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MICROLOCAL PARAMETRIX FOR THE CAUCHY PROBLEM
FOR HYPERBOLIC SYMMETRIC SYSTEMS WITH SYMPLECTIC
MULTIPLE CHARACTERISTICS, I
VALERY H. KOVACEV

A hyperbolic system L with a principal symbol of a diagonal form and a determinant
(r— iy m(r— iy n: is considered. A microlocal parametrix for L n:ara point where the character-
istics are of variable multiplicity and {r—i;, r—A,}+0 is constructed and its singularities are
studied,

1. Introduction. In our previous paper [1] we have construced a para-
metrix for the Cauchy problem for the (n,+ny)X(n,+n,) system of the form

‘(Di‘tD,(,)lnli: 0 , 0 :B.

In the present paper we consider the following (n,+n,)X(n +n,) system

(D[—/..l(.\’.t DX))I,;‘ 0

0 (Dr_}-z'-t. t, D.\’))I,“)J‘_A(x' t, D,p Dt)y

L(x, t, D, D, L(

where (x, £)=(x,, ..., X, t) denotes a point in R**', Here 7, is the identity
(n,><n,) matrix, x=1, 2, i,(x, ¢, D,), iy(x, t, D,) are pseudo-differential ope-
rators (¢DO) in the tangential variables dependiny smoothly on ¢ near t=0
with real and homogeneous of degzree 1 in & symbols A(x, ¢ &) A(x, t, D,,
D,) is a classical wDO of order 0. This will be denoted further as A ¢ CL(R™*").

Let (x°, £)¢ T*RMN0 be a fixed point. Assume that for t near 0 and
(x, &) in a small conic neighbourhood of (x° &%) we have ix, £, &) =ix, &)
+tr(x, £, 5), x=1, 2, with r(x% 0, &)+r(x 0, &). Thus we obtain {r—1,
r—A} (X7, 0, 2, )+0, where r° =A(x’ £)and {,} denotes the Poisson bracket.

Remark 1. In [2] Alinhac has considered the system

D,—i(x, t, D,) Wx, £, D))

L(x, t, D, D,)=
(x ‘) ( 0 D,—ifx, t, D,)

>-+-A(,\‘, t, D))
with »(x, ¢, £) homogeneous of dezree 1 in & and »(x° 0, £°)+0. This system
has the same characteristic manifold but is not symmetric.

Let ' be a closed cone in 7%R") 0. Denote by 2,(R") the space of dis-
tributions with wave front set contained in /°. Our main result is the follow-
ing:

Theorem 1. There exists a conic neighbourhood I' of (x°, &) and an
operator E: 2, (RN &'(R") — 2'(R"+) such that for every f€2,.(R)NSE(R")
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we have LEf¢ C=R"+1), y Ef—f ¢ C=R"), where y, denotes the trace on t=0.
Mcroover, E can be represented as a sum of two Fourier integral operators
(FIO) of order —1'4 associated with the canonical relations C,(0) and Cy0)
which have the forn

C0)={(x, £, & 7; ¥, n): (x, £, & 1) lies on the null bicharac-
teristic of D,—i/(x, t, D,) issued from (y, 0, n, A4(y, )}, ==1, 2

Remark 2. The amplitudes of the constructed FIO belong to the class
S XXI)xTI')) with X3 x° I''3&, I'=XX1I',, I an open interval containing
the origin. This class is not covered by the calculus of Hormander [5] for
FI0. F.cwever, as was nenticned by Melin and Sjostrand [3, the space
1;'-(X, A), of Lagrangean distributions can be defined for o=1/2, Moreover,
the calculus of FIO with real phase functions can be extended to the case,
when o=1 2 and the results concerning the composition of FIO remain true
in this case.

