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ASYMPTOTIC PROPERTIES OF LINEAR QUANTILE EUNCTIONS
NGUYEN VAN VONG

The paper -deals with some problems stated by E. Parzen (1979). Results of M.
Cs6rgo and P. Révész (1978) for a stepwise quantile function are proved to hold also
for the linear quantile function. This is used to consider the statistical hypothesis that the
unknown continuous distribution function F(x) is of the type F(x)=Fy[(x—n) o], where Fy is
given and p and o are unknown.

1. Introduction and notations. Let X,,..., X, be an independent sample
from a random variable X with absolutely continuous distribution function
F(x); let further X, =Xp:n< - - - <X,:n be the order statistics of the sample

and F,(x) the corresponding empirical distribution function, i. e.(—o0 <x< )
0 if x<Xin
F(x)={kin it Xpnsx<Xiesin k=1,....n—1,
1 if Xuasx.

The corresponding empirical process B, (x) is By(x)=n'?[F(x)—F(x)]. De-
fine Xo.,=Xi..—[2n(logn)?]~. We introduce the following linear empirical distri-
bution function F,(x) by Fy(x)=k/n it x=Xun £=0,1,..., n; and linear in
the intervals [Xe—t:ny Xan)s R=1, ..., n; Fi(x)=0if x=Xo.n; Fy(x)=1if x=Xp..
Denote by B,(x) the corresponding empirical process B,(x)=n"?[F,(x)— F(x)].

Let Q. y) be the quantile function corresponding to F,(x), i. e. Q,(¥) = Xkn

if (k—1)n<y<y= : v k=1,2,...,n Q,0)=Xi, and the respective quantile

process g, y) - AQ(¥)~F ()], 0<y<l1, where F~i(y)~inf{x:Fx)=y}.

In a similar way we have Q. ¥)=Xin if y=~k/n, k=0,1,...,n, Q)

linear in the subintervals [(k—1)/n,k/n), k=1,...,n, and ¢, (y)=n"2[Q¥)
F~'(y)), 0O<y<]1. One has

(11) Qn( y) = ﬂ(k,/n -‘y)Xk—l:n+"(y_(k"“ 1 )/’n)Xk:n

for (k—1)/n<y=k/n, k=1,...,n.
In the case F(x) is the uniform distribution over the unit interval we

shall use the following notations:

U, instead of X, a,(x) instead of B,(x)
Uen Xin vly) . Q¥
Efx) . Fix) Uy . Qu(¥)
Ef(x) . Fux)  uy) . 7.(y)
a(x) . Bulx)  udy) . 7.(
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Let further {B(y), O=y-=1} be a Brownian bridge, i. e. a separable Gaussian
process on [0, 1] with EB(y)=0,EB(y,)B(¥2)=y, A ¥, y1¥s and {K(y,?), 0=y
-<1,0-=<t} be a Kiefer process, i. e. a separable Gaussian process on [0, 1]x[0,
=] with EK(y, £)=0, EK((y\, £)K( s, £2) =(L AL) V1 A Yo—31 Vo).

2. Approximation of the uniform process u,(y).

Theorem A [4). For every n there exists such a Brownian bridge
{By), 0=y=1} that for arbitrary z

(2.1) P{supo<y=<1 | 4,(¥)— B y)1>n""*(Alog n+z)}<Be—C,

where A, B, C are positive constants.
Lettingz—=Klogn (K.C>1) one has from (2.1) and the lemma of Borel-

Cantelli supo< ,<i|2,(¥)—BJ(¥)|=0(""2logn) a. s.
Theorem 1. For every n and the Brownian bridge of Theorem A
there exist positive constants A, B, C, so that for every z

P{supo<y<i|un( y)—B(y)|>n""2(Alog n+2)} = Be—¢,

and supo<y<i|u,(V)—B,(v)|=0(n""?logn) a. s.

Proof of Theorem 1. We first prove

Lemma 1. Let {B(y)., 0=y<1} be a Brownian bridge. Then for an
arbitrary z we have

(2.2) P{maxy<z<n|B(k/n)—B((k—1)/n) >n—'2(Alogn+2z)}<n—2Be—=,

where A and € are arbitrary positive numbers and B, and C, are positive
constants depending on A and e.
Proof of Lemmal. Denote for k=1,...,n

k k—1y . 1 1,112
Ge=[B(3;)—BHIN: [; A=) -
The random variable G, has a MO, 1) distribution. Further we have
P{I G, |>A log n+ z}<info, Ee"% g~/ 18 142

and some calculations give Ee”'% <2te*’/\2rn+e"” Choosing a ¢ with £A>1+¢
we get
(2.3) P{lG,|>Alogn+z}=n—0+9B, e~

