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AN APPLICATION OF THE THEORY OF POSITIVE SYMMETRIC SYSTEMS
TO A DEGENERATE MULTIDIMENSIONAL
HYPERBOLIC EQUATION IN R?

JOHN M. S. RASSIAS

In this paper we generalize the results of Karatoprakliev (1973) and Popiva-
nov (1975) for the equation

L = K\(2)agy+ Kol2)uyy— 1z +alx, v, 2)uy

+b(x, v, 2, +e(x, Y, Dap+Mx, y, 2)a=f(x, y. 2) CLAD).

Both the above mentioned investigators have studied this equation for K;=AK,=K, while
here K;=Kz) € C¥D) such that K{0)=0 and K{z)>0, for >0, K;(0)>0, i=1. 2. The equa-
tion is, therefore, a hvperbolic degenerate ecquation in R3Also a, b, c €CYD), r €CO(D)and

F€Co(D). We study it applying the well-known theory of Positive-Symmetric Systems estab-
lished by K. O. Friedrichs (1958).

We shall consider the hyperbolic degenerate equation
(*) Lu K2, + K{2Wyy — U, +alx, y, 2, +b(x, v, 2)y
+o(x, v, 2+ Mx, v, 2 =flx, ¥, 2) € L«D),

K,=K{z) € CYD) such that K(0)=0 and K(2)>0 for 2>0, K(0)>0 (i=1.2);

a. b, ceC\(D), heCAD) and feCAD). D is a simply connected region in R,
bounded by the characteristic surfaces §; and S, defined below and the para-
bolic plane of degeneracy 2=0. [ is the closure oi the domain D of the so-
lution u=u(x, y, 2)¢ C¥D). In order to find the equations of the characteristic
surfaces Sy and S, see [9] and [10].

Equation (*) is obviously a hyperbolic degenerate equation in R3,

Since the solutions of elliptic and hyperbolic degenerate partial differen-
tial equations have many different properties, and since quite different types
of data must be imposed to determine such solutions it would seem unnatural
to attempt a unified treatment of these equations. Still such a unified treat-
ment — up to a certain point is given in K. O. Friedrichs [2].

While most of the treatment of these equations naturally employ complete-
ly different tools, some of them employ variants of the same positive defi-
nite quadratic forms, the so-called “Energy Integrals” 2% O. Friedrich® has
shown that this tool can be adapted to a large ¢'ge€ of differential e yaations
which include the classical elliptic and hypesjolic equations of the second
order. The main motivation for this approae’;.was not the desire for a unified
treatment of elliptic and hyperbolic equa’JOns. but the desire to handle equa-
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tions of mixed type which are partly elliptic, partly hyperbolic, and partly
parabolic.

Many problems of classical partial differential equations, such as Cauchy
problems, mixed problems for hyperbolic equations, and certain boundary value
problems for equations of mixed type, can be consicered as special cases of
the above theory of positive symmetric systems.

For systems of equations of this kind, K. O. Friedrichs [3] established
a set of standard approaches in order to determine suitable assumptions for
the boundary conditions. According to these conditions, we can assure unique-
ness of a solution and existence of certain generalized solution.

Corresponding to his semi-admissible condition, there exists a so-called
“weak solution”, while corresponding to his admissible condition, there exists
a so-called “strong solution”. Chao-hao Gu [4], however, has found suf-
ficient conditions for the existence of a differentiable solution of higher order.

An application of the theory of positive symmetric systems to a de-
generate multidimensional hyperbolic equation in R3 Let us compute S,
and then we get S; immediately. To do that we reduce the first order non-
linear partial differential equation of S, to a system of first order ordinary
differential equations, as follows:

Let ®=®(x, y,2)=0 be the non-parametric equation of S, such that, by
definition, ® must satisfy the characteristic partial differential equation of first
order of (*); that is,

M F(x.y,2; p, g, 1)=K(2)p*+ Ky(2)g?— =0,

where p=®,, g=®,, r=®,. We choose as initial data: x,=0, y,=0, 2,=0,
and therefore by the compatibility condition: K(z,)p2+ Ki(2,)93—7r2=0, where
K(z))=K/(0)=0 (i=1. 2), we choose p,=cos8, ¢,=sin0, r,=0, 0¢[0, 2x].