The plan of this paper is as follows. In section 2 we reduce the system
L to the simple microlocal form, mentioned above and investigated in [1].
n section 3, using the results of [1], we construct a parametrix for the Cauchy
problem for L. Making use of the classical Duhamel’s principle, in section
4, we construct microlocal parametrices for 2 and L. In section 5 we study the
singularities of the constructed parametrices. Finally, in section 6 we reduce
the case, when the characteristics coincide in some rather complicated way to
the one under constideration. This enables us to construct a microlocal para-
metrix in that case as well.

2. Reduction of . to the simple microlocal form of P. We begin with
a symmetrization of the characteristics. We have assumed that 1.(x, £, &)
=ix, §)+trx, t, &), =1, 2. Define r(x, ¢, &)=(Ah—4i)(x, ¢, &) 2t=(r,—r5) (x,

£, 62, b6(x, b &) = — (h+i)x,t, §)2= — i(x, ) —Hr,+r) (% ¢ &2 Then
we have —i,=0—¢r, —ly=0+¢r and r(x°, 0, &°)=0. With these notations
B (Dy+6(x, t, Dy)—tr(x, t, Dx))[n,5 0
L(X, t, Dx, Dt)_( . nm ok HmnE ek b e e 0 ..................... (Dt+8(x’t’Dx)_*_t,(x't’Dx)l;;;.)

+A(x, t, D,, D)).

Now we shall use the following

Proposition 1 (see [2]). There exists a tangential, i. e. in the
tangential variables x FI0 T(t), depending smoothly on ¢, such that
T7(0)=1d and for t near O the relation T—Yt)D,+6(x, t, D,))T(¢)=D (mod L°)
holds.

Introduce the operator

D,—tr'(x, t, DI, °
=(‘ .......... e b P O .. >+A’(x, t, D,, D,),

where 7/(x, ¢, &) is homogeneous in & of degree 1, 7'(x% 0, £)%0, A'(x, ¢, D,, D,)
€ CLOR™ 1),
Next we shall use the following reduction of the principal symbol.



206 V. H. KOVACEV

Proposition 2 (see (2]). Assume that &)+0 and moreover £r'(x° 0,
£)>0. Then there exists a classical symbol h(x, t, & v) of order 0 and a)
homogeneous canonical transformation y:(x, t, &, t)—»(.\;, £ & ;). defin-
ed in a conic neighbourhood I' of(x° 0, &, 0), such that for t=0 we

have t =0, x=x, =& the symbol h is elliptic in I' and the symbols
h(x, t, & )t Ftr'(x, t, &) in the new coordinates become 15 t &,.

Let H(x, t, D, D,) be ayDO with a symbol A(x, ¢ &, 1), suitably pro-
longed. Consider a Fourier integral operator F of order O whose canonical re-
lation is a closed conic subset of the graph of z. Suppose F elliptic at (x°, O,
&, 0), F, ,_o=u;+=0. Then the operator L' =FHL'F~! obtains the form

(Dy—tD, )1, 0

L”=< 0 (b;;tzb;;3'i'n;)+3(x‘ 6 Do D)

with B¢ CL°(R"+1), where we write (x, 7) instead of (;c, ).

Now we only need to reduce the lower order terms of L”” in order to
obtain a system of the form of P. We shall carry out the reduction in two
steps.

First step. Write B(x, £ D, D,)=('f3.u. .5;.2), where By, Biy Bay Ba

21 922
are yDO whose symbols are respectively (n,<Xn,), (n,Xn,), (n,Xn,), (nyxny)
matrices. Assume that the symbols By (x, £, & r) have the following asymptotic
al expansions

Bu(x, t, &, 1)~ Z B/(x, t, & 1), k I=1,2
=0

(HY\:
We shall determine an operator H”z(-&-’-f-f;%-), where F° is a (n.x<n,) matr-
22

ix, x=1, 2, so that

(‘D‘—‘thl).In. 33(1)2(xv t, Dy, Dy)

