Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



A LIMIT DISTRIBUTION RELATED TO RANDOM MAPPINGS
AND ITS APPLICATION TO AN EPIDEMIC PROCESS

LJUBEN R. MUTAFCIEV

In this paper we consider random graphs, corresponding to random self-mappings of th,
finite set {1, 2,... ,n). The limit distribution of the number of cyclic graph’s elements.
which are contained in components of sizes exceeding a.n, 0<a<l, is derived for n—co03
This result is obtained in terms of Laplace-Stiltjes transforms. Some limit properties of the
nverse epidemic process, introduced by I. B. Gertsbakh (1977), are proved.

1. Introduction. Consicer the set J, of all the mappings of the finite
set X={1,...,n} into itself, which satisfy Tx=x, T¢J, x¢X. There are
(n—1)* Cifferent mappings in 7 ,. Each mapping T ¢7 , is a digraph G, whose
points belong to the set X; the points x and y are joined by an arrow iff
y=Tx. The graph G may consist of disjoined components and each compo-
nent includes only one cycle. We classify the components of G, correspond-
ing to their size, i. e. to the number of points they consist of. Let an uni-
form probability distribution on J, be given (each mapping 7 ¢J , has pro-
bability (z—1)~"). The random mappings just described are the second type
mappings studied by B. Harris [1].

Let u,,=u;T) T€T, be the number of cyclical points of Gy, which
are contained in components of sizes exceeding s(=2). Suppose that n— <o,
s~an, 0O<a<1. We derive an asymptotic result for the distribution of u,,
in terms of Laplace-Stiltjes transforms. As an application of this limit theorem,
we Ciscover some asymptotics for the inverse epidemic process introduced by
I. B. Gertshakh [2].

2. Preliminary results. The mapping 7 ¢J , is called indecomposable iff
it generates only one cycle. Let C,, denote the number of indecomposable
mappings in 7, which have exactly £ cyclic elements. It is known, that for

n=k=2 [2, p. 432] C,.=( Z Yo !nn—*=1, The number of all indecomposable
mappings in J, is

n n-2 —_——
() Bi= L Cua= (=D T §7 =VanZe(n—1y=(1+o(l)), n—oo.

Assign to each indecomposable mapping T the probability B!, and de-
note by &, the number of cyclic elements in 7. The probability distribution
of &, is

(2) P{¢,=k}=n!n"*(n—k)!B, k=23,...,n

The random variables &, have generating functions
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n—1 7
(3) P(x)==F— = (k! mtas.
Let M, (ko ..., k,) be the number of all mappings 7 ¢Z,, which have &
. components of size i, £,=0, i=2,...,n, Nik;=n. It is easy to see that
M by .. L E)=n!Bs. B2 (nl)rky! ..k,

Now define the sequence of generating functions of the numbers M, (&,
VR,
my=1, m,;=0, m,(xy, ..., X,)= by M (ks - vy k,,)x{f'e .. Xhn, n=2.

The following relation between the generating functions m, and P, is
obtained in [3]:
Lemma 1. If |z|=e™}, z==e™}, then

- zn o B
Eo My(Po(Xg)y o ooy Po(Xp)) 7= exP(k22 ;% Py(x2)2%)
n= —

hol: s for | x,|<1, k=2,...,n.
We shall use also the power serieses B(2)=ZX* ,B,2"/n!, S(z)=Z3 n"2"/n!
and €(z)=3>_ n""2"n! (|z|<e™?, z+e™'). It is well-known [4, Section 7.1

and 72] that the function @(z) satisfies the transcendental equations

4) Oe—t=z, Oze=*)=2z (e H)=1),

and

(5) S()=[1—060)]

Using some general combinatorial results [5 p. 179] we can obtain also that
©) exp {B(2)} = S(2) exp { —O(2)}.

We also need the limit distribution of the random variables &, (see (2))
for n—-o.
Lemma 2. If n—= and u=o(n'®), u>0, then

@) P(s, /N n=u}=\2/zn e==%(1+o(1)).
Proof. Applying the limit-relation (1) and Stirling’s formula in (2) for
u=*k/\/n, we obtain ,
P(sNn=u} = e~ \2/a(1 —u/\n)—n+=m =121 /{n)1+o(1)).
For every u=o(n'®) we have (—n-+ujn—1/2)In(1—ua/Jn)=uJn—u?/2+o(1).
These two relations give the limit distribution (7).
3. The limit distribution of «, ,. Consider the random variable u,,,, defin-

ed in the introduction. In [3] is obtained the following result: If n—co,
and s~an, O<a< 1, then

E u; =/ 2n/7 (7/2—arcsin ya)+ O(1).
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Here we shall give an asymptotic relation for the Laplace-Stiltjes trans-

formation of uy,,/\n.
Theorem 1. /f n—-=0 and s~an, O<a<, then for a fixed t=0

= « Dt a)

EexP(_tu""/\/n)?ng/a g(kk! +o(1),

where [(t, a)=1,
L, a):f“_fjft\?lw—1];[,‘(:&971]11...dx,, k=1,

Veak Xy Xpyl—x1— ... —xp
Var={x;=a; i=1,...,k x;+ ...+ x,<1}, and
(8) FO)=\T7 | exp(—tx—x*2)dx.

