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THE AXIOM OF COHOLOMORPHIC (2r+1)-SPHERES
IN THE ALMOST HERMITIAN GEOMETRY

OGNIAN KASSABOV

In his book on Riemannian geometry ][l] E. Cartan proved a characterization of a real-
space-form, using the axiom of planes. There are many results in this direction also for a
Kaehler manifold. B.-Y. Chen and K. Ogiue [4] have proved that a Kaehler manifold,
which satisfies the axiom of coholomorphic 3-spheres is flat. In this paper we prove a gene-
ralization of this theorem for an almost Hermitian manifold.

1. Introduction. Let N be an n-dimensional submanifold of a 2m-dimen-
sional almost Hermitian manifold M with Riemannian metric g and almost

complex structure /. Let v and v be the covariant differentiations on M

and N, respectively. It is well known, that the equation a(X, Y)=vyV —vyY,
where X, Y ¢X N defines a normal-bundle-valued symmetric tensor field, called
the second fundamental form of the immersion. The submanifold N is said to
be totally umbilical, if a(X, V)=g(X, ¥)H for all X, Y¢XN where H=(1/n)
tracea is the mean curvature vector of N in M. In particular, if a vanishes
identically, V is called a totally geodesic submanifold of M.

For X¢XN, E¢X Nt we write yy&=—A:X+Dy&, where —A X (respec-
tively Dy&) denotes the tangential (respectively, the normal) component of
vyE A normal vector field & is said to be parallel, if Dy§=0 for each X¢XN.

By an n-plane we mean an n-dimensional linear subspace ofa tangent
space. A 2n-plane (respectively an n-plane) where 1<n<=mis said to be holo-
morphic (respectively, antiholomorphic) if Ja=a (respectively Ja L a). A (2n+1)
plane is called coholomorphic if it contains a holomorphic 2n-plane.

An almost Hermitian manifold M is said to satisfy the axiom of holomorph-
ic  2n-planes (respectively 2n-spheres) if for each point p¢M and for any
2n-dimensional holomorphic plane = in 7,M there exists a totally geodesic
submanifold NV (respectively a totally umbilical submanifold N with nonzero
parallel mean curvature vector) containing p, such that 7,N=n, where n is a
fixed integer, 1--n<m.

An almost Hermitian manifold M is said to satisfy the axiom of antiholo-
morphic n-planes (respectively n-spheres) if for each point p¢M and for any
n-dimensional antiholomorphic plane = in 7,M there exists a totally geodesic
submanifold N (respectively a totally umbilical submanifold N with nonzero
parallel mean curvature vector) containing p, such that T,N=mn, where n is a
fixed integer, 1<n=m.
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An almost Hermitian manifold M is called an RK-manifold, if R(X, Y, Z,U)
=RUX, JY, Jz, JU) for all X, VY, Z, UeT,M, peM.

We have proved in [5]:

Theorem A. Let M be a 2m-dimensional almost Hermitian manifold,
m=2. If M satisfies the axiom of holomorphic 2n-planes or the axiom of
kolomorphic 2n-spheres for some n, l=—n<m, then M is an RK-manifold
with pointwise constant holomorphic sectional curvature.

Theorem B. Let M be a 2m-dimensional almost Hermitian manifold,
m=2. If M satisties the axiom of antiholomorphic n-planes or the axiom
of antikholomorphic n-spheres for some n, 1<n=m, then M is an RK-mani-
fold with pointwise constant holomorphic sectional curvature and with point-
wise constant antiholomorphic sectional curvature. Consequently, if m=3,
then M is one of the following:

/) a real-space-form, or

2) @ complex- space-form.

These theorems generalize some results in [3, 6, 9].

It is not difficult to see that if n>1 then the holomorphic analogue of
Theorem B holds.

Following B.-Y. Chen and K. Ogiue [4], L. Vanhecke formulates
the following axiom of coholomorphic (2724 1)-spheres [8]:

For each point p¢ M and for each coholomorphic (2n-+1)-plane n in
T M, there exists a (2n+1)-dimensional totally umbilical submanifold N of
M containing p, such that T,N=mn, where n is a fixed integer, | =n<m.

We shall prove the following theorem.

Theorem. Let M be a 2m-dinnensional almost Hermitian manifold,
m=2. If M sutisfies the axiom of coholomorpkic (2n-+1)-spheres for some n,
then M is conformal flat.

Hence, using [7] we have

Corollary 1. Let M be a 2m-dimensional connected Kaehler mani-
fold, m=2. If M satisfies the axiom of coholomorphic (2n+ 1)-spheres for
some n, then eiiker M is flat or M is locally a product of two 2-dimensional
Keakler manifoids with constant curvature K and -K, respectively, K>0.

The case m =3 in corollary 1 is treated in [4]. ~

An almost Hermitian manifold M which satisfies (yyJ)A=0 for all X¢x¥M
is said to be an ANK-manifold. Using the classification in [7] we have also

Corollary 2. Let M be a 2m-dimensional NK-manifold, m=2. If M
satisfies the axiom of coholomorpkic (2n-+ 1)-spheres for some n, then M is
one of the following:

1) a flat Kaehler manifold,

2) locally a product M, XM,, where M, (respectively M,) is a 2-dimen-
sional Kaehler manifold with constant curvature K (respectively -K),

3) a 6-dimensional manifold of constant curvature K>0,

1) locally a product My M,, where My is a 6-dimensional NK-manifold
of constant curvature K>0.

