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THE ROBUST DESIGN OF EXPERIMENTS: A REVIEW
AGNES M. HERZBERG

A review of several optimality criteria for the design of experimentsinvolving quantita-
tive factors ‘or the estimation of unknown parameters in regression problems is given. These
include rotatabil'ty, D-optimality and G-optimality criteria. Designs are no longer optimal
under these criteria when conditions are suboptimal.

The two main lines of research in the robust design of experiments will be discussed,
i. e. (i) the comparison of the per'ormance of an optinal design with respect to a particular
criterion under other criteria; (ii) the construction o: designs which guard against particular
shortco nings.

1. Introduction. The term robust was introduced into statistics by Box [5]
with regard to statistical tests being valid when some of the assumptions did
not hold. Since 1953, there has been a large proliferation of papers on the
subject of robustness. Andrews, Bickel, Hampel, Huber, Rogers and
Tukey [1] state:

‘Est’'mation is the art of in’erring in‘ormation about some unknown quantity on the
basis 0. available data. Typically an estimator of some sort is used. The estimator is
chosen to per orm well under conditions that are assumed to underly the data. Since
these conditions are n2ver known exactly, the estinators must be chosen which are ro-
bust, which perform well under a variety o underlying conditions.

The theory o robust estimation is based on the speciiied properties of specilied
estimators under specified conditions.”

One wants to determine the interactions of these.

There are broadly two senses in which robust is used in the design of
experiments. The first is that after one has obtained anoptimal design relative
to a particular criterion one examines how well the design performs in other
respects; see, for example [27; 16; 17; 28]. If there is still some freedom in the
construction of the design, one can incorporate further subsidiary optimality
requirements; see [22]. The other sense is the construction of designs which
guard against particular shortcomings; see for example (8; 20]. These robust
designs will be slightly less than optimal under ideal conditions but will be
more efficient under more realistic conditions.

Hedayat and John [17] and John [23] have discussed robustness for
balanced incomplete block designs. Although very important, this work will not
be discussed here. h

2. General Comments. The design of experiments involving quantitative
factors has been extensively investigated, two main lines of work being that
on response surfaces and that on general studies of optimality in designs for
estimating regression coefficients; see for example [11; 10; 6] for the first and
[15; 12; 24; 25; 26; 29] for the second.

It is well known that caution is necessary in formulating these problems.
There are three aspects of primary importance:
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(i) the region R of experimentation must be specified. In many cases, the
optimal design points will be on the boundary of R;

(ii) the type of model to be fitted has a major effect on the optimal design
A choice of the most complex type of model to be fitted has, therefore, to be
made. If this is not feasible, the most sensible design is to take all the design
points distinct and covering the region R; there is some loss of efficiency if
in fact a simple model is adequate;

(iii) the special objectives of the experiment have to be formulated.

Two quite distinct considerations may determine R. Physical constraints
may make it impossible or undesirable to work outside certain ranges; or it
may be thought thatthe behaviour of the observations in certain regions of the
factors space is of little interest or at least unrepresentative of the behaviour
in the main region of concern. In the former case a fairly clearly defined region,
often rectangular, is available, but in the second case definition of R is more
difficult. Sometimes, however, one tries to measure the factors in units such
that a spherical R is reasonably suitable. This suggests three main cases accord-
ing as R is cuboidal, spherical, and cylindrical. The first two cases have been
extensively studied.

Possible objectives of the experiment are numerous. It may be difficult
to be very specific and several of the objectives may be involved simulta-
neously. The main ones are:

(a) the estimation of one or more parameters;

(b) the testing of the adequacy of one or more proposed models, as a
guide to the selection of a model;

(c) the discrimination among alternative models;

(d) the estimation of the detailed form of a complex curve or function;

(e) the estimation of the position of and the response at a maximum (or
minimum);

(f) the estimation of the line of steepest ascent usually from the center
of the design;

(g) the estimation of the properties of the canonical form of the second
degree equation;

(h) the estimation of the expected response at one or more points. If the
points are inside R, this is a problem of interpolation, whereas if the points
are outside R, it is one of extrapolation;

(i) the estimation of the differences of the responses between given points.
When the points are close together, there is a connection with (f).

