of an almost Hermitian manifold (M, g, J):
a,) means that (M, g, /) is holomorphically flat, that is H(x)=R(x, Jx,
¢, x)=0 for every x¢M,atevery point pe M. (3) implies that this is namely
tHe case, when

B[R x, v, 2, W)+ R(x, v, J2, Ju)+ R (Jx, Jy, z, 0)+ R (Jx, Jy, Jz, Ju)]
+R (S, Jz2, v, u) —R(Uy, Jz, x,u)+~R(x, 2, Jy, Ju)— R(y, z, Jx, Ju)
+R(y, Sz, Je,u)- R(x, Jz, Jy, ) +R(Jy, 2, x, Ju)— R(Ux, 2, y, Ju)=0

b,) means that (M, g, /) is Pochner-flat but not holorrorplucally flat;

¢,) means that (M, 0,J) is not holomorphically flat but it is a =- -Einstein-
ian manifold that is the Ricci tensor $* of R* is proportional to the metrical
tenscr ¢ at cvery point peM [3L

3. For a proper value 4 of the linear mapping = we have R* =R, which
gives A(Ai—1)R =0.

Thus we establish the existenze of the following remarkatle LC-tensors
R over (V, g, /):

a) R -0;b)R=0, R¥*=0;¢c,) R+0, R*=R.

We note now that in the case of an almost Hermitian manifold (M, g, /)

a,) mems that (M, g, J) is flat; b,) means that (M, ¢, J)is holomorphically
flat but not flat; ¢,) means that M g J) is a parakihlerian manifold.

If we apply (2) for R* we obtain:

(6) BR™=R*— g S*A &+ g

@n+2)(2n+4) ENE

Then

S*V)

CoBR*)=CR™) 2+4 C(S*/\g) mc(\/\g)

I[f we apply now (1) to the tensors R* S*A g, gAg and take into considera-
c C

tion (6) we obtain:
Theorem 1. The linear mappings C, B, *are connected by the re-
lation .

(7) : CoBox=Bo=x.

[f we combine (7) with (4) we obtain:

Theorem 2. The mapping C commutes with the product B o =that is
CoBox =BoxoC(C.

From (4) we have B(C(R))*=B(R*). If C(R)=0 then B(R*)=0. Thus we
proved the fcllowing statement:

Theorem 3. If an almost Hermitian manifold (M, g, J) is conformally
flat then it is a Bochner flat inanifold as well.

In the case of the Killerian Geometry we have: C(R'=0-B(R)=0. This
result gives us information about the geometrical meaning of the Bochner
curvature tensor.
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