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SEQUENTIAL ESTIMATION FOR COMPOUND POISSON PROCESS, Il
VALERI T. STEFANOV

In the present paper all efficient plans of the compound Poisson process, except those
which were determined in Stefanov (1982), are found.

The present paper is a continuation of the paper [5]. The terms and no-
tations from [5] will be used without giving again their definitions.

1. Oblique plans. Theorem 1. If the sequential plan (x, f, h) is ef-
ficient for [a,, b;)X[ay, by], then there exist constants a,, oy, as, a,, such that
ai +a3+ai=0, a,==0 and g+ ayx +azt +a,=0 almost surely with respect to v..

Proof. From [5, Theorem 3] follows, that it is sufficient to show, that
a,==0. Let us suppose, that

(1.1) R+ tox +agt =0

almost surely with respect to v.. Obviously (1.1) is impossible, when a,=0,
=0, @3>0, or a;<0, a;=0, az<0. Then we have the following three cases:

a) k=af+ayx, where a;>0
b) k=o;t+ayx, where a;=<0, a;>0
¢) 0O=a;t+ayx, where a;>0, a,<0.

Consider the case a). Let n,:=inf{¢: N,=n}. There exists (Ao, W,)€[ay, by]
X [ay, by such, that a;/Ag+ag/po:=d>1 or d<l. Let us suppose at first,
that d< 1. Let

(1.2) Z,::a;n,,ﬂ-{-a;/\’.,n. n=1, 2,...

We have

(1.3) B n(Zhix—2Zy)=kd, k, n=1,2,...,

’ D)‘o- Do(zn'Ht - n) = E)’o- Un[zn+k —zn - EM- uo(zn'*'k— n)F = k’(a;' aév )"0' Ho):

where 7(a;, @), A, Ho) does not depend on k. It is easy to see that for each m > 1

(L4) PNy, —(m=1)>am,: + @, Xy, NeF=at+aX, forO<t<n,}
=s(m)>0.

Let Z, pi=Z2,—Zn—Ex, u(Z,—2Z,)- Obviously for each n>m, m>1 we
have

Prou{t>na} =8Py u{Zps1 = Zw<m—1,. .., Z,-Z <n—m=1+m—1}
=S(MPry wllZm+r, ml<m=1-d,...,|Z, .l<(n-—mX] —d)+(m-2)}.
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Further, as in [5, Theorem 3] we get that there exists m, such, that
Pr. T >t = S(mP w {(Zimy 1, m P < (1 +AXDs i Zimy it m) s
coo  (Znm P<(L+AXDs, o Zn, m, )P},
where A=X7 (D, wZi m) D w1, m O course, from (1.3)we have < A

< + ==. From Hajek-Renyi-Chow inequality (see [7]) we obtain that for each

n>m,
Powdt=>m,) =s(my)[l = A(1+A)=5>0,

where s does not depend on 7. Suppose now that d>1. Let
(1.5) 7 T= U ;~a'_,X,,”, n=23,...

We have that for each &
Erw(Zn k= Zn) =k, Di s Znin— Za) = kr(ay, @ Xy Ho)-
It is easy to see that for each m >1
( Vn, Em< A, a,Xn
(1.6) P, . Nysat+a,X, for O<t<nm,
Ny, +m< UMy + @, X0

m—1
§(m)>().
Let Z\,,,,,,:n Z,,— Z,,,—EM u,,(Z,, —Z,,,). Obviously, for each n>m we have
Prnd T3, = S0P p A Zmis = Z> —(m — 1), .o 2y = Zy>n—m—m}
~s(m)Ps.. w){lZ',,, fLml<d+m—=1, ..., |Z‘,,',,,|<(n‘— mYd—1)+m}

Further, as above, we get that therc exists m, such, that P, {r>q,,}>$‘ >0

for each n>m, where s does not depend on n.

From the obvious fact (which for instance follows from the law of large
numbers) Pr . {n,>n(1/A—€)};52 1, £>0, we get that there exists 7, such, that
for each n>n, Py f{t>n}>s >0 i e. P, ,{t=+ o}>0, which implies  that

the equality (1.1) is not possible.
The case b) can be considered in an analogous way substituting n,:, in

(1.2) by n,y and n,_, in (L.5) by M.
Consider the case c¢). There exists (A, u,) € [@,, b,] < [a,, by] such, that >0
or d<0. Let us suppose at first, that d<0. It is easy to see that for each m

Pruf0>an,  +a'.Xy m ot +a,X, w0 for 0<t<n,) =s(m)>0.