An almost Hermitian manifold M is said to be of pointwise constant type
a, provided that for each point p¢M and for each X¢€T7,(M) we have
a( )X, X)=MX, V)=MKX, 2) with M(X, N=R(X, Y, Y, X)—R(X,Y,JY, JX)
whenever the planes defined by X, ¥ and X, Z are antiholomorphic and
g, Vy=g(Z, Z2)-1.1f for X, Y ¢X¥(M) with g(JX, ¥Y)=g(X, Y)=0, AX,Y)
is a constant whenever g(X, A)=g(Y, ¥)=1 then M is said to have global
constant type.
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Corollary 3. Let Mbe an alnost Hermitian manifold with pointwise
constant type «. If M satisfies the axiom of coholomorphic (2n-+1)-spieres
for soiute n and if dimnM=6, then M is a space of constant curvature a and
M has global constant type.

Corollary 3 is proved in [8] for an RK-manifold.

2. Preliminaries. Let M be a 2mn-dimensional almost Hermitian manifold
with Riemannian metric g, almost complex structure J and covariant differen-
tiation y. The curvature tensor R, associated with y has the following pro-

perties:
1) RX, )\Z- —R(Y, X)Z

2) R(X. V)Z+=R(Y, Z2)X+R(Z, X)¥ =0
3) R(X, Y, 2, Uy=—R(X, Y, U, 2)

for all X, ¥, Z, UeT, (M), peM, where R(X, YV, Z, U)=g(R(X, })Z, U). The
Wevl conformal curvature tensor C is defined by

CX, Y. Z U)=RX. Y, Z, U)y—(1/2m—2){gX, U)STY, Z)
—g(X, 2)S(Y, Uy+gY, 2)S(X, U)—gY, U)S(X, 2)}
H(S(PIERm—1)2m—2)N(X, WY, 2)—g(X, Z2)g(Y, L)}
where S and S(p) are the Ricci tensor and the scalar curvature of M, res-
pectively.

Now, let N be a submanifold of M, as in section 1. The normal compo-
nent of R(X, V)Z where X, Y, Z¢XN is given by

(2.1) (R(X, Y)Z'=(vya)Y, Z)—(vya)X, Z),

where (vya) Y, Z)=Dya(Y, Z)—a(vyY, Z)—a(Y, vxZ) and if N is totally
umbilical submanifold of M, (2.1) reduces to

(2.2) (R(X, Y\ZL=g(Y, Z)DxH—g(X, Z)DyH.

3. Proof of the theorem. Let X, ¥ be arbitrary unit vectors in 7,M,
deM, such that X is perpendicular to Y, JY. Applying the axiom of coholo-
morphic (2n+ 1)-spheres for a coholomorphic plane, which contains X, JX, JY
and is perpendicular to ¥ and using (2.2) we obtain

3.1 R(X, JX, JY, Y)=0,
(3.2) R(JY, JX, X, YV)=0,
X, JX, JX, Y)=g(DxH, Y),
R(X, JY, JY, Y)=g(DxH, Y).
Hence
(3.3) R(X, JX, YX, JY)=R(X, JY, JY, Y).
From (3.2) we have R(Y+JY, JX, X, Y—JY)=0 and consequently
(3.4) RX, Y, Y, JX)=R(X, JY, JY, JX).
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If m>2, we take a unit vector Z, perpendicular to X, JX, Y, JY. Using
again the axiom of coholomorphic (2n+ 1)-spheres and (2.2) we find

(3.5) RX. JX, Y. Z)=R(X, Y. JY, Z)=0,
36) R(X, JX, JX, Z)=R(X, Y. Y. Z).
(3.7) RX, Y, Y.JX)-R(X, Z. 7, JX).

If m =4, let Ubeaunit vector in T,M, perpendicular to X, JX. Y, JY, Z, JZ
From (3.6) we have 2R(X, JX, JX, U)=R(X, Y+2Z Y+7 U), which gives
RX, Y Z U= RX, Z ¥, U).

Hence, bv the properties of the curvature tensor R we obtain

(3.8) RX, Y, Z U)=0

Making use of (3.1)-(3.8) it is not difficult to prove that RX, Y, Z,
U)=0 for an arbitrary orthogonal quadriple X, Y, Z, U¢T,M According to a
well known thecrem of Schouten [2] the Wevl conformal curvature tensor M
vanishes.

Remark. If a Riemannian manifold M of dimension m>3 is conformal
flat, then there exists a totally umbilical submanifold NV of dimension n<m
through every point of M and in every n-dimensional direction at that point
(see [2]). Consequently, if M is a conformal flat 2m-dimensional almost Her-
mitian manifold, m 2, then M satisfies the axiom of coholomorphic (2n-+1)-
spheres for every n, 1-"n<m.
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