We now reduce (1) to the following equivalent system of first order
ordinary differential equations, the so-called system of equations of the charac-
teristic strip of the equation (*), as follows:

dx dy dz 4o - dp - dq - dr —ds
Fp, — Fg  F, pFp+qFa+rF, —  —Fi—Feq —F,—Fgq = —Fp—Fgr — 7
or
(2) dc _ _dy _ dz _d® dp dq _ ar _
K p 2Kaq  —2r 2F 0 0 -K\p*—Koq? -

Therefore by (2) and by integrating we find that
p=po=c0s0, ¢§=¢g,=sinb, x=2[6fK,(z) ds]cos 0, y=2“’Kg(z)ds]sin 0.

(3) dr/ds = —K|(2) cos? 0—K, (2)sin? 0, r = —(1/2)(dz/ds).
(3) implies that
(4) d?z/ds? - 2[ K (2)cos? 0+ K (z)sin? 0] = 0.

We now change differentiation:
(5) d?z/ds? = —(ds|dz)-3d?s/dz*.



A DEGENERATE MULTIDIMENSIONAL HYPERBOLIC EQUATION IN R3 237

Therefore, (4) and (5) imply that

(6) d?s/dz2+2(ds/dz)* K (z) cos? 6 + K(z) sin? 8] =0.
To solve the ordinary differential
equation (6) with respect to ds/dz we
work, as follows:

Let us set ds/dz=¢(z) in (6).
Then

9'(2)+20%(2)[K (2) cos? 6 4+ K (2z) sin®
68]=0.

which implies by integration that
o=ds/dz=+[K\(2) cos? O+ K,(2) sin?
0]—12/2. Hence, we find that the charac-
teristic conic surface §; with vertex
at (xo, Yoo 20)=(0, 0, 0) (origin of the coordinate (x, y, ) — Cartesian orthogon-
al system in R3 is given parametrically by the following equations:

X = COoS e [ 7 R K‘(t)dt ]
) 3’ [K](t) . Cos204 Kot) - Singe]lr"l

e [ Ke(tyate
y=sin® [J [Ky(f) cos20 + Koff) sin26]'/ ]
zZ2=2,

where 0¢[0, 2r].

Similarly, we find that the ‘characteristic conic surface §; is given para-
metrically by the following equations:

. - z Kx(t)d‘

x=cos 0 [1 of[Kl(t) cos® 0+ Kaf?) sin'ellrz]'
L _ z Ka(t)at

V=sin® [l J' [Ki(t) cos®0 + Kyt) sin0]' 2 ]'

z2=2,

where 0¢[0, 2x].

In D, we consider the linear, first-order system of partial differential equa-
tions :

(7 Mu = (A 01+ A0yt + AgOstt)+ Bu=h, in DCR?,

where h=(hy, hy hg he); u=(uy, Uy us u); 0,=0/0x, 0y=0/0y, 0;3=0/0z;
A; (i=1, 2, 3) and B are (4X4)-matrices such that 4, (i=1, 2, 3) are conti-
nuously differentiable and B is continuous in D.

We also use the matrix k=B—(1/2)3L,0,A.

In the present work we consider the formulation of several boundary value
problems for equations of mixed type in a bounded multidimensional domain
DcR3, On the other hand, without imposing any other restrictions on the
coefficients of (*)., we derive a-priori estimates for general boundary value
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problems. Then by applying these estimates we study weak, and strong solu-
tions. Finally, we note that the theory of positive-symmetric systems is applied
in the search for regularly formulated boundary value problems.

Definition [2—4]. If the A, (i-1, 2, 3) are symmetric and k' (the
transpose of k) is such that k+k' is a positive-definite matrix in D, then
the system (7) is called positive-symmetric.