For each n>m we have

Py wft>n,} \.;(m)Px”_ wdZmir=Zm<ty ..oy Zy=Zp<mj}

» ~;(m)P;«_. wllZmit o ml<m—=d, ..., | Z,, | < m—(n—m)d}.
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-
Further, as above, we get P, , {t— + 2}>0. Let d>0. It is easy to see that
for each m>1

Pro w0, +ay Xy —m, ait—a X0 for O<t< n,,,_,}r—fs(m)>0.

Further in an analogous way as above, we get P, , {t= -+ --}>0. It completes
the proof of Theorem 1.

It is not difficult to see that some cases in Theorem 1 may be considered
without using {n,},., (see [5, Theorem 3|).

Using the methods from Theorem 1 one can casily get the following

Corollary 1.1. Let tv,:=inf{t: f>n2 N, X, Fat-a, <0} and
let dyhg+ Ugho/By+03>0. Then P, {t,=+}>0.

Definition 1.1. A sequential plan (r f.h) is called an oblique plan,
if © denotes the moment of the first attaining of the set

(1.7) {(t,k, x): t=ak+bx+c}.

where a=0, b=0, c>0, a+-b>0.

Definition 1.2. A sequential plan (x, f, k) is called efficient, if there
exists |a, b, ]><[a2. bo] = (0, + =2)x (0, + o) such, that (x, f. k) is efficient for
[ay, by] <[as, bs)

Usmg Corollary 1.1 one can easily get the following :

Theorem 2. Efficient plans may be onlv the simple plans, inverse
plans and oblique plans.

Let Cpp:={(X w): 2€(0, +=0), ne(0, +-2), ak+brn<l1}

Theorem 3. The oblique plan is closed for C, ,, i. e. P, ft< + »o}=1
for each (h, pn)€C,. ,, where t denotes the moment of the first attaining of
the set given by (1.7).

Proof. Let Y,:=n—aN,—bX, It is sufficient to prove that almost
surely (Py, . (A, p)eC,,_,,) for sufficiently large » we have n—aN,—bX,>c
From the law of the iterated logarithm we have

(1.8) P;. W{liminf Yo— (L —ak—b)uin

n Dx wY2nlnlnn

Let €>0. From (1.8) we obtain that

=-1}=1

Po. w{ 30, W >no: YV >n(l—ak—br/p)—(1+¢€)\Ds, , ¥Yi2nininn}=1.

From the facts that y2nIninn/n;=>0 and ar+0bA/u<1, it follows P, ,{3n,>n,

n— oo

wvn>n,: Y,>c}=1, which ends the proof of Theorem 3.
Suppose that the oblique plan (t, f, &) is efficient for (A, ). Then from
E. WN.=AE. 1, B N.=nE, ,X: (see [5]) we have

(1.9) Evwt=c/(1 —ak—=0bh/p).
Of course from (1.9) we have, that (t,f, #) is not efficient for (A, p), when
(k u)¢ Ca b

Theorem 4. The oblique plan is efficient for C, ,. The only efficiently
estimable functions are

A ) = ar+BAp+y

T l—ah—bip +9

(1.10)
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and their only efficient estimators are
(1.11) fluy=ak/c+Bx/c+yt/c+3.

. . . ” N A
Consider the following compound Poisson process /\,”::LLJI ' k>0,

where P{&" =/} :=P{E¢[(j—1)A, jh)}, j=1,2,... It is easy to see, that
dP: t N, —it AN (X ,—N, t+h(X,—N)) h vV
Mt AN (1 — M)Vt g TN HAX N (1 o=,

o

1,1,¢

where {P} wel,, are the restrictions of Py, on {o(X”? s=<f)}o. Of course
(see [5]), there exists a o-finite measure vion(V=[0, + =) <A <4, By) such,
that

(1.12) P {(ty Ny X0)€ A} = [hie (1 —e—whyie—whU=0gvt (¢, i, j),
A

where A¢By and t is a Markov stopping time, such that P {t< +<wo}=1.
Let v, :=inf{¢: aN,+brX"+c=t}, where a, b, c as in (1.7). Of course, for each

h we have
(1.13) T,>T1, thlZfo, Ny = N,

almost surely with respect to P, . for each (&, u)¢(0, + =0)<(0, + -o), where
T denotes the moment of the first attaining of the set given by (1.7) for the
process {X};=o. Further we shall show that for each (i, p,) € C, , there exists
h such, that

(L14) B, uth< + o0, B wVE < + o0, Eay (X2 fi< + 0, k=1,2,...