The lemma is proved by the inequality
P(1B(5)— B(*SH)I>n—"2 (Alog n+2)} <P{1G,|>Alog n+2}
and (2.3).
Now we are prepared to prove Theorem 1. Let B,(y) is the Brownian
bridge of Theorem A. One has the following chain inequalities
sup o= y<1 | 2,( ¥) — B ¥) 1= 5uposy<il @ ¥) — By ) |+ suposy<it | 4, (¥)—2,(y)]

(2.4) < SUPo ys1 12, ) — B(W) | +maxiasa | 2, () — 1, E=D) - n12

< suPos st | ) — B 9) |+ 2 maxsasa | g (2)— B, (X))
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- maxy. g .| B, ( 5‘; - B,,(ﬁ;,,l)lg_n»l':\,’;supw v lu(v)—B
k— .
= MaxXi< g | B,,(%)— Bn(——TlH_‘_nv—l 2

Combined with (2.1) and (2.2) the last inequality (2.4) proves Theorem 1.
Remark. Theorems A and 1 imply

(2.5) supo- - 1 lu () u(y)l- O(n—12log n)a.s.
Theorem 2. There exists a Kiefer process {K(y, t),0 -~y=1,0 -t} with
supo- y lu,(v) n'2K(y,n)|=O0(n="*"(loglog n)V*(log n)"?) a. s.

Proof of Theorem2. The theorem follows from Theorem B in [4] and (2.5).

3. The distance between the general normed quantile process and the
corresponding uniform process. Here we prove an analogue of Theorem 3
in [4].

Lemma 2. For §, —25n""'loglogn+n—"' one has
(3.1) limsup sup [ (1 - y)loglogn|~'"?lu,(y)|=4 a. s.

e
[v(1 —y)loglogn]—12lun(y)| =4 a. s.

Proof of Lemma2. Using Theorem 3.2 of Csaki [3] and the fact that

la(v)—afv)—-n 12 a s for ye[0, 1], we get

(3.2) lim sup sup [y(l—w)loglogn|="?|a,(y)|=2 a. s.,
n—w £ =y I—E”
where €, dn'loglogn, d=0,236... Following the proof of Theorem 2 in

[4] and (3.2), we prove Lemma 2.
Theorem 3. Let the quantile process q,y) resp. u,(v) be defined in
terms of Xy resp. Uy - F(Xpp). Let F(x) satisfy the following assumptions :

(3.3) F(x) is twice differentiable on (a, b), where
~—a -sup{x:F(x) 0}, b inf{x: FAx) 1landF'(x)=f(x)+0 on (a.b),
(3.4) SUPac s F(xN1 - F(x)) ‘f__;:}:;—?-\y for some vy >0.

Then we have
o

(3.5) lim sup ~i6£l&’—"- SUps - y1-s, [ AF Y yNg(v)—u(y)|~L a. s.

where 5, 25n 'loglogn and L depends only on 7.

If in addition to (3.3) and (3.4) we also assume that f(x) is

(3.6) nondecreasing on an interval to the right of a (or 0< f(a+0)<
if © < a) and nonincreasing on an interval to the left of o (or O< f(b - 0)< -
ith< ),
then
(3.7) supoe yer | fIFE U YA Y) t(y)]=asO "2 loglogn) if y<1

2.0V (loglogn)?) if y— 1 —.5.0(n—"?(loglog nyy (log n)+et b if y > 1,
where €>0 is arbitrary.

Proof of Theorem 3. 1f y¢[(k—1)/n, k/n], k=1,..., n, we have the follow-
ing equalities
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f(FX(¥))g y)=n"Pf(F7(y)
X {n( % —WIF (Us—1:a)—F (W] +n(y =EO [ F (Usn)— FAI}

= 2 PN (E — D(Usmin—IXFH ) + 5 (Unin— RFE))]
38)  +n(—" 2 Uk F) + 5 Ura—yP (F7(E))"]}
— R UL9) =Y [ ENF( )Y+ n2fF()
X An(E — YYUntin—yFFIENY " +1 (3= D) Unn—yPF @)}
where &, is between y and U_1.., resp. & between y and U,,;,,=y+—""2u~,,( V).
Taking into account fIF~Y(WNF~(y)) =1 (3.8) implies
(3.9) < L n R y) FE ) [ (FE) VF ()

1 / — ’ —
+ 5 12 (Uk—1a—YPE DS (FED VAETHED)]-
Now take a fixed #=21 and a fixed y¢[3,, 1—3,]. It follows that y¢[(k—1)/n,
k/n|c (8], 1—38}] with 8'=8,—n~' and 8, defined by (3.5). From Theorem 3
in [4] one has

1 —ng 1 |f"(F1(&)| aa
5 1 P V) =y =Kn~"*loglogn a. s.