In addition to the previous three central aspects, there are a number of
further aspects of importance, including

(iv) the possible presence of additional qualitative factors;

(v) the sequential or nonsequential character of the experiment;

(vi) the error structure, for example blocking, two-way control, splitplot
arrangement, etc.;

(vii) the presence of additional constraints, such as the need to have a
small nuthber of levels of certain factors.

3. D-optimal and G-optimal Designs. Let

M E{y(x)}=1(x)8,
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where y(X) is an observation at th2 point x in the design region, f'(x)={f,(x),...,
fo(x)} and 0" =(9,,...,8,), the vector of unknown parameters to be determined
by least squares; var {y(x)}=752 and cov {yv(Xx,), ¥(x;)}=0 (i=)).

Three types of d2siza are of interest:

1) discrete desizns; » points x,,...,x, giving

X = {100} and X'X={ ® £(x)F/x)}

2) design measures; & giving
M($) = {my},

where m,;= [«.f(X)f (X)5(dX), z being the space of interest;

3) associated design measures &, where each point X;,..,X, has measure
or weight 1/'7 and X'X =nM(4,).

The well-known equivalence theorem of Kiefer and Wolfowitz [30]
states the following:

Theorem. The follow'ng assertions

(i) the design measure £ maxinizes |M(3)|.

(ii) the design measure &* minimizes maxxd(X,H) =1 (x)M™'(&)/(x).

(iii) maxyx d(x,5*)=p

are equivalent.

The first assertion defines D-optimal designs, |M(£)|~! being proportional
to the generalized variances; the second assertation defines G-optimal designs,
the d(.,.) being related to the variance of the estimated response. For design
measures, the two criteria are equivalent, designs satisfying (ii) being easier to
determine because of (iii).

Consider the following example. Let

E{¥(X)} = 0+ 6, + B0 + 010012+ Bge Xo® + B9 X,

and let the design region be the square with vertices (&1, +1). Consider the
following three designs. Design I has measure of 0.1458+ at the vertices,
0.08015+ at the midpoints of the edges, and 0.0952+ at the origin. Design II
consists of 9 points, one at each vertex, midpoint of the edges and at the ori-
gin. Design Il consists of 13 points, 2 at each vertex, one at the midpoint of
each edge and one at the origin.

For Design [, IM($)| =0.011427, max, d(x,§)=06; for Design II, |[M(&)]=0.0098,
maxyd(X,5)=7.25; for Design III, [M(§)[=0.0113, max.d(x,5)=6.88. Design I is
the D-optimal and G-optimal design measure, but since the measure is irrational
the design cannot be perfomed. Design [ serves as a guide. It can be seen that
Design Il is better than Design Il and attains values closest to those of the

optimal design.
4. Rotatable Designs. From (1), the least squares estimator of 0 is

(2) D= (XXX,
where X = {f(x,)} and Y is the n<X1 vector of observations. Then, if Mx)=1(x)0,
(3) var { (X)) = '(XX X’ X))~ f(x)o?,

15 Cn. Cepanka KH. 2
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¢? being the experimental error variance. Equation (3) will be a function of
the distance of the point from the center of the design, i. e

(4) var {y(x)} =w(/|xI})
if and only if
(5) (X’X)~' =N (X’X)"'N,

where N is a particular type of orthogonal matrix; see [10]. A design which
satisfies (4) or (5) is called a rotatable design. Thus the variance contours of
a rotatable design are spherical and the variance of certain #,’sare constant no
matter what orientation of the design. If the experimenter is not certain in
which part of the design region he will be interested, spherical variance con-
tours appear to be advisable; see, for example [10]. These designs could be
considered as being variance robust.

