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SEQENTIAL ESTIMATION FOR COMPOUND POISSON PROCESS 1
VALERI T. STEFANOV

The problem of efficient ‘in the sense of a quadratic function o loss under R1o—Cramer
regular con litions) sequentiil estimition is considered or the conpound Poisson process. All
elricient sequential plans for tha whole domiin o’ the paranaters are datermined.

1. Measures generated by stopping times and some sufficient statist-
ics. Let Q be the space of real fun-tions w(f), £¢[0, + >0), which are conti-
nuous from tie right and let # be the least o-algebra of subsets of Q2 with
respect to which the functions w(f) are measurable. Let &, denote the least
c-algebra of subsets of 2 wit1 respect to which the functions w(s) are measur-
able for s¢[0,¢]. Py is a probability measure on (2, #) depending on the
parameter ¢ G, where @ is a subset of R™

Definition 1.1. A Markov stopping time is a random wvariable t:Q
-0, + =] which satisfies the following condition: ¢, {v€Q: (w)=t}¢¥F,.

We shall denote by Ps;, the measure P, restricted to the ¢-algebra #,
and shall assume that the measure Py, is absolutely continuous with respect to
a measure P, , and the respective density is given by : d Py¢/dPs, ¢ = g(t, S{ ®), 6, 6,),
where S,:(2, #,) - (Y, #y) is a random element for each £, YV is a locally
compact metric separable space and &, denotes the Borel field of subsets of
Y. We shall suppose that d(S,, S,)t—\;O almost surely with respect to P, for

n

each 6¢6, where d is the metric of Y. M»oreover we shall suppose that
g(o,0,4,00) is a continuous function. It follows from Fisher-Neyman’s factorisa-
tion theorem [l1] that S, is a sufficient statistics on the probability space
(2, F, Poo).

Lemma 1. /If Po{r< +o0}=1, then S, is measurable with respect to the
o-algebra F.

Proof. Let r,(-):= —[—2"(-)]/2", where [a] means the integer part of
the number a. Of course 7,z almost surely (Pg). But S,, is measurable with

respect to &, because S, '(A)= U,,({r,,=t:}nS",.(A))ef. Ac®By, where {f;
n th

=k/2":k=1,2,3,...} means the set of values of r,. S, is also measurable
with respect to F because d(S,,, S;) ;== 0 almost surely (P,)

n—o0

Let U: =0, + ) X Y and let #, be the g-algebra of Borel subsets of U.
Let us denote by #(x) the component of # which belongs to [0, + =) and by
y(u) — the component of # which belongs to Y. The lemma 1 allows us to
define the measure m, on (U, By) as follows: mg(A): = Ps{(r, S.)€A}, AcB.

Theorem 1. Under the assumptions made @bove and if moreover,
Po{t< +oo}=1, Py{r< +oo}=1, then my is absolutely continuous with respect to
mg, and the respective density is given by . dmg/dme,=g(t, ¥, 9, 0,), £€[0, + o0),
yevy.
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184 V. T. STEFANOV

Proof. Let us denote by m? the measure generated by (z,, S.,) on (U, 8,)-
where = is as in the Lemma 1. Moreover let

A= {t, y)eU:t=11}, Cop: = {0 €Q2: r(w)=8}, m} (A): =m(ANA,L.

A€RB,. It is easy to see that:
m;_k( )= f dPy= f dP,

—1 —1
(58,07 (AN, ) CaaNS i (A4 1

- I dP, = h 8t Sy 0. 00dP,

—1 —1
Cn‘kqst,, (AnA4, o Cn,qu," <-m.4,,_k>’,,
& & & 3

= f g(t:, \gtz ’ 6. 90).1 Pﬂo . f g(t: y SA’Z y 8, 90 ).i Poo

—1 —1
C,,‘knst,, (ANA, ») N (z S,") Ana, »
k s

= ) (1, S. 0,00)d Py~ [ gt y, 9, 9\.)-'11'7130-
(e S AN, ) ANA, .
n .
But mj(A)=X7_ m? (A), i. e. mi(A)=[,8(t, v, 6, 9o)d"l;0- [t follows from d(S,n,
S,) — 0 a.s. (P,) that for every continuous and bounded function f:U — R

n— oo

we have:
[ft,y)dmi= [ f(r, S.)dPs ;5= [f(x, SHdPy= [ (¢, y)dmy

i. e. mi=my. The following lemma completes the proof of the Theorem 1.

Lemma 2. Let X be a locally compact metric separable space and
By — the g-algebra of Borel subsets of X. Let {u,}.=1, «w be probability
measures on (X, By) and let K be the class of all continuous functions f: X—R,
with compact support. Then: w,=u [fdu, — [fduv fEK.