where y¢[8,, 1—3,],& in between y and y+n—'"2u,(y) and K=40y10". This me-
ans that the first term on the right hand side of (3.9) is less than Kn—'?log log n
If Up_1.n—y=0, thesecond term is less than %n—‘”iﬁ(y)xf(F—‘ (y)Xx

| F(FIEN/AFE)), i.e.is also smaller than Krn—'?loglog n.In consequence,
in order to prove (3.5) one has to consider only the case U_1.,—y<0. De-
note by H,(y) the second term on the right hand side of (3.9) and y,=(k—1)/n.
One has

Hy(»)=n""2u(y) (F D)L (FENVAFETED)]
+n R E ) FFENVETEN]: =ln (3)+ b (9)-

Because of y,€[8;, 1—38;] from Lemma 2 it follows that

(16 N yi1 =) o ISEE) | AF )
and

<2/n4+n—"u y)l=2/n+(4+0(1)) (yu(1 —=y)n~ loglog n)'2.
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From vy, 6, and (3.10) for n -21 we get
Ve & 12n [y 2in (A o(H)X yu(1 — ypn tloglogn)' 2™

L o)yl —yenloglog ™ o
Vi—2/n—(440(1)( vyl —ygyn—log log m"

and similarly from(l y,) =38, and(3.10)for n 21 it follows that (1 —v,) (1—&))
-10. This implies that the content of the second rectangular bracket is smal-
ler than 10. Using Lemma 1 of [4] and our Lemma 2, one can similarly prove
that the number in the third bracket is less than 20v. All this gives that 4,,(v)
is bounded by (16-+0(1))10y20z'loglog n. On the other hand, one can prove
that /,(v)=o(n'2loglogn). Thus (3.5) is proved with L =40y10+ 1607207+ 1.
Finally using Lemma 2, like in the proof of (3.5) of Theorem 3 in [4], one
gets (3.7), where the condition (3.6) is less restrictive compared to (3.4)
of [4].
FFrom theorems 1, 2 and 3 follows an important
Corollary. Under the conditions (3.3), (3.4) and (3.6) there exists a
Brownian bridge {B,(y).0=v -1} and a Kiefer process {K(y,t),0=y-=1,
02t} with
SUPo< yoy |f(F‘l(,V))(],,( V) B,,(y)l
2. 0(n V2logn) if v<?2

s O (log log n)t (log n)+ot =Dy jf y -2,
where v is defined by (3.4) and € is arbitrary and positive,

B sup [fF (g (y) a2y, n)|— s O(n~ log log m)* (log m)!"?)
0 y<1
The relation (2.5) combined with Theorem 3 and theorems 3 and 5 of [4]
cnables one to prove a result similar to Theorem 5 of [4]. Let C--C(0, 1) be
the space of continuous real valued functions endowed with the supremum
norm. Let K< C be the set of 'absolutely continuous functions f(x) (with re-
spect to the Lebesgue measure) for which f(0) - f(1)=0 and [{(f'(y)yPdy-1.
Theorem 4. Under conditions (3.3), (3.4) and (3.6) the set of limit
points in C with respect to the supnorm of the sequence {—-—f (1) W"%—,ﬁ—"—} is
(2log log n)''=
is equal to K a. s.
4. Linear quantile functions and hypotheses testing. In this paragraph
we consider the family # of distribution functions, defined through # = {F|F(x)
F((x- p)/o), <p< o,0<o< o}, where F, is a known absolutely conti-
nuous distribution function.
The hvpothesis A, is Fe¢#. Then H, is equivalent to

(a.1) F(y)-oFT (¥)+m
fF ()= fF5'(y))o.

where f(x) — F'(x), folx)— Fo(x).

Let X,, Xp...,X, be a sample taken from F(x). Then under H, if
Z, (X, wfo, i=1,2,....n the set Z, 2Z, ..., Z, is a sample from Fyx)
and the following relation holds
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(4.2) Qu( )= Qi ¥)—n]/o,

where Q,(¥)XQn( ¥)) is the linear quantile function of X,, X,. .., X(Z1.Z0s .-+, Zp)-
Using the differentiability of Q,(y) we construct now a random process

for the purpose of testing H,. Define U E,[(X»—p)/c], i=1,2,..., n, where
n and o are some estimators of p and o. Denote D,,(u) F[(Q,,(u) nw)/s]. We
can consider D (u) as the quantile function ot U,, U, .. , U,. Differentiating
D Hu) we get

(4.3) d(u)=fo [(Qn(a)—1r)/o|Qn(uX1/o).

The function d(#) depends also on p and o, but (4.3) suggests (see (8, p.
110]) to introduce a function &,(«) that does not depend on the estimates
but nevertheless can be used for testing . Define d,(u) - SAFT (@) Qu(uX1/o,)
where o, is a norming constant, i. e. o, [ f(Fo '( ¥)Qu(¥)dy-

Consider now the process g, (u)=n"[od(yv)dy —u], 0=u=1. It is g,(u)
that we shall approximate by suitable two-parametric Gaussian process.