5. Model Robustness. Box and Draper [6; 7] considered designs that
minimize the mean square error over the spherical region of the factor space.
They minimized, over the spherical region R, the function

I "2 TR0 —n(0}ex =5 [var(Fo0dx+ %5 [ [E( (0} —n(x)2dx,
o* 5 "R 7

where y(x) is the least squares estimrate of the assumed polynomial model, n(x)
is the true model, &—'= [, dx, nis the number of design points and ¢® is the
experimental error variance. The size of J arises partly from bias due to the
use of a polynomial of too small degree and partly from random errors. When
bias alone is considered, the bias is minimized by rotatatle designs. Draper
and Lawrence [13; 14] examined the situation when the region is cuboidal.

Kiefer and Studden [28] compared desizns for situations where the
model is of the form

E{y(x)} = X 6,
=0

the design region is [—1, 1] and the optimal design measure, &, has n points
of support. They discussed optinal 7z piiit design measures for interpolation
and extrapolation and compared these to the limiting case when n— o, Itis
shown that in some situations it may be bctter when the model is of order
n to use &,, where m>n.

6. The Variance of the Difierence between Two Responses. The experi-
menter may not always be interested in the estimated response at one point
but changes of response, for example, in the difference between the estimat>d
responses at two points. Herzberg [19] considered the behaviour of the variance
function of the difference between two estimated responses. It was shown that
for rotatable designs, the variance function of the difference between two estimat-
ed responses is a function only of the distances of the points from the origin
of the design and the angle subtending them at the origin. Boxand Draper
[9] have extended and unified these results.

7. Measures of Design Robustness. H:rzbherg and Andrews [20]
introduced robust measures for situations, where outliers, missing values or
non-Gaussian distributions are contemplated.

Let a(x) be the probability of losing an observation at the point x, the
losses at different points being independent. Let D ={d,}, a diagonal matrix,
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where
{0 with probability a(x;),

1 with probability 1—a(x;),

the value 0 being associated with a missing observation. This, of course, does
not explain missing observations, but is only a formulation to investigate their
potential influence on experimental design.

If a sufficient number of observations are missing, not all of the elements
of @ given in (1) may be estimated. This occurs when |X’'DX|=0. The proba-
bility that this occurs is

(6) pr(IX'DX|=0)

which may be used to compare designs. This measure is called the probability
of breakdown of the design. Designs robust under this measure have a small
value for (6).

Another measure of robustness is

(7 E(IX'DX|'7),

which is related to the D-optimality criterion. Designs robust under this measure
have (7) large.

Another measure of robustness and some examples are given in [20].
Further examples and computational methods are given in [2]. Herzberg
and Andrews [21] compare the robustness of chain block and coat-of-mail
designs.

Box and Draper [8] introduced a criterion for the construction of de-
signs to minimize the efiect of outliers in the least squares estimate of the
response function. For the comparison of designs, the value of the population
variance of the variances of the estimated response at the design points is
used implying the smaller the value the more robust the design.

& Robustness against Autocorrelation in Time. The assumption of
cov {¥(x,), ¥(x;)} =0 (i==j) is very often artificial. Bickel and Herzberg
[3] assume that cov {¥(X,), ¥(X;)} =7v,;0% and the variance-covariance matrix of
the observations is Vo2 where V={7,}. They find one-dimensional optimal
designs for particular situations when the number of observations n tends to
infinity and V is unknown but of an assumed form. Examples and further
results are given in [4].

9. Conclusion. A review of several optimality criteria for the design of
experiments has been given. Some of these designs possess certain robust quali-
ties. Measures of robustness of designs are introduced in order that designs
may be compared. It is very important also in this connection to examine the
results of Kiefer [27] and Galil and Kiefer [16; 17|, where optimal designs
relative to a particular procedure are examined for their performance with
respect to other criteria.
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