Let P, (c):= Po {(Ne,, X%)=(0, )}, j=i, i=1,2,... It is easy to see
that

(1.15) pi, e+ Acy=e=*4p, ,c)

41

+AAce” rac’ X piy, josdc+a+bhs)e= =1 —e—m4) + o(Ac)
s=1
From (1.15) we obtain
(1.16) P, (€)= —hp, [c)

S pi et atsbh)e O —e ), =i, i=1,2,. ..

/70: O(C) = —Ap,,o(C)

with initial conditions p,, (0)=1, p, (0)=0, j =i, i=1,2,... The equality (1.12)
shows that the solution of (1.16) is of the form

(1.17) Pi, (€)= Ne—Mai+bhi+o(] —g—uh)le—wrlU=Dgq, (c),
where ¢, [c) does not depend on (A, p). From (1.16) and (1.17) we get
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J—io1

(1.18) ql."/(f): _\:‘l gy, j—(c+a-+sbh), j=i, i=1,2,.

Go,o0)=1, g, (0)=0, j=i i=1,2,.. ,ce(0, + ).

It is easy to show by induction that ¢, {c)=(j-1)! o(c+ai+bhjy—"((j—i)!
(=01l j=i, i=1,2,..., i. e

/’,’_/((‘):)-ie—)'(a[ bny Fo ] _(’»uh)iﬁ-—u’n/wll(j,_ ])' c(¢c+ ai - b}lj)' -1 (j_.”’ (1__ l)' [!
(1.19)
Po.ole)=e=*, ce(0, +=2), j=i, i=1,2,...

Let (Ag, M) € C,, - 1t follows that there exists #, such, that for each Z-Z4, we
have ax,+bh,/n,+hho/py<1. In an analogous way as in Theorem 3 one can
easily show, that for each #=#4, we have P, .ft;<+ c}=1. To show that!
(1.14) holds true, it suffices to show that for (A p,) there exists &z, A=#,
such, that

(1.20) limsup [ p,;, Ac)]V¢+1 < 1.
i+ joo

Let us find all boundary points of the set P:={[p, {c)]'7: j—i i=1,
2,...}. Let i+ j—oo in such way, that i/(i+j)—r, where r¢[0, 1/2]. Applving
the Stirling’s formula 7!~ (2r)"°n*+12¢-" one can easily see, that

lim [y, A0)]' 9 :=,(r)
i+ j—oo
= We—Har - or-nl—wh(=20(1 — g=wry(ar+ bh(1—r)fer(1 — )= /(1 —2p)i—2rpr.

It is easy to see, that {@,(7): r¢[0, 1/2]} is the set of all boundary points of
the set P. Let us fix  and consider ¢,(r) as a function of (i, p). Obviously
¢,(r) has max only at

(1.21) Me=r/(ar+bh(1—=1)), p*=[In(1—r)/(1=2r)]/2, re(0,1/2),

and that max equals 1. The equalities in (1.21) may be obtained for instance
from 0@u(7, A, p)/0rL =0, d@,(r, A*, n)/op=0. Consider

(1.22) ar*+bor* w*={a+bh/[In(1—r)/(1=2n))}/(a+bh(1—r)/r).

Investigating (1.22), one can easily see, that there exists #,, %,<#, such that
for each r€(0,1/2) we have al*+0bA*/u*>ak,+br,/u, It follows that for
each r¢[0, 1/2] we have @n(r, Ay, py)< 1. Because ¢,(r) is a continuous func-
tion (with respect to s), defined on a compact set, it follows that for (i, o)
(1.20) holds true, when A =h,.

Proof of Theorem 4. We have that

(1.23) t=ak+bx+c

almost surely with respect to v.. But (1.23) gives the only linear dependence
between ¢, £, x almost surely with respect to v,, which follows as one can
casily see from that for each %, and [x;, x;)=(0, +<o) we have v {(¢, &, x):
k=ky, x¢[x, Xa), t=akR+bx+c}>0.From [5, Theorem 2] itisaesy to see, that
a necessary condition for that f is efficient estimator is
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(1.24) f(u)=ak+Bx+yt+9,

where o, B, v, 6 are real numbers. We shall show that this condition is sufficient.