Denote

o(V)=[fdF (I IfLFT(¥)
(4.4) Ef¥)=fAFT (YNNG y)—n""2K(y. n)

u 1
G ()= n""2K(u, n)— [ n='"?K(y, nyo( y)dy+u[ n—"K(y. n)o( y)dy,

where ¢(y) - n'?[Qy)— F,(y) and K(y,?) is a Kieler process, correspond-
ing to ¢%y) like in the corollary following Theorem 3,
Theorem 5. Under the hypothesis H, (3.3), (3.4) and (3.6) hold and if

the function || f(Fo "(y))'| is bounded in some netghbourhoods of

(4.5) Oand 1, the fllllCthﬂS YWLFC ()| and (1 —y)7 | F& (_y)[are bound-
ed respectively in some neighbourhoods of O and 1 by a con-
stant \ where r>1,

then
supo<u 1| i) —G (1)l =0(n"""*(log log n)"/* (log n)*?) a. s.

Remark 1.From(3.4)itfollowsthat|e(y)|=y[y(1—y)]' forevery y¢(0, 1)
Remark 2. The integrals in (4.4) exist with probability one. Indeed, for
every u¢[0, 1] we have a. s.

» 1
[ PKLY, m)e(y)ay | = [1n 2Ky, m) ly[ (1 p)[~'dy

2y sup |K(y. m)4ny(1—y)loglog |~ U [log log ‘——-l‘”ly(l —y)) 'y

Oy

12

~2y(1+0(1)2 [ [loglog " V[ y(1— y) "7y < c=.
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The third inequality is implied by the following result of [2, p. 797]:

(4.6) limsup sup |K(v, n)[4ny(l—y)loglog ]— 2|=1 a.s.
n—= 0ly<l y(l

Remark 3. The distribution function F()(x)ﬁl—e*"'(x\O) satisfies (3.3),
(3.4), (3.6) and (4.5). In this case it can beshown in an elementary way that
EG, (1) — 0, EG,(u))G,(uy) =ty A thy—tytd,, i. e. Theorem 5 implies a result of
R. Barlow cited in [8, p. 110].

In order to prove the theorem we first show

lLemma 3. /f F, satisfies (3.3), (3.4), (3.6) and (4.5), then

| If,,( Ve v)dy | = O(n—"4(log log n)* (log n)*?) a. s.,

where we[0, 1.
Proof of Lemma 3. Chose B such that

(4.7) B>max(% —-:—l 2),

r

where r is given by (4.5).
One has

| [ Edwe(ydyl=y [1EL [y (1—y)7dy

l/r!” 1—1/ ntj 1 .
[+ [ + [ 1 =KntKut+Ks
0 1/nB 1—-1/nB

From (3.11) it follows that

172
Ku=supocy | Ev) 4y [ y~'dy

(4.8) v
1/2
~O(n—"4(log log n)' *(log n)'9). [ y 'dy=0(n—""(loglog n)'*(log)*?) a. s.
1/n
One has
1 /b
I\nl =Y ‘ n '2|K(,Vv”)[[.1’(]‘vl—ldv
(4.9)

I,‘n”
byt L fdFo QU —Fo (»)dy: =kpy + Ry

The relation (4.6) implies

l/n’
(4.10) k= 2y [ [loglog o= I [ (1 —=y)[~"?dy = O(n=""),

and (1.1), (4.5) and (4.7), respectively,
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1/nB 128
f o~ yAn'? '[ | Zvn—[2n (log n21~' | dy +yan'? i;" | Fo ' () dy

l,n” l‘nB
<yAn'2 [ F (Ura) ldy+van'2 [ | F5 ' (y) ] dy+O(n—52)
(4.11) ! !

172 1nB

YA 2B (Uy,) ! ,+(]__f,], o ! d( Y=Y O(n72)

—yA2n'’n—b¥(n (log n)’—’)‘v’_x_“ 1?‘:‘[’_) n—Br=0r 2 L O(n—52) = O(n—"4).

The last inequality uses the fact that Uy.,>(n(logn)y*)~' a. s. As a conse-
quence of (4.9), (4.10)and (411) we have K,;=O0O(n='*) a. s. and similarly
K,; O(n "% a. s. Thus (4.8) proves the lemma.

Lemma 4. For Fyx) satisfying (3.3), (3.4), (3.6) and (4.5) we have for
uel0, 1]

(4.12) | [F(F (»))dgi )| =O((log log n)'?) a. s.