Theorem 1 is shown by R. Rozanski in the case X—=R". V. Sudakov
has proved a similar theorem (see [4; 6]).

2. Sequential plans for the compound Poisson process. The compound
Poisson process is the process given by the formula (see [2])

4\'[
(2.1) X,:= X &, Xo=0, te(0, + o),

=1
where {&},= are independent identically distributed random variables, {/V,};=0
is the classical Poisson process with parameter 2¢(0, + -), {V,};=0 and {&}i=1
are independent. In this paper we shall assume that & is exponentially distri-
buted with parameter w«€(0, + -2). Of course the sample functions of this pro-
cess are continuous from the right and we shall assume that it is defined on
(L2, F). It is easy to show that

N, N —""“'th,;o"“‘oxr~—‘V; —Vy

(2.2) APii [ APy o =3 i e wo

0" “or
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where {P, . }:>o are the restrictions of P, on {o(X;:s5=<t},>0. We are unde’
the concitions of the Theorem 1, where the sufficient statistic is (N, X))
There exists a o-finite measure », on (U: = [0, + o) XA XR, B,) (A is the

set of natural numbers and zero, #, — the field of Borel subsets of U) in-
dependent of the parameter (4, «) such that:
(2.3) Piwu{(t, Vo, X)) € A} =A_|' Muke—i—rridy (¢, k, x), A€ B,

where 7 is a Markov stopping time such that P; , {r< + >=}=1, Py s {r<+ o0}
=1. We shall consider only such z that P, ,{r>0}=1 for every (4, u)€(0, + <o)
% (0, + =2) and p,.{r< +>=}=1 for every (4, u) belonging to some interval
J:= [a,, b,]X]a,, by] < (0, + =) X (0, + =0). Let 2(4, u) be a real function. We
shall suppose that /;: =0k/04 and %’ := Oh/Ou exist for each (4, w)eJ. A real
function f defined on U and measurable with respect to £, is called an
estimator of the parameter %(4, u). We shall consider only such estimators for
which the integral

(2.4) Lf fou)ikuke——nx dy (u), u=(t, k, x)

exists and is finite for each (4, ©)€J, and which are unbiased, i. e.
(2.5) E.nf = Lf f(@)2kuk e=4=r% dv () = h(4, 1), (4, u)€J.
We assume that there exist functions G(u), H,(u), Hy(z) independent of (4, u
and such that for each u¢U and (4, w)€J:
(2 4 k2 + x2)ARuk o= —nx < G(u),
(2.6) | f(u)(R/A—1)| 2*Fuk e—+—rr < H\(u),
| f (@) (R/lu—x)| ikuk e—*—rx < Hy(u),
(2.7) L[G(u)dv,(u)< + oo, Lf H(w)dv (1)< + ==, L[Hz(u)dr,(u)< + co.

Consider the identity
(2.8) [ ARk e—d—nxdy (u)=1.
U

Differentiating the function under the sign of the integral in (2.8) with res-
pect to the parameters 4 and « we get

1

(2.9) T B Ne—Ei1=0, & EiuN,—Ei, X,=0.

Differentiating the function under the sign of the integral in (2.8) twice with
respect to the parameters 4 and u we get respectively
[ [(k/A—tR2—k/i2)iku* e— = dy (u)=0,
[[(k/u—xP2—k/u|A*u* e—*—wx dy (1)=0.
The differentiation is justified, because

| (R/A—tR—k/A2| A*uk e—H—nx < Gu) [(1/A+ 1P+ 1/22],

| (Blu—x)2—Fk/u?| kuk e=t—ux - Gu)[(1/u+12+1/u2),

(2.10)
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and [(1/2+12+1/22), [(1/u+12+1/u2] are bounded in J. Differentiating the
function under the sign of the integral in (2.8) with respect to the parameter 4,
after that with respect to the parameter « yields:

(2.11) (B2 hu—kx/i—kt]u+ xt)ikuk e—H#—+* dy (1) =0.
The C(ifferentiation is justified, because
| k2/4 1 —=lex/h—FRt|u+xt| A2k e=H =y < Gla) (1) Au+121+1/2+1)

and (1 2w+ 1/A+1/u+1) is bounded in J. D.fferentiating the function un-er
the sign of the integral in (2.5) with respect to the parameters i and « taking
into consideration (2.7), we get

(2.12) K w)=Ey, (L Nf—<f ) K (4 w)=E,, ( }7 N.f—X, f) .

Theorem 2. For each Markov stopping t such that P, {1<+co}=1
for each (i, u)€J and for each estinator f of the function h satisfying the
assumptions madz above

(2.13) Diuf = {[2%,(4 )P+ [u?, (2, WP} {1E, ut},

where an equality in (2.13) holds at (L, wy) iff there exist constants f and
y, not both zero, such that f{u)—"h(iy we)=pk/1g—t)+y(R us—x) almost
surely (v.).