From (1.13) and (1.14) it follows, that the regularity conditions (2.6) and
(2.7) in [5] hold, when t is the moment of the first attaining of the set given
by (1.7) and f is of the form (1.24). Let U,:= N/A—1, U,:= N/p—X;
where t denotes the moment of the first attaining of the set given by (1.7).
From (1.23) we have U, =(1/A —a)N:—bX.—c, U,=N:/p—X.. But for (A, p)
€C, , we have

(1.25) | 1/A—a, ”; = (ah+ bA/p—1)/A==0.

‘1 B, =

From (1.25) it follows that the estimators given by (1.24) can be represented
as a linear function of U,, U, and from [5, Theorem 2] we get, that they are
efficient. We can get (1.10) and (1.11) using (1.9). It completes the proof
of Theorem 4.

2. The case, when £ has a common exponential distribution. Defini-
tion 2.1. By a common exponential distribution we shall mean any distribu-
tion which density function is given by the forinula (see [4])

(2.1) p(x, Q)=v(x)exp [@(Q)+wy(Q)x], XxER,

with respect io a o-finite measure, where Q¢ L=R and L is the widest set
for which (2.1) has sense.

We shall suppose that

1) w,(Q) and w,(Q) are twice continuously differentiable in L,

2) The derivative wy(Q) is strictly positive for all Q,

3) @\(Q)/w Q) is strictly decreasing in the whole L.

In the sequel we suppose, that for all Q¢ L the relation —w (Q)w (Q)=Q
holds. We shall suppose, that & has a common exponential distribution. Under
the above assumption we have (see [4]) Eo&=Q, Do&=1/w)(Q). It is easy to
see, that there exists a o-finite measure v. on (U=[0, + =) <XA XR, B,)
independing of (A, Q) such, that

Pr. of(T, Now Xo) € A} = [Mre—MekwiQ+xwxQ dy (¢, k, x),
A

where A¢ By and t is a Markov stopping time such, that P, o{t< + oo}=1.

We shall suppose that the function 4(X, Q) and the estimator f satisfy
the same regularity conditions as those in [5]. In the same way as it is done
in [5] we can obtain

Di. of ={[Mi;(h, Q)P+ o2 QP /wAQ)}/AEx, ot

Equality holds at (%, Q,). if and only if there exist constants B and y, not
both zero, such that f(u)—h(k, Q,)=B(k/dg—1)+Y(Qok—x).

Definition 2.1. A sequential plan (x,f, h) is called an oblique plan,
if © denotes the moment of the first attaining of the set {(t, k, x): t=ak
tbx+c}, where

1) a>0, b0, ¢>0 if Po{>0}>0 and Py{§<0}>0;

2) a -0, b>0, c>0, a2+ b2>0 if Py{E -0}=1;

3)a -0, 6=0, c>0, a*+b2>0 if Po{§=0} =1.
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Let C,p:={(* Q): L€(0, +2), Q€¢L, ar+brQ<1}.

Strictly in the same way as it is done in [5] and in the first part of this
paper we can get the following theorems:

Theorem 5. Efficient plans may be only the simple plans, inverse
plans and oblique plans.

Theorem 6. The simple and inverse plans are efficient for (0, + <)X L.
The oblique plans are not efficient for any (Ay, Q,), Which does not belong
to C,,, The oblique plans are efficient for C, ,. The following are the only
efficiently estimable functions

a) for a simple plan h(k, Q)=0r+BrQ+3 and f(u)=oak/t,+PBx/t,+38 is
its only efficient estimator;

b) for an inverse plan h(r, Q)=u/A+BQ+38 and f(u)=at/k,+Px/ky+38 is
its only efficient estimator;

¢) for an obliqgue plan h(x, Q)=(ar+BrQ+7)/(1—arh—brQ)+8 and f(u)
=ak/c+Px/c+yt/c+3 is its only efficient estimator.

3. Conclusions. The methods used in this paper and in [5] are rather
general and can be applied successfully to determining the efficient plans of
many processes. In particular, it is not difficult to show that it holds true for
the processes investigated in [1-4; 6].
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