0

Proof. By lemma 1, substituting x;=1 for j<s and x;=x for j=s+1,
we have

= n 2 Bpzk
I () = =exp{B(R)+ L = (Pu(0)—1)}
where ¥, (x)=m,(1,..., 1, Psys(x),..., P, x)). Hence for the generating

function of wu; , it follows

! 1 et Byzk d
Ex“sn=(n—1)—" g/”(x)=(”f’_—llnﬁ fexp {B(Z)+k=2.:+1 —kkzl— (Pk(x)—l)};,'zﬁ.

A

Fig. 1

Substitute in the last integral z=w2"", x=e—”‘/‘_({20) and choose the path
of integration C in the plane w=&-+in as on Fig. 1 (see [6, p. 648]). Here

wo=1 — I3, @ =1—1{s—i {I—(1— 1N, wy=1—1/J5+1—(1—1sp.

By (4)—(6) we obtain
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_n! _ e Brwke—kw —tJn dw
Eexp(—tu, Nn)= l,ruu et 1)we‘p{k;:“ = (Pye v')"l)—wﬁ'

It is easy to sce that the integral on the unit circle tends to O, when n— <o
and s~an, O<a<l1, and the non-zero part of the integral is on the chord

W Wyt
(9) Eexp (—Zu,,,/\n)
n! 1 _ S Brwke—kw = dw |
==y 3ai T e exp{ :‘H 3 (Pr(e*/yn)—1) sy +o(l).
wy =S

Put in this integral w=1—w/s. For the same values of s it is easy to ve-
rify that

(10) nl (n—1)ren=ba=eN(1 —ops ;=D = 2an e¥"2 (1 + o(1)),

(11) (1 —v \s)tekoVs = e+ 5(1+ O(1\'s)),

and

(12) Bie */(k—1)!=12+0( k), k—c=.

Now we shall study the asymptotic behaviour of the sum
o;\-v)_—k:‘;ﬂ % — ) e (e V)= 1),

Using (11) and (12) we obtain the representation

o, (0)= 4 ¥ L emrt(Pye NT)—1)Y1+O(1\5))
2k>)k

(13) =[o(2)— o (M1 + O(1 \5)),
1 .1 —kv32s —tya 7 ,4_1_ > L —kv?2s
o (v) '«-Tk.‘;’_ - € R Pye=vt), o3 (v)= 5 ..‘;x i kv?/2s

We may consider ¢’(7) as a Riemann’s integral sum:

2 dx+o(1).

.v|._.

, 1 o 1 2 kls)/2 1 2 e—uv®
(2)(79) — —— .\_ —v¥k/s)y2 - _"_ n . + 0l —
(14) () =35 iss (BIS) e 2 lf u —dutoll)=

L

2

For the sum ¢"(v) we shall use relation (7) of lemma 2, which can be written as
(15) P{sr=1}= \ e—’“(l+o(l))

for & ~s~an, O<a< 1, and [ -o(%?"). For arbitrary [ (2- (- k) and ¢>0 there
exists a natural number £, such that
P{sp =1} =(1 +eW2/ak cxp (—{2/k)

when % =k, Therefore
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(16) S P{& =1}~V < (1 +¢)2k/ae*"" =0, k— .

RT2<i<k
By virtue of (14)—(16) we get
1

e L o2 = L eres 3 exp(—f_ 2y 1
W)=\ E 2, e S e (i )+ o(l)
1 /2 ¢ 1 1 #o?2 . 1 tal 2
= -\ = = @RV z — exp(—————— —F/—=
2\ T ops>1 S (ks)*? G2 Ty> (T =@lVsy VS p( Vs S(k/S))
(1+o(1)).
Using again the Riemann’s integral sums we obtain
1 —2_ oo e—xv’/? oo
M) = — e —ta y p—y?2x ’
oM(v)=— \/ = i{ e g’e e dydx+o.1)
a7 -
! /7 T e2 7 —t Xyl p—y2
=5\ xyIv e=r2 dyd. 1).
e N~ L —=—[¢ 72 dydx+o(1)

From (9), (10), (13), (14), and (17) it follows that
E exp ( _ttu.r.n’/\v‘/;)

[~ 1+ioco 5 oo —x/2 = —
R JORTING S Pl ST S
T 2 X

2aija 1

1 % e—x2
J

dx)e”? dv+o(l).

-3 [—
Putting azain in the last integral ¥2=p aad then x/2p =u we gel
[ — T oo a
(18) Eexp(—tu,, ’\’n)=\/2'—a Ql—l.fexp{f e—*rg(u, t)du} ‘p,_ dp+o(1),
T 72 N

where the path of integration I7 is the corresponding to the substitution pa-
rabola, and

[ f(¢J2au)—1)/2u, when u=1/2

U, )=
&lu. 1) { 0, when u<1/2,

(f(¢) was defined by (8)). Let us represent the first exponential function in (18)
as a power-series in

GAp, 1) =l£2e—"ﬁga(u, t)du.