Proof of Lemma 4. We have

(4.13) | FUFS (vl (y)]

<1 fo (FT @)g ) 1+ 1 fFT g | + 1 [ flFT () A vl y)dy |-

Using Theorem 4 and following the lines of the proof in [6, p. 205-206] one
FAF (M)
(2 log log n)'7?
the interval [0, 1/2], i. e. the first and second summand of the right hand side
of (4.13) are of the order O((loglog n)"?). For the third summand one has

u 6" 1—~8n 1
(4.14) [ fo (B (asmnedy =1 [+ [+ [ 1,
where 8, was defined in Theorem 3. This theorem and Lemma 2 yield the
chain of inequalities

gets that the set of limit points of the sequence supocy.il

1

1—8
S FAFS (a2 (y) o (y)dy|

1--6 1-8
i lfo(Fu“(y))q:,’(,v)—u;;(y)l«p(.wdy|+|[ ul(y)e(y)dy|

1—-8

sup | folF5 (g (D)= (9] [ “lo(y)ldy

& <1-8
nSY< n

(4.15)
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1—58
+osup Jup(p) Lyl [ Tein vl -l dy
. b”

o -
n - n

16 1—-6

OG- oglogn) [ e( )| dy+O((loglog n)?) [ " [y(1—y)l="*dy

o
n

=0O(log log n)'?).

Further, Lemma 3 and (4.6) give us

6'1 OI“l 6’!
(116) |.|l,'f,(hf‘( wZA vIo( y)dyl=I|[ E(y)o( y)dyl+| Uf n='"2K( y, myo( y)ay|

~O(n=Y* (log log n)* (log n)*?)+23 f [loglogy(l"_y)]‘/'l[y(l —y)|~V2dy
0

~O(n—"*(log log n)"/*(log n)*?),

where in the last equality z=2n/y. Similarly holds the relation

(417) | J fo(FU ()95 ()e(y)dy|=O(n"4(log log n)' (log n)*"?).

Now (4.14), (Al.lo), (4.16), and (4.17) imply (4.12) and thus prove Lemma 4.
Proof of Theorem 5. The relation (4.1) and (4.2) give

ey 5 FoET  (9)dQR( )

— —u
[hfo S (MQY( 3) }

&n ()
(4.18) A FAET g v) e [F(FT (g )}

{jl)/(ﬂ‘bu ( V)”tl,.( V)}
J(,fu'F L(3)aQl (v)

AR (g [ FFS (r)dal ()

In(1) + E (1)
By Lemma 3 for every u¢[0, 1]
(4.19) | g, ()~ G(u)|=O(n "4 (log log n)'*(log n)*?) a. s.
By Lemma 4, again for every u¢ [0, 1]
(1.20) | E,(2)| = O(n-="2log log n).

The theorem is a consequence of (4.18), (4.19) and (4.20).

5. Asymptotic distribution of the supremum of a normed linear uniform
quantile process on subintervals on [0, 1]. Let Up,<Uzn<- - - <Upn be the
order statistics of a uniform distribution on [0, 1] and Uy, =0, U,.H,,, 1. Con-
sider the linear quantile function V (y) defined by

- Vi y)=Uprn for y=kf(n+1), k=0,1,... . n+1
-1 linear in‘every subinterval [(k—1)/(n+ 1), k/(n+ 1)}, k=1,...,n+ 1L
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The process
(5.2) v )= (n+ 2PV y)—y}, 0=y=1,

will be called a uniform linear quantile process. It has been studied among
others by Penkov [9].
We introduce the notations

K(e,8)= sup v, (v)/{ y(1—y)}'"
e y<d

L(e 8)= sup | (v)I/{ y(1—y)}7,
< y<d

(5.3)
K. 8)= sup v ( 3)/{V 1=V I}~
e y<d

L, 8)= sup |2 NIV —VA W2 0=e=d=1.
e<y< :

and further those used by Jaeschke [7].
a(x)=(21log x)'72,
b(x)=2log x+2'log, x—27'log n (x>e, log, x=Iloglog x),
a,=a(logn),
b,=b(logn),
T (t) = (¢+b(x))a(x),
(5.4) E(t)=exp{—exp(—H)}, tER,
u,=(logn)?/(n+1), n=3,
f() = Vi)A(1—p,) (ue[0, 1}, aAb=min(a, b), av b =max(a, b)),
p(g, 8)=2"1log {3(1 —¢) &(1—-9)}, 0<e=d<1,
Pa= PrlEm 32)= P(/o(E,). Fo(3,), where 8,8, [0, 1].
Theorem 6. Put limp,/logn=c, then

(5.5) lim P{K, (2,0 8,) < T 1oz )} ={ED)}". 1€ R
(5.6) lim P{Ly (e, 8,) < T 1oz )} = {EO}, £ER
(5.7) lim P{K, (8x 8,)< T 10z n()} ={E(£)}", tER
(5.8) lim P{L, (6 8,) < T 10z n(6)} = {E(E)}, tE€R

N—»o0

Remarks: 1. From the definition of p, it follows that c¢[0, 1].
2. It is easy to see that for ¢>0 the relations (5.5)—(5.8) are equivalent to