The theory of positive-symmetric systems. Let us assume u=u(x, y, 2)
¢ CAD) satisfy equation (¥) in D<—R3 then the auxiliary functions: &, -u,
w, =0y, Uy —0qll, Uy—= 04, satisfy the following system in D:

ua‘—'dauo':O,
(8) K(0,12y) + Ko Ogldg)— Osliz + aty + by + cltz A = f,
K (043 — 05it,) =0,
Kg(dgua—d.qu-z) 1T0.
This system can be written as:
(9) Lu A0, @)+ A0 1t) + Ax(030) +~Bu ~ f.

where f: (0, f, 0, 0), and zf=(un, Uy, u,, U,). The system (8) is symmetric, but
not positive. Left multiplication by the diagonal matrix

a 0 0 O
0 v O O

E=log o0 y o {er vk
0O 0 0 vy

where @ ~a(x, v, z), and v y(x, ¥, 2)€ C(D) are for the moment arbitrary
functions, yields:

(10) Mu — A, (0, )+ AyOqu) + Ay(0s u)+Bu -h in DCR?,
00 0 0 0 0 0 0
_ 0 0 yK, O N 0 0 0 vk,
A=FA, -0 vk, 0 0| A=EA=|l0 0 0 O
0 0 0 0 0 yK, 0 0
a 0O O 0
Ay =EA, 0 0 K, 0 {—a -7, —vKy 1K}
0 0 0 YK,
0 a 0 0 0
B 0 yc vya vyb ~ vf
B=EB=[og 0o o o * Ef~| 0o
0o 0 0 0 0

The two systems (9) and (10) are equivalent if det (Ey=ay* 0 in D. We
introduce the matrix



A DEGENERATE MULTIDIMENSIONAL HYPERBOLIC EQUATION IN R3 239

k=B—1/2(0,A,+ 0sA;+0d5A3)

a,/2 a 0 0
| 0 ve+(v2) va+[(vKi)L/2] vo+(YKy)y/2)
- 0 (YKy)./2 (YK1)./2 0
0 (YKy)y/2 0 (vKy):/2
therefore,
a, a 0 0
| ¢ 2yc+y, va+(¥K): Y0+ (¥Ky)y
REE =10 ya+(1K), (K. o |
0 vbo+(vKy)y 0 (vKs):

which is a symmetric matrix, while £ is not.

Let us consider the principal minors A, of 2+ 4’ and apply the Sylvester’s
Criterium.

The k+k* symmetric matrix A; (i=1, 2, 3, 4) are given. by the following
simplified formulas:

A1 =0, A‘Z = (l:(Q‘YC + Yz)— uzs 5 AS = (‘YKI)IA‘Z - ab'Y?az 5
A, = (Y%9) Az +YO(—vOXYKY).] = (YK:)As— (YO)X(¥K)):.

According to Popivanov [7] there exist a=a(x, y, 2) and y=v(x, ¥, 2)
{try, for instance, a=exp(g;z), and y=exp(&,2), where g, is a fixed constant
(>1) and &, is for the moment an arbitrary positive constant(>1)} such that
A;>0 in D (i=1, 2, 3, 4). This implies that the matrix 2+k’ is positive de-
finite symmetric, and therefore the system (10) is positive-symmetric.

We now consider the following characteristic matrix on D<R3:

—Qavy 0 0 0
0 —YUs YKoy YKy,
(11)  B=Av,+ A0+ Agvy= 0 YKo, —vK,\v, 0
0 YKo, 0 —YK,yv3

By computing the determinant of the matrix g we find:
det (B)= —ov{yKy¥y . YK, 03 . YK g0 —¥Ky0s . YK 03 + YK, 03 . YK 07}

and because K,.7?+K,.v3—v2=0 on S, S;=dD we find det (B)=—0y’K,
K3 Ky . v3+ K, . ¥?—73] =0 on S3US,. On the other hand, det (B)=—ay’kK,
K, K, . v+ Kyv}—03] =0 on S,=0D, because 7,=v,=0 on §, and 73<0
on S,; therefore K v+ K,v? -v?<0. Besides K(0)=0 (i=1, 2) on S,.
We note that by computing the unit outer normal vector on S; and S;
we find:
V= 0,0+ U,y j+ Vgk = (1 + K, cos?@ + K, sin? 0)~172 {(cos 0)i + (sin 0))
+(K, cos? 0+ K, sin? 0)'?k}: on S,

and
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v iR, JRvak = (14K cos? 0+ K, sin? 8)~1V2 {(—cos 8)i+(—sin 0)/
(K cos? 0+ K, sin2 0)'72k}): on 8,

such that ;>0 on S,US,—0D.
We consider also the following quadratic form @,-=0 the matrix of repre-
sentation of which is (11):