Proof. Let us consider the random variables (NV,/2—7) and (V,/u—X),
(4, w)eJ. We get from (2.9) and (2.10)
B (7 No— ) =0, Ei(5 M— X, ) =0, Esl(

2]

TN )

) A

2

2.14 1 1 1
= BN B No—X. ) = 5 BN,

Let us consider the Hilbert space of all functions n: U — R, E; . n’(x, V,, X,)
< + <o with a scalar product:

(nisma) = [ m(@m(u)iku® e=4=nx dv ().

It follows from (2.11) that (k/A—¢) and (k/u—x) are orthogonal. We know
every orthogonal system of vectors in a Hilbert space can be extended up to
a complete orthogonal system. The representation of [f—#(4, «)] in Fourier’s
series with respect to the complete orthogonal system generated by (&/i—%),
and (k/u—x) yields:

sl f— Ak 0 = B[ f (5 No—t )] /B (3 No—2 )]

e [ M) ().

We get (2.13) from (2.12) and (2.14), where of course an equality in (2.13)
holds iff there exist constants g and y, not both zero, such that f(u)—h(4, u)
B(k/A—t)+y(kR/u—x) almost surely (»,).
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We shall assume that #)(4, u)+0 or h‘ (2, ©)*=0 for at least one (4, u)€J.
It follows that the function f(#)=const. #¢U, cannot be an estimator for the
parameter #(4, u).

Definition 2.1. By a sequential plan we shall mean the triplet
(v, f, h) for which (2.5) holds.

Definition 2.2. A sequential plan is called efficient for (4, uy), if
the inequality (2.13) becomes an equality for (i, u,). The estimator f is
called efficient for (i, uo) and the function h is called efficiently estimable
or (g 120)-

Let Pc(0, + =0)X (0, 4 =0).

Definition 2.3. A sequential plan (z,f, k) is called efficient for P, if
the inequality (2.13) becomes an equality for each (1, u)€P. The estimator f
is called efficient for P and the function h is called efficiently estimable

jJor P.
Theorem 3. If the sequential plan (x,f, h) is efficient for (0, + =)
X (0, + o), then there exists constants, a,, ay as, a, such that a}+a3+a3=+0, a,$0

and
(2.15) aR+asx +ast+a,=0

almost surely with respect to »..

Proof. Let (4, u;) and (4, uy) belong to ((0, +o0)X (0, +0) and 2, =1,
;= us. It follows from the Theorem 2 there exist constants By, 7y, 61 B2 720 02
such that almost surely (»,)

(2.16) f(u)=pBi(k/4,—1)+yi(k/y—X)+ 81, [(1)=Pok/Ia—1)+rik a—x)+ b,
We obtain from (2.16) that:

(By/ Ay —Balda +71 1ty — 72l 1)k +(Ba— B )t + (ra—71) X + 6, —8,=0

almost surely (»,). It follows from 1;=14), u,4u, that when B,=p, and y,=y,,
then B,/1,— Bo/dg+ 71/t —ys/us+0. Now we have to show 8,—d,+0. Let us
suppose that §;—d,=0. It follows that

(2.17) a1k+a2x+a3t=0

almost surely (»,), where a,, ay, a3 are real numbers (a}+a2+a2+0). It is easy
to see that (2.17) is impossible when a;=0, a;=0, a3=0or a,=0, a;==0, a3=0.
Let us consider the case when a;=#0, a,%0, a3+0 and signa;*+signa;, where
(i,i) =(1,2) or (i j)=(1,3) or (i, j)=(2,3). We can write (2.17) as follows:

(2.18) t=ak+ d)x

a. s. (»,), where a;>0 or a,>0. Let c:= max (|a;|, |ay]) and let 7y:= inf
{t>0: t=c(N,+X,)}. To show that (2.18) is impossible it is sufficient to prove
that there exists (g, uo) such that P, . {ro=+}>0. Let Z,:= (N, +X))
and let #,:= nc. There exists (Zg, 1)€(0, +>0)x(0, +0) such that d:=
c(Ag+4Ao/ug)< 1. It is easy to see that for each m and n, O<m<n, we can
write
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(2.19) Pipuptto>ta} =Py {Z/ =0, Zsy<c, ..., Z,,<(n—1)c}
<(ﬂ—-1)L‘}

}PX“. 79 {/‘t,n=0} P}. . iy {Ztm—,Ll_tm <mc,..., an—lm

(Z,=0}P, . {1Z Ey. (2

tme1—tm T Sl )< me —cd,
1 Z Eiy o (Ztymtn) | <(n—1)c—(n—m)cd}.