(5.9) lim P{Kn (8,,. 8n)< Tp,.(t)} - E(t)'

n-so00
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(5.10) lim P{L, (e, 8,)< Tpn(0)} - EXO).

lim P{K, (€, 8,) < Tp,(t)} = E(¢).

n—co

Hm P{/, (g, 6,)< To D)} EX(2).
3. In the case £,--0, 8,=1 (5.10) implies a result of Eicker [5 Theo-
rem 3, (1.9)].
Proof of Theorem 6. We use the following
Lemma 5 [7]. Let O<g,<8,<]1, 1,=p(g,, 5,)— = and {B(y).0<y=1}
s a Brownian bridge. Then for wteR
lim P{ sup B(y){ v(1—y)} "2 < Tt ()} = E£).

n—soe <
6, <y<o,

lim P{ sup IB(y){y(1 =)}~ < Te (b)) - EX)
n—oo &, _v<’l

Lemma 6. Let e, A(1—05,) =pn,=(logn)3(n+1). Then there cxists a se-
quence of Brownian bridges {B,(y), 0<=y<1}, so that

Ku(€n 8,0 sup By y(1-y)} =o((logyn)~'%) a. s.

g < o
, SY<o,

Proof of Lemma 6. It can be proved that Theorem | remains valid, if
u,(y) is replaced by v,(y), i. e. there exists a sequence of Brownian bridges
{B,(v). 0--y-—1} satisfying the relation

)SuPli U y) B )= O(n-"%log n).
DASS 4

It follows that
. Un(Y) By —112] 12— O —1/2)
B T L R TR | = O(n="2log )/ (u,)'= = O((log m)~ 1)

o((log, n)~'7),
which prove Lemma 6.
Lemma 7. Let p,=(logn)’/(n+1). The relation

an{[’n(o‘ ”’n) v [n(l Ho l )} - bl‘l T

holds.
Proof of Lemma 7. Because of the symmetry of the intervals (0, p,) and
(1 -p,, 1) with respect to the point (1/2) it is sufficient to prove

(5.11) Auln(0, pp) — b, —>p— .

By (5.4) to show that (5.11) holdsitisenough to veryfy that lim, .. P{L,(0,u,)
~a,}=0. Actually we shall prove
(5.12) lim P{L,(0, u,) ~a?"} =0, h=2,3,...

n-—-sco

We have indeed
PULL0, 1) == @2 <P (L, (0, i) = a2t} + PL(—

I,
T M) 5a,"}: =P+ Py,
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and from (5.1)

) (y)‘ I 2
P,=P{ su ——n N> g
5.13 " {0<y<l/<n+n {y1—yp'? — 2" }
3. N
( ) <P{| Upon— 1 |= “;z‘h Vo E‘Ul:h—EUl:ni\/4.11.4n+1) 0
= n—p41l= 4(,,+1)I = (a';’,"',"4(n+l)) “n2 logzn)l,n

where the last inequality follows from lemma 2 of Wellner [10]. Again
from (5.1) we have

N2 17— ElTs.
p2 <P{ max 2(’1?2)/ | Uk:n E(Jk.n

“Ukn L gomy
1<k=[log3n]+1 (k| (n+1)"

’?H

<P{ max {Mn+D(n—ktl)y (| Uen—EUkn|

- {1sks(|og=n]+1 kR nlk+1

>1}.

Using an inequality of Birnbaum and Marshall [I] and the fact that
{(Ugn—EUsn)(n—k+1), 1=<k=n} is a martingale we get

[log? 7]+1 | Uk:n—EUk:n |
P X (0 — g B

where gy=4(n+ 2 n—k+1)/k'"Pa", k=1,...,[log?2]+1 and
r is an arbitrary integer. Some calculations yield

(g7 —4%.) =D n+ ¥ (n—kY" (2 logy m "k,

where D, depends only on 7. Again by Lemma 2 of Wellner [10] we have
| Ugn—EUr:n | o7 C/k|n2y
El (n—k+1) ; =(n—k+1pr
where C,=1+2.5¥ T(2r+1).
wm

The last threeinequalities and the common relation ;- ;1 /2 =log m+ C+O(1/m),
C —constant, lead to

\

D,C,.(n+1)>  O(logs n)
ner ’ 2r/h

. Py, <
19 e (2n log, n)

if r is chosen to satisfy 2r/2>1. The relations (5.13) and (5.14) imply (5.12)
which proves Lemma 7.