—0av, 0 0 0 Uy

o 0 —yv, YKo, yKyw, u,

9 - o & e . o
(12) wBu =g, 1y, Uy, U,) 0 vKo, —vK,, 0 “,
0 YK, 0 —yK,v, iy

= - UV — '},—‘ [K(vaut, v )+ Ko(Ualty—v3u,) Hu2]

where
(13) H= K0+ Kyv;— v (v3==0).

We can now formulate a Boundary Value Problem for the system (10)
with admissible boundary conditions. We know that H=K,v’+Kyv;—v2=0
on S,=dD such that ©v3<0 on S, Therefore, (12) and (13) imply that
u Bu 0 on S,: hence we can put B_=-0: and B =P, where

— Uy 0 0 0
0 —yo, 0 0

B“_A10+A‘30 + Ag'l’;.; = 0 0 0 0 on S‘n.
0 0 0 0

On the other hand, H -K ¥+ Ky,v;—vi=0 on S;1/S,=0D such that
2,>0 on S,1) S, Therefore, (12) and (13) imply that

upu— — avul 17/‘ [Ki(vatt; — vyu3)? + Ko(Ualty— V4t ] 0.

Hence, we can put: B_=B; B, -0, where B is given by (11).
Since the quadratic forms u[i u are sign-constant on oD that is, aBﬁ u
0 on S and up,u--0 on S;1) S, then Ker (By)= {u:u,u=0). Hence, for
arbitrary - (ug, uy 4y, ) €U* implies Ker (B+)+Ker (B.)~ U* and w4 = (0us,
v, Uy

o Un o Wa)iu ~u—u.. Therefore, the boundary condition B_u 0 is admis-

sible ; it has the form
(14) Uy =05 v, —vly=0; Vally—Valts =0 on Sy ) S;=0D
and no boundary conditions are given on S,.
But since #,=u-0 on S,1)8,, and since =0 on S, S, implies
du=udx+u,dy+u.dz=(0,u)dx+(0u)dy -+ (0gu)dz = uydx + uydy + uzdz =0,
therefore
(15) uy =Ny, ; ty=Nyvy; tg=Nyvy,
where N, is a normalizing factor.
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Hence, (14) and (15) imply that the following boundary condition B_E:O
is admissible; it has the form

(**) u(yis.us‘ = 0

We note that since ;>0 and H=0 on S;US, there are no conjugate
boundary conditions.
Therefore, we formulate the following

Theorem. If there exists a function u=u(x,y,z)eCYD) satisfying
equation (*) under the boundary condition (**), then it is unique (i. e. u=0
in D).

Remarks. In general, in order to formulate correctly posed Boundary
value problems in different domains DcR3, we note the following general
conditions: '

Consider the parts of 9D on which H=K,v}+ Kyv}—v;=0. Therefore, the
expression in square brackets in (12) is non-negative; hence, aPua=<0 if v,>0,
and we can put B_=p; B+=0. Similarly, since

upu=0 if v;<0, we can put B_=0; B.=8.

On the other hand, on those parts of 0D on which >0, we define the
symmetric matrices B+ and B_ by the following relations:

ap_u—= (o) Huzs B =B —B_ if 7,<0;
ﬁB.»fﬁ:(v—ya)Huj; B_—=B—P. if v3>0.

R ASince for either H=0, or H?\O.A both the quadratic forms uB_u and
upu are sign-constant, Ker (B.)={u:up.u=0}.
v .

Hence, for arbitrary u =(uy, g, 1, )€ U*, u =(O, us,, ;i us, ;ﬁ us); u_=u

.

: Therefore, on 0D, the boundary condition B_u=0 is admissible; it has the
orm:

Uy=0; vau, — 0,3 =0 vty — Uy =0, if v3>0, H=0;
,=0; u,=uy=u;=0, if v3>0, H<0;
uz=0, if v3<0, H>0.

We note that no boundary conditions are given on the parts of 9D on which
73< 0, H=0.
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