POz [fO [ L 55 e -1
L HO= H (Bgl(x. ¢ D, DYDAD],] )(modL )

and A°=Id for £=0.
For the symbols A? (x, ¢, & r) we obtain the following matrix equations
(5 + (=1y t g (=118 o + B, JHO, =0
with initial conditions F° (x,0,&,7)=/,, =1, 2. The solutions A}, and H),

of these equations are homogeneous of degree O in (&, 7).
Suppose that we have reduced L” to the form

(D—tD, )1, 0 mt o ?.:B,T_," o
(.. et (D;+tD,‘)1,,,>+/;5 (82_‘/ %) 6 Du DY+ BT 1 D D)

with
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mex 15w 3 (B0 B
B—"(x, t, & 1)~ X : (x, t, & 1).

e —J
j=m \Byy’ By

H™:
Next we shall find an operator H“""=< " ot )ECL“”'(R"“) such that H—™
=0 for £=0 and

(Di—tD )1, 0 ) m;l 0 BB/> (Bﬁ"’ BE’" m
{< o z(D,+tD,;'>i;.;')+ (.B.:,:....(.).. N By™ Byp™ A

o [(@=D o 0 B3 .
=(ld+H ){( -------- o 5<Dx+th,>ln>+“(b—f 0/)} (mod L="=),

For the symbols H-"'(x t, &, r) we get the equations
(g + =1yt ot (= 1y ) Hom+iB =0

with initial conditions A ™(x, 0, & 7)=0, »=1, 2. The solutions of these equa-
tions are homogeneous of degree —m in (&, 7).
Let H ¢ CL°(R"+1) be an elliptic yDO with symbol

e b & %(mo ) f ('+”" ...... ...,

22 j=1
H=1d for =0 and H~! be a parametrix for FH, i. e. H1H=I1d, HH !
=Id (mod L—=). Denoting L”"=H7'L""H, we obtain
o [(Pt—tDe )y, iBidx, t Dy, Dy -
L (3,,(x t. Dy, D,) (DHtD ), )(mOdL )

Second step. We shall determme an operator K ¢ CL™Y(R"+!) such that
L,r'“((D‘-tD")I"" Byy(x, t, DY

" \Bu(x, t, Dy): (De+tDy ),
where Byy By € CLOR") depend smoothly on £. Let
Kix, t, & 1)~ 3 (_.9..__"7)(x, t, &)
= \K5/ 0
Then the symbols K}, m=1, 2, l=3—m must satisfy the equalities B (x, t,
& 0)=8(x, t, §+(+(=1)"t5) K, }(x, t, & 7). Taylor’s formula yields

) (Id+K) (mod L—=),

Bi(x, t, & 0)—Bly(x, t, & t&)= of_og[B?z(x’ t, & st+(1—s)té)lds

| 08t
=(t——-t$1) G"(T) (x, t, 5, St+(l—S)t$1)dS.
We choose BYy(x, t, §)=BYx, t, & t&)
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‘ 1 9BY%, i )
KGl(x, ¢ & 1)= g(» o) (0 b & stH(1—9)ts)ds

and similarly we define B) and K7

Foll yving the same way we define the symbols K/, Bl forj=2, 3,...
Finally, we obtain L' =P(Id+K) with P in the form

(Dl‘_tD.r.)In, 0 0:8B,
P :< 0" <b;+":5;;;;;;)*(B;;';"'J“) (6 & D)

in a small conic neighbourhood I" of (x° 0, £, 0), &0, with B, ¢ CLR"),
depending smoothly on ¢

3. Construction of a parametrix for the Cauchy problem for L. Intro-
duce notation f-=g(mod C=(R")) which means that for f, g¢ 2'(R") we have
— g € C=(R"). Suppose that 5‘\‘>O. Then (see [1] there exists a conic neighbour-
hood I" of (x° &%) and an operator E;:Z,(R")N&'(R")—-2'(R**!) such that
for f€ 2/ (R")N &' (R") we have PE,f¢ C=(R"=1), y,E f=f (mod C=(R"). For £ <0
we can obtain the same result with slight modifications of the arguments-
in [1].