Now let us prove (5.5). It suffices to consider only the case ¢>0, where
(5.5) is equivalent to (5.9), see Remark 2 after Theorem 6. For » large enough
and ¢>0 one has p,<3§,, g,<1—p, i. e

(5.15) K,,(em Bn) = Kn(sn' pn V eII) V K’l(,‘"n V sn' 8’! A (l —pn)) V Kn(an A (1 ‘_un) > 8fl)'

Lemma 7 says that we have to discuss only the third term on the right hand
side of (5.15), for which by Lemma 6 we get the asymptotic distribution (5.9).
The proof of (5.6) is quite similar.

In order to prove (5.7) and (5.8) we need the following two lemmas.
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Lemma 8. /f ¢,A(1-3,) -r,=logn/(n+1), then
(5.16) K (€ 8,)—K (€, 8,) — 0((logy n)12) a. s.

Proof of Lemma 8. One can show that (3.1) remains valid, if «,(y) is
replaced by w,(v), i. e.

(5.17) limsup sup(0.25log,n) n~y<1--(25log, n)/n{ y(1 —y)log.n} 12 v, (y)| < 1

n—»co

Here from

S ;= 1+ O((logy n/log n)'%) a. <.

(5.18)
< l_ 2
_:_;gp N 1—-V—(T 14+ O((log, n/log n)'?) a. s.

and the relations (5.17) and (5.18) give

K (8 5 )\K (G 6,,) Sl..lp {V (;')([ll——)l; (y)l}l/'z ,,(F n)“ o O((logﬁn,log n)l(:)l

=K, (g,, 8,) + O(logy n)'20O((log, n/log n)1?) - K, (&, 8,)+ o((log, n)—"2).
which proves (6.16).
Lemma 9. Put x,=(logn)/(n+1). The relation a,[L,0,r,)Vv L1 ~ A1)
b n P~ o holds.
Proofof Lemma 9. From Lemma 4 ot Jaeschke [7] and |E(y)- V. '(y)
—~1/n for ve[0,1] (F(y) being defined in paragraph 2) we can show that

(n+2)"%) V,',"l(y)-—y i

a, sup

Lisn<y<n, {y(1—y)*

“‘bn“’P—- - >0,

n

where p, =(log n)*/(n-1). Taking into account that Uliog 4 1., <K, a. 5., it follows

a, su ol A 2Ll  J—
[/'lzn\'\)’\‘(/P[Iog nl+1:n U“-—y)}” P
and
(S.IQ) (l,,l:,,(l,’(fl+l). A'n) *'b,,""P T

We prove now that
(5.20) a,L (0. 1/(n+1)) b,—~p
Indeed, we have
P{ sup 4y/vn( .V) E‘(l,.} - P{""/(/I:u '(”:> I)(I"}
0<y=<1/(n41)
1 V(n+1)(log. w2

= B(1,n) 1\' (1 —=x)""'dx -0,
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which with (5.12) implies

j 1 . Ly : Y yu2es
PILIO. L PILOL 2w

1 9 . v
~P{L,0, )~ al’?} —P{4 ~)‘;)-§,ll\})zv: V) Ay =0, n— >,
which prove (5.20) and with (5.19) also a, L0, Ag)—=b,—p— . Similarly onc
has @, L(1—h, 1)—b, p— - Thus Lemma 9 is proved completely.

Now (5.7) follows from (5.5) and the last two lemmas. Similarly. (5.8)
follows.

Now we proceed to some generelizations of (5.5) and (5.6). Let Xy, <X,
<. -<X,. be the order statistics of a sample from an absolutely continuous
distribution F(x) on [0, 1]. Put X, =0, X, 1.,=1. As an analogue of (5.1)
(5.2) and (5.3) we introduce

Wy) =X, for y=k/(n+1), £=0,1,..., n+1, linear in every
subinterval [(4 1)(n=1)k(n+1)], k=1....,n+1,
2l )=+ W (9)—F () 0= y=1,
M, (e, )= sup fFI(y)a,(y) { y(1 -y}
el y< 0
N, (e.8)= sup AF (v)lw(»I{y(l -y}72 0~e=6-=<1, where flx)=F(x).
e y<d

Theorem 7. Suppose that F(x) satisfies the following :

F(x) is twice differentiable on [0, 1] and F'(x)=f(x)%0 on (0, 1),

sup ALY —=F) ()l (x)~y<,

0x<1

(5.21) f(x) is nondecreasing (nonincreasing) on an interval to
the right of 0 (to the left of 1).