The powers [G, (p, ?)]* are Laplace transforms of the kth convolution g, .(z,£)
of the function g.(u,t). It is easy to see that the integral over I7 in (18) gives
the inverse Laplace transform. Since g.x(#, £)=0 whenever 0=¢<k/2, the power
series

Vi 2 B Ga(p 0 e gy
2a 2al ;0 7 j! N
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is a finite sum whose powers are less than 1/a. Thus for any natural number
k<l/a

1/

Lua®)=\ 5 gogr | 1Gip. OF “eap= 2T gty —2—.
‘ 2a 27l k! 7 * N kY 4 ’ V1 —2au
Performing this integral we get Lk,a(t)=ﬁ—lk(t, a). In order to complete the

proof we shall remark that Eexp(—Zfusq/N7) = So<r<ia Laa(t)+o(1).

Corollary. If n—> and s~an, 0<a< 1 then the sequence of random
variables {n='2 usn}> | converges weakly to the random wvariable wu with

Laplace transform

(19) Ee—tu= 3 Iit, a)/2"k\.
0=k<1/a

The distribution function Hu(x) of the random variable « satisfy the inequa-
lity Hu(0)+=0 (see (19)). For example, let 1/2<a<1, then the sum in (19
has only two terms. Therefore

1 1+yT—a 1 X}
H = IS S— N et y——1 T
w(x)=1——1In = - 7 wf[ ym‘/l_ydy du

—ud/2 T

where @y(u)=\2/x [§ e—*2dz.

4. Application to an epidemic process. We shall apply the result of theo-
rem 1 to study an epidemic process introduced by I. B. Gertsbakh [2].

Define 7T*x to be the kth iteration of 7¢J, on x¢ X, where & is inte-
ger, i.e. T*x=T(T*1x) and T°x=x. If for some <0 T*x=y, y is said to
be a kth inverse of xin 7. The set of all kth inverses of x in 7 is de-
noted by 7®W(x) and Py(x)=%=_.T®(x) is the sct of all inverses (or prede-
cessors) of x.

Let m bacteria be placed at elements x,,..., x,, where x,€X, i=1,...,m

All (;) different occupations are equally probable. An inverse epidemic pro-

cess (IEP) [2] is defined by the infection being delivered from the infected
points to all their predecessors. The area which will be infected is the set of
all inverses of x,, ..., x,: P{n)= U7 Pyx;) Denote the number of distinct
elements in the set Pr (n) by |P,(n)|. Consider the function C,(m): 7 ,— R!
which maps each 7 ¢J, into the integer | Py(m)|. Let O<a< 1, and consider
the event {C,(m)=an} which denotes that the infected area arising from m
bacteria exceeds a fixed a-ratio of all elements in X (m bacteria infect an
essential part of the population).

In the paper [2] I B. Gertsbakh has shown that P{C(m)>=an}-0 for
m=0(\/n). In [3] is proved that P{C,(m)=an}—1 for \n-=o(m).

Theorem 1 can be applied to study the limiting behaviour of the probabi-
lity P{Cm)=an} for m~nn, y>0.
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Theorem 2. If n—co, m~wn, y>0, and a¢(0, 1) is fixed, then
(20) My(a, y)=P{C(m)=an}=My(7),
where M(a, y)=1—Ee%, and

1779 . 9.
M) =1 a2 for  y=y2/m,
2 { 1 for y>\/2/n.

Proof. In [2, pp. 434—435] Gertsbakh derives the inequality P{C/(m)
zan}gm\/n/Qn for arbitrary m. Letting in this inequality m~y/n we obtain

the upper bound My(y).
For the investigation of the lower bound of the probability P{C/(m)=an}

we shall consider the random variable 7, [3], which is equal to the number
of bacteria, placed in cyclic elements belonging to components with sizes
not less than s. According to the formula of total probability for the distribu-

tion of »%,,, we obtain
! n—1
k —k
(_)(':ﬂ__) Plus,n=1}.
(m)
Using relations {#,, =1}={C/(m)=an}, P{n,, =1}=1—P{y,,=0}, and letting
in (21) £=0 we obtain, that

PCmzanyz1— 3 (") (5) Pluasa=1}

m m

21) Pims=h}= £

n m m
=1—l£2(1_ 7) cen (1 —ml) P{y‘.’l:l}

Hs.n

n mds T m us.nlNa
>1—1=20(l——;I—)P{u,,_,,—l}—l—E(l—-T) =1—E(a,,,) s

where a,,,=(1—m/nV% =(1—y/Nn+o(1\/n)¥" —e—*, n—oo. The Lebesgue do-
minated convergence theorem gives the first inequality in (20).
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