Since HP-=L"H(Id+K) ' (mod L—=) we have L"HId+K)'E f=HPE\f
=0 (mod (C=(R*+1)). Putting E,=HId+K)"'£,, we obtain L"E,f¢C=(R"+"),
voloof = ot Id + K) ' E,f = y,(ld + K)7'E,f. The parametrix (Id +K)~' has the form
Id+G, Ge¢ CL7'(R"+1). Let

G(x, t, & )y~ X g i(x, t, & 1),
j=1

&/ being homogeneous of degree —j in (5, r) matrix symbols. By Taylor’s a for-
mula we get g=l(x, ¢, & 1)=g"\(x, ¢, & 0)+rg Xx, t & 1), where g7%(x, £ &,
1 551

T)= 0)'(()50: ) (x, t, & st)ds is homogeneous of degree —2 in (&, z). This im-
plies (g '(x, t, D,y DYEf)=g7'(x, 0, D,, 0) f+o(g (%, t. Dis D)D,E\ f)
(mod C=(R™)).

Since
0=PEf = {((Dr—tof)‘,V,. (D,+tooxl),m ) +B(x, t, D,) } E\f
with
B(x, t, D)= (le(x,ot, - g?‘.‘:".:‘f:.éz..p!).,)
we have

I/
DES [y = JDEf— Bix. t, DELS (mod CR"+1)

Thus we conclude that
70(g~"9(x. t, D,, Dt)Dt Exf)
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~ 7 ~
sl @260 6, Do D)) (9 VDo f~F 05, £, D, DYB(x, £, DIE )

—/n:

(mod C=(R7™).

~ 7,
The commutator [¢g7%(x, ¢, D, D,), ((; _?) tD, ] belongs to CL—2R"+1), De-
noting ) ,
= ~ .0
g7x, t, Dy, D))=[g™(x, t, D,, D), (0 :‘;"") tD.]

—gXx, t, D,, D,) B(x, t, D,)¢ CL7*R"+1),
we find ~
yl &, t, D,, Dy)D,Eyf)

., ) ;
=70 {( 0"'__(;“'.) tDy, g7 2x, t, DYE, f+g7%x, t, D,, D)E, f}
=78 %x, t, Dy, DYE,f) (mod C=R").

Hence y((Id+K)7'E, f=(d+g7'(x, O, D,, 0)f+ y»GE, f (mod C=(R") with
G ¢ CL2(R"+1). The principal symbol of G we treat in the same way, etc. Final-
ly, we obtain yy(ld+K,7E, f=(Id+M)f (mod C=R")) with M ¢ CLTIR").
Let (Id+M)~" be a properly supported parametrix for Id+M. Setting £;
=E(ld+M)'=H(Id+K) E£(Id+ M), it follows that L' E; f¢ C=(R™+1Y), y.Lsf
=f (mod C=(R")). On the other hand, L""— FHL'F~!, where F and H areellipt-
ic, hence L'F'E;f¢C=R"Vand yF'Esf=f(mod C=(R"). Next L’=T7T"1LT.
Therefore LTF'Eyf¢ C=(R"+1) and y, TF'E;f=f(mod C=(R")),ie. E=TF L,
is a parametrix for the Cauchy problem for L.

4. Construction of a microlocal parametrix. Let £, be the parametrix
for the Cauchy problem for P, that is, for f¢ 2(R") n & (R") we have

PE, f ¢ C=(R™+1)

roEr f—f=g¢ C=(R").
Define E by E f(x, t)=FE, f(x, t)—g(x). Then we have PE f¢ C=(R*+!), y Ef=f
In order to construct a microlocal parametrix for Pwe shall use the classica
Duhamel’s principle (see [4]). We construct a family of operators £; depending
smoothly on s ¢R! so that for f¢ Z,(R") n &'(R") we have PE,f ¢ C= (R*+1)
vs Ef=f. Here y, denotes the trace on the plane #=s. This can be done in the
following way. Repeat the construction in [1] choosing the phase functions