Then if lim,_.. p,(g,. 0,)logn =c,
lim P{M,(c.. 8,)< Tiog ()} — {E()}*.

n—oo

lim P{N, (€ 8,)< T 10g(t)} - {E(£))%.

n—o0

Proof of Theorem 7. As in the proof of Theorem 6 it is enough to
show, that for ¢>0

lim P{M,(&,, 8,)< T, (£)} = E(t)

Ji=—s O

lim P{N,(g,, 6,) < T‘,n(t)} = E¥(¢).

n—sco
[.et us prove first two lemmas.

l.emma 10. Under the conditions of Theorem 7 let V (y) and v, (y) be
defined by (5.1) and (5.2), where Ug.n—=F( Xien), B=0,1...., n+1,K, (e, &) and
L. (€. 8) being defined by (5.3). If e, A(1 —8,)>0,=(log,n)'/(n+1), then
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M,(& 8,)— Knl(Ey 8,)=0((log? n=1?) a. s.
Proof of Lemma 10. As in Theorem 3 (3.7) we have
P 1lf(F“‘(y))w,.(y)-—'v,.(y)l=0(n*”2 logg n) a. s.,
where from
M€ 8,)— K€ 8,) = O(n=112 logy n)/8Y/2 = O((logs n) ") = 0((logy n)~"1%).

which proves the lemma.
Lemma ll. Under the conditions of Theorem 7

an[Nn(Ov en) 4 Nn(l —9,,, l)l—bn—'P— o

holds, where a, and b, are defined by (5.4)
Proof of Lemma 11. Again by symmetry of (0,6,) and (1—6,, 1) wit
respect to 1/2 it is sufficient to show that »

(5.22) a N0, 8,)—b,—p—co
Let Vo (3)=Usn(=F(Xan) for (k—D/(n+D)<y=k/(n+1), k=1,...,n+1,

7 ¥) —(n+=2)"{V,(y)—y}. First we prove the following inequality: for every
vE[2/(n+1),6,] holds

(523)  IAF @)= o0)] + A7) +(n+2)7"2

where A(y) is a constant depending only on y and y'=y—1/(n+1). Indeed,
let ye((B—1)/(n+1), k/(n+1)].

If Wy)=F-'(y) the definition of W,(y) and the convexity of F7'(y)
imply

(5.24) | AF (y)wd )| =(n+ 2P F N IH W)= F ()}
Vn(y)

S(n+ 2 fE WV A= F () =+ 237 T g dusi o)1
The last of these inequalities follows from (5.21). If W,(y)<F~'(y) then
|AF(y)wa )| =(n+2)" fF () F(y) — W)}
(5.25) “(n+2) 2 (P F () —F V(¥ )}
2y P IN A= E ) =P+ 9= FR VD))
Using Lemma 1 of [4] and (5.21), one can prove that

(5.26) fEN)IAF(y)N=2,
(5.26) AF ()N FN ) —F Ny Nsy—y =1/(n+1)
|E1(y)— F (Vi yNIs201y =V y) (L —7).

The relations (5.24), (5.25) and (5.26) imply (5.23).
As in Lemma 7 we have
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| O ¥)|
Aly) —2d o,
b o, AN gy TP
which with (5.23) shows that
(5.97) aN(2/(n+1), 8,)—b,—p—oo.

On the other hand,
(5.8 N0, 2/(n+1))—b,—~p—ce.

Now (5.22) is implied by (5.27) and (5.28), which proves Lemma 11.

Theorem 7 itself is a consequence of (5.5), (5.6) and Lemmas 10 and 11.
Remark. This paper is part of a PhD thesisunder B. Penkov to whom

the author is indebted for his guidance. Aknowledgement is also due to Tz. Igna-
tov for fruitful discussions.

o O W o

~

9.

REFERENCES

.Z.W.Birnbaum, A. W. Marshall. Some multivariate Chebyshev inequalities with
extensions to continuous parameter process. Ann. Statist., 32, 1961, 687-703.

. M. D. Burke, M. Csorgo, S. Csorgd, P. Révész (1979). Approximations of the
empirical process when parameters are estimated. Ann. Probability, 7, 1979, 790-810.

. E.Csaki. The law of the iterated logarithm for normalized empirical distribution func-
tion. Z. Wharscheinlichkeitstheorie und verw. Geb., 38, 1977, 147—167.

.M. Cso6rg6, P. Révész. Strong approximations of the quantile process. Ann. Statist.,

6, 1978, 832-894.
. F. Eicker. The asymptotic distribution of suprema of standardized empirical process.
Ann. Statist., 7, 1979, 116-138.
P. Gaenssler, W. Stute. Empirical process: a survey of results for independent and
identially distributed random variables. Ann. Probability, 7, 1979, 193-243.
. D. Jaeschke. The asymptotic distribution of the supremum of the standardized empiric-
al distribution function on subintervals. Ann. Statist., 7, 1973, 103-118.
. E. Parzen. Nonparametric statistical data modelling. J. Amer. Statist. Assoc., 74, 1979,
103-131.
B. I. Penkov. Asymptotic distribution of Pykes statistic. Teopus seposmwocmed u ee
npumenenus, 21, 1976,

10. J. A. Wellner. A law of the iterated logarithm for order statistics. Ann Statist., 5,
1977, 481—494.
Centre for Mathematics and Mechanics Received 17. 9. 1980

1090 Sofia P. O. Box 373