>
=1 iy K tm+1—tm

th—tm

But for each n, n>m, we have:
(2.20) (n—1)y—(n—m)cd =(m—1)c+(n—m)c(l —d)

=>[4c(m—1)]" [% c(1—d)(n—m) "
[t is easy to show that
Diyuy Ze= Eiy sy (24—, 1y Z,)*=C?Aet(2/uf +2]uo+ 1)

“0" #o
Let A:= [A(2/ud+2/us+ )72 Z2_ n=¥2% Of course A< + oo and there exists
m, such that for each n, n>m,:

221)  [He(mo— D" |3 (A=) (n—mo) | "=V TFADsy 1, (Z,pm I
We can write from (2.19), (2.20) and (2.21) that
P»'.O. 7 {'o > tn} >P;.0, #y {Zt,,,O:O} Plo- g, {(Z'”’o“ "mo—E’v “, Z!m0+l—1m )?

0

<(l1 ‘i‘A)(Dlo- Ko Ztm +17m )2 (an—fm —ELO' o Z’”_ tm, P

<+ sy Zeymty )7}
We obtain form Hdjek-Rényi-Chow mequallty (see [5]) that for each n, n>m,:
Py g {T0> 1.} =P; {Z,MO:O}(I—A,/(1+A))>0,

i e Py {ro=+}>0. We can consider all other cases in analogous way. It

completes the proof of the Theorem 3.

Definition 24. A sequential plan (z, f, k) is called a simple plan if
v denotes the moment of the first attaining of the set t=t, [t,€(0,+ =0)]
by the process (t, N,, Xi),=o0.

Definition 2.5. A sequential plan (z, t, h) is called an inverse plan if
v denotes the moment of the first attaining of the set k=ky, (kR.—fixed
ko=1,2,...) by the process (¢, N,, X;)i=o.

Theorem 4. Only the simple and inverse plans may be efficient se-
quential plans for (0, + -2)x (0, + o).

Proof. If the sequential plan (z, f, ) is efficient for (0, + =©)<(0, + =0),
then it follows from the Theorem 3 that », is accumulated on the set «k
+agx +agt +a, =0, where a?+ai+al+0 and «,+0. Without loss of gmerality
we can assume that a,>0. If «,=0, 4,0, a3 =0 then P, {r<+o}<l.

a;=0, ag=0, az= 0, then it is easy to see that only in the cases ¢-— to.
[£,€(0, +<2)] and k=*k, (R,=1,2,3,...) we get P, {r<-+co}=1 for each
(A4, 1) €(0, 4 c0) (0, 4+ c0). One can see that for each another case using the
results of [7] and the methods in the Theorem 3 that there exists (4, )

0" “o
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(0, +22)% (0, + =) such that P; , {r< +oo}<1.1It follows thaty, is accumulat-
¢ed on the set £=¢, [£,€(0, +0)] or k=k, (kR,=1,2,3,...). The fact that«
is a moment of the first attaining we can obtain in analogous way as it is
done in [7].

Theorem 5. The simple and inverse plans are efficient for (0,4 co)
X (0, +c=). The following are the only efficiently estimable functions:
a) for the simple plan

(2.22) ki, W)=ai-+bi/u+c

and f(u)=ak t,+bx to+c is its only efficient estimator.
b) for the inverse plan

(2.23) h(A, w)=a/i+blu+c

and f(u)=at'ko+bx/k,+c is its only efficient estimator.
Proof. We get from the Theorem 2 that the necessary condition for f
being an efficient estimator is:

(2.24) f(u)=ak+px+yt+4,

where a, 8, y, 6 are real numbers. We shall show that this condition is suf
ficient. To show that (2.6) and (2.7) hold for the estimators (2.24) it is suf-
ficient to prove that for each (4, u)€(0, + )< (0, +o=):

(225) E;,_,,Nf< + oo, B ?< + 0, Ej,,,‘Xz< + oo.
If ¢ denotes the moment of the first attaining of the set ¢=#,, [£€(0, + =0)
or R=ky ky=1,2,...), then one can see using the results of [7] and the
lemmas in [3, p. 262—263] and [5, p. 44] that (2.25) holds. We can write the
following equalities :

k=Mk/i—1,)+ ity

x=—(kR/lu—x)+i(k/i—t,) u+ity/u,

= —(ko/A—1t)+ky/2,

x=—(ky/u—x)+ko u.
From then and from Theorem 2 we obtain that the estimators (2.24) are ef
ficient, when r denotes the moment of the first attaining of the set £=¢,
[£,€(0, +>0)] or b=k, (Bo=1,2,3,...). (2.22) and (2.23) can be got using (2.9)
This ends the proof of Theorem 5.
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