252 R s2—¢g2
P1=5 &+ 8 g =—75—&+(X &)

which satisfy the initial conditions ¢, =gp,=(x, &) for t=s,
2452 - 2452\
a“."=(—2—— t?):ﬁ-(x, &), g = (tf—- T);ﬁ-(x, .
t 1‘!2;51 ¢ +i03;

Next instead of [ e dr, we take [e ' dr;, etg.
3

0
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Define E,: 9}.(R"+1)n &'R*+1)—Z'(R"1), where T is a conic neighbourhood
of (x0, 0, £, 0), I'Ca.;: I', as follows

t
Then Eif(x, t)=i [ (Er:f) (. D)ds.

PE f(x, )=(E f) (. £) 5=t + il{t(PE}f)(x, Hds=f(x, )+ Rf(x, A,

where Rf(x, )= [ L7066 30 9) S dpds. Te R,

Next we shall use the following
Lemma. WF (R)c{(x, ¢ & t; y.5,n0): E=n=0}.
Proof. Let ¢, y ¢ Cp(R*+!). Denote by K the kernel of R. For a>1

we have
<K", KP(X, t)e —la((x, E)+tv)8w(y, S)e—ia(jy, »)+Sa) >

Jr p—tallx, H+W, 1/)¢-t!+31)q‘(\” t),*,(v g)r(‘-’ t, v, 5){yd5dxdt
R"+l
If (¢, n)=(0, 0), an mtegratlon by parts yields a rapidly decreasinz function

of a. For o=(x, £ & 1)¢ I’ we have &=0. Therefore, if (o, o) eI I, we ob-
tain (o, 0,) ¢ WF/(PE,—Id). In particular, (x°, 0,£°% 0; x°, 0, 50, 0)¢ VF(PE,—I1d),

i. e. £, is a microlocal parametnx for P at the point (¥° 0, &, 0).
Moreover, (o, 1)¢ VF(HPE, — H). On the other hand, HPF, — H
=L"H(d+K)'E, — H=(L"Hld + K)"'E,H~* — Id)H (mod L—=). Setting

E-_H(ldJ-k) 1EH! 1t follows that (o, o)) ¢ WF'(L"E;—Id). Next we
have L"Es—Id=FHL'F~ xl’:'E—Id--FH(L FE,— H7'F~1) (mod L—=). Suppose,
now that for some o, € y~(I') and some o, ¢ I we have (oo, 0))¢€ WF(H(L' FE,
— A VF-1)) which implies (o, o)) ¢ WF{F\FH(L'FE; —H=' F-1)]}. This
shows that there exists nET*(R" N0 such that (0., 0) € WF'(F1), (o, o))
¢ WF'(L"E;—I1d). The first inclusion- leads to o ¢ I which contradicts the second
one. Therefore we obtain (n,, 0,) ¢ VF’ (F(L'F'E;— H'F™Y)). Since H is el-
liptic, we have (0,5, 0,) ¢ VF'(L'FT'E; — H'F~1). On the other hand, L'F'E,
— H'F == (L'FEsFH—1d)H'F~! (mod L—=). As before, we get that for £
— F'E.FH and o,¢ z7)(I") we have (o, 03) ¢ WF(L'E;—1d). Hence E; is a

microlocal parametnx for L’ at (x% 0, £° 0).
Finally, since L'Ey—Id =T 'L TE;— ld T—WLTE, T '—I1d)T (mod L—=) the
operator &=TEsT ' is a microlocal parametnx for L at (x°, G, & 7% and the

construction is complete.
5. Singularities of the constructed parametrices. The parametrix for the
Cauchy problem for P (see [1]) has the form

E\f(x, £)=(2a)~" [ [etx: t- 7. 0e\(x, ¢, 0) f(V)dydD
+(2n)" [ fereds &y ey(x, £, 6) () dy db
with @,.(x, £, ¥, 6)=(—1)y+! f;— 6, +{(x—v, 6) and e.(x, £ 0)¢ Si‘ﬂ((/\’x[)xl‘,).
x=1, 2. The notation that we use here was introduced in section 1.
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We have WF/(E,)) c C,(0)U C,(0), where
CAO)={(x, & & 73 v, n) € (TFR™=HINO)X(T*RM)N\0):
(1) (x, ¢, & 1) lies on the null bicharacteristic of
D,+(=1)*D.,, issued from (¥, 0, », 0)}, %=1, 2.

Since £ is_obtained from E, by a composition with DO, it follows that
WF'(E;)c C(0)UCx0). Next WF (F'E;) c C;(0)UC,(0), where C (0) =
WF (F,C.(0) = {(x, £, £ 1) lies on the null bicharacteristic of D,
+(—1yitr'(x, t, D,) issued from (v, 0, n, 0)}, =1, 2, and similarly we find
WF(E)c C,(0) U Cy(0), where

C.O)={(x, £ & ;5 ¥, n):(x, £ & 1) lies on the null
2) bicharacteristic of D,—ix, £ D,) issued from

(35 0, my (¥, M)} =1, 2
Thus the proof of theorem 1 is completed.

Now we shall investigate the wave front set of the microlocal para-
metrix constructed in section 4. We have

t _
E f(x, t)=ig' (E,y, ) (x, t)dr.
We shall use the following representation of the kernel of Ej:

Ke(x, t. v, S)=i [ Hi—r)HNKze(r x t, v, s)dr.

where Kg o is the kernel of the operator E': f(v, 8)—=(E,y,f)(x, t), H(r) being
the Heaviside function. As it was discussad in [4], applying the inclusions for
the wave front sets of a product of distributions as well as of the map =,
where = is the projection (~ x, £, v, s)—(x,{, v, s) (see [4] for a more precise
definition) we tind that

WF'(E,)C Jp(Rn-x)\o uGu C“(O) uGu 62(0)'

where A, gast) o derotes the diagonal in (7*R™)N\0)X(T*R*H\0). C.
={(x, &, & v; ¥, 5, n o) (x, £ &, 7) lies on the bicharacteristic of D,+(—1ptDx,
issued from (¥, s, n, o)}, z=1, 2, C(0)=CJ0),R(0), where R(0) is the canonic-

al relation associated with the operator y, and the canonical relations C,‘(O)
were defined in (1). Following the same arguments as before we obtain

(3) WF(J) - AI‘*(R’”'I)\O U C] U Cl(O) U Cg U Cz(O),

where C,={(x, ¢, & t; ¥, s, 0, 0):(x, ¢ & 7)lies on the bicharacteristic of D* "
—4(x, t, D,) issued from (y, s, n, o)}, C(0)=C(0),R(0), x=1, 2. C,(0) were
defined in (2). This completes the proof of the following
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Theorem 2. There exists a conic neighbourhood I' of (x° 0, &, %) and
an operator & : 2-(R"+))n &'R"+)—2'R"+) such that (x°, 0, &, v, x°,0, &, )
¢ WF (L&—I1d). Moreover, the wawve front set of & satisfies (3).

6. Construction of a microlocal parametrix in the case when the charac-
teristics coincide in a point. In this section we shall make the following
assumptions. Let X” be a paracompact C= manifold with dimension n, X=R
X X'. We denote the points of X by x=(x, x')=(x, Xy ..., x,). Our pur-
pose is to study the (n,+ny)<X(n,+ny) system

(Dxp~’.‘ (x, D,r'))ln. 0
p(x' Dx)=( ............. ‘U .............. (DXO‘/.A‘I,DX,‘)IH. ) +P0(’\., Dx)

Let (x0 &) ¢RX(T*X")N\0). Assume that 4,, i, are properly supported DO
in the x’ variables, depending smoothly on x, near xj with real and homo-
geneous of degree 1 in & symbols. Moreover, P,(x, D,) is a properly supported
classical DO of order O.

Let 4,(x%, %)= (<" §), P20, &0)% Y2(x0, £9). Setting =40, §)
0 0

=Ay(x0, &), £9=(&5, &'9), the last inequality means precisely that {&—1,(x, &),

Eo—A(x, &)} (x0 &9F0.

We shall reduce this case to the one discussed in the previous sections
(see [5]). First we find a homogenous canonical transformation x, which maps
a conic neighbourhood of (x° &°) into a conic neighbourhood of (y°, %%
¢ T*(R*™+1H)N\ 0 in such manner that (5,—4,Xx; (¥, n))=n, For this purpose we
shall use the generating function ¢(x, n)=¢(x, n")+xn, where the phase func-
tion ¢ is determined as a solution of the Cauchy problem

0p/0xy=A(xdy @), @ix—0=(X", 1').
Then g, is defined by the equalities
$=dx¢:(’70+'iv d»X'q )9 y=dn¢:(x0! d,,'(]‘).
Obviously, n)=0, (5§,—4)(x, (v, n)=n,+a(y, n’), where a(y, »’) is homogenous
of degree 1 in »’, a(3° n°)=0 and {n,, a(v, ')} =0a/dy,=+0in a conic neigh-
bourhood of (39 7"). According to the implicite function theorem there exists
a function Y(y’, »’) homogenous of degree O in »’, such that « Y(y’, '), v,
n’)=0 and Y (y'° n°)=yJ. Then in a conic neighbourhood of (y°, n") we have
a(y, n)=(Yo—Yo(¥"s 'Y, n"), Ay, n')=+=0
and {no, Yo— Yoy, n)}=1 Put 2=y, —VY(¥', #"), £o=n, Using a standard argu-

ment we can determine the functions Ay’, n),2(y.n) j=1,..., n, homogeneous
respectively of degree 1 and 0 in », such that {¢, 2;} =d,5 {Zi £} =0, {2, 2}
=0, 14, j=0, 1,..., n. This imples that there exists a canonical transformation

xo which maps a conic neighbourhood of (3° #°) into a conic neighbourhood
of (0, 2%, 0, %) so that ny(x3'(z, O)=Co (Vo— Yo)x3'(2, £))=2,. Denoting
x=1x° %, we find two scalar properly supported Fourier integral operators A
and A~!, associated with the graph & of x and such that

A€ PR, X5 K'), A7 e (X R (KT1)), (X0, §9x0, £9), ¢ WF'(Id,— A1 A), (20, 2,
2% %) ¢ WF(Idgny 1 —AA™Y).
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Then the principal symbol of APA™' becomes

(5" )
0 i(So+200(2, $))1y,

with 6(z, &) 0. Moreover, 7,+2:8(z, £)=0 for 2,=0, £,=0 while acio(co+zoﬂ(z,

=142, :TO (2, £)£0 in a sufficiently small conic neighbourhood of (0, 29,0,
S0

£’0). Applving again the implicite function theorem we find that there exists a
function %z, ¢’), homogeneous of degree 1 in ¢’ and such that Zyz, ¢')

+282 o(z ) )=0. We denote #(z, {') = 02, £z, &), ¢’) and obtain ¢,

+2,0z, O)=(co—CUz, TNB(2, D)=(Lo+20 0z, I')A2 &) Az, £)F0 being homo-
geneous of degree 0. Let B(z, D,) be wDO with a symbol

and B~ !(z, D,) be aparametrix for B. Then the principal symbol of APA—'B~!
has the form

(5‘?.'.*{1. Lo )
0 (Co+206(2. &) L,
with 6(z, ) +0. We see that the operator APA—'B~! is a particular case of

the operator L considered in section 1 with 4,==0, Ih=—2,6(z, ). Let & be
the corresponding microlocal parametrix and (0, 2’°, 0, £°; 0, 2'°, 0, £'°)
¢ VF(APA™'B~'&—1d). Next we find (x°, &, x°, &%) ¢ WF'(PA—'B~'6A—Id). The
refore, A~'B~'6A will be a microlocal parametrix for P at the point (x°, &°)
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