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A CONVOLUTIONAL APPROACH TO THE MULTIPLIER PROBLEM
CONNECTED WITH GENERALIZED EIGENVECTOR EXPANSIONS
OF AN UNBOUNDED OPERATOR

NIKOLAI S. BOZINOV

Some relations about the convolutions of a given operator with simple point spectrum
in linear topological space, for their multipliers and for the coefficient multipliers and convolu-
tions of its generalized eigenvector expansion are considered. Some applications on Dirichlet
and Sturm-Liouville expansions are given.

0. Preliminarilies. This paper is devoted to some relations for the con-
volutions and their multipliers of a given linear operator L defined in a sub-
space X, of a linear topological space X and having a simple point spectrum
and for the coefficient multipliers and coefficient convolutions of its genera-
lized eigenvector expansions. Some applications on real and complex Dirichlet
expansions as on Sturm-Liouville expansions are given.

The basic tool in our approach is the notion convolution of a linear
operator introduced from I. Dimovski in [l]. Since our purpose is to con-
sider also operators which are not defined in the whole X we use a slight
modification of Dimovski definition.

Definition 0.1. Let M: X, =X, X,,=X be a linear operator defined
in a linear subspace X, of a linear space X. A bilinear, commutative and
associative operation fxg in X is said to be a convolution of M in X iff
1) X, is an ideal of X relative to f+g and 2) the equality

(0.1) M(f+g)=Mf=g holds for each f¢ X, and each g¢X.

Every operator M defined in the whole X satisfying (0.1) is said to be
a multiplier of f=g [2]. A nonzero element f¢ X is said to be an annihilator
of = iff f+g=0 for all g¢ X. When f=xg is without annihilators we write for
short: = is w. a.

Throughout the paper we assume that the operator L is defined in a sub-
space X; of X and that L has a nonempty point spectrum A of simple eigen-
values, i. e. the eigensubspace Ker(L—2A/) is one-dimensional for each A¢A.

2

Definition 0.2. ([3. p. 171, 177]). Let Il'o be an eigenvector of L cor-
responding to XEA;: Then 1;,, is said to be a generalized eigenvector of O-th
order. Inductively u, is said to be a generalized eigenvector of k-th order
corresponding to ) and associated with 1;0 iff Lz?,:kz;,,-wrk__,,wherf l;k_x is

of (k—1)-th order. By nm, we denote the maximal integer such that um, exists.
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If such a numnber does not exist, then m; =-o by defzmtzon Let H, denote
the root subspace corresponding to (A, i. e. HL~ Ker (L—)"*"" when

def

my< o, or Hy = Jr oKer(L—)Y: when m; = -. It is clear that in every H,
A
there is a linearly independent generalized eigenvector system Sy={uy},*,

def
Let S= s ¢aS.. The system S is said to be complete iff its linear span (S’
is dense in X.

Definition 0.3. Let Z2={Pyu¢a be a family of projections in X. The
system P is said to be orthogonal iff PyPs—=0 for all a,BeA, a==
The system P is said to be total in thf P.f=0 forall a¢A mzplwvf 0. The
system 2 is said to be fundamental in X iff the linear span of Ja¢ aPu(X)
is dense in X.

Definition 04. Let 2={Pu}a¢a be a total and orthogonal projection
system in X. Then with each f¢X one may associate its formal Fourier
expansion [~ X,¢ aPof. An operator M: X— X is said to be a coefficient
multiplier of the system 2, or of formal Fourier expansion connected with #
iff there is a fanily of scalars {pu}a¢ 4 Such that:

(0.2) P (Mf)y=n.P.f for each feX.

For details about the last definition, see e. g. [4, p. 10].

In section 1 a theorem about nonexistence of nontrivial continuous con-
volutions for a class of linear operators is proved. As consequence a result
about nonexistence of nontrivial continuous convolutions of the differentiation
operator d dt in the space C* is proved. Analogous result about nonexistence

of continuous convolutions w. a. for the Cesaro operator - f’ in the space

C[0, T'] is also proved. The main purpose in section 2 are two multiplier pro-
jection theorems (2.5 and 2.6). Section 3 is devoted to some relations about
the multipliers of a convolution and the coefficient multipliers of a certain
total and orthogonal multiplicr projection system connected with L, as about
the operators commuting with L and with all projections of this system.
In section 4 some applications for Dirichlet and Sturm-Liouville expansions
are made. In section 5 a connection between all convolutions of the operator
L which are convolutions for the multiplier projections is considered. It is
proved that all Mikusinski’s rings defined by these convolutions are isomor-
phical. A theorem for existence of continuous convolutions w. a. for a class
of closed operators in a Banach space is also proved.
We need an elementary proposition for generalized eigenvectors.
A

Lemma 0.1. Let L¢ A be fixed, let {u,}*, ma< o be a generalized

eigenvector system corresponding to ), and let {v,, ..., vm,} be an arbitrary
solution of the system
(0.3) Lv,=hv,, Lvy= v, + 0, « o .| LUy = AUpmy + Uiy —1-
2 'y
Then there exists a scalar family {C.. ..., Cn,} such that
Ao

(0.4) zrka(,,tz‘,+---+(,,,u, for O==k—my.
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If v,40,1i. e. if CO*O then {v,, ..., Um} is a linearly independent system.

1. Necessary conditions for existence of convolutions.
Lemma L.1. Lef f=g be an a*bztrary convolution of L in X.

a) If M ueA, A==p then uk*zr =0 for 0=k= rn,,0<p “my.
b) If Le¢A is fixed ana’ lf O<mu<-c then u,,*u =0 for all k,p=0

k+p<m. In particular uk*u =0 for all k, p= 0 if my=co.
Proof. a) The case k=0, p 0 is ectabllshed by L D1movsk1 [5].

» r s
Indeed now )11,,*un—lun*uo—uﬂ*uz(, puo*u,, Hence uo*uO_O The ge-
r N s r
neral case follows from the identity )uk*u +Up 1%, _Luk*u _uk*Lu

s " s T
=W, *U,+ U, xUp,_ by induction relative to the integer N0 and the pairs

(&, p) with k+p=N.
s A

b) First let 0~k < m, be fixed. Then there is uk 1 and )»m l*u,,; Uy = Lug
A s A s A 2

=Llpoy xUy=Nlpoy = U+, =u, Hence ukxu _0 and the proposition is estab-
r
lished for p=0. Let it be true for p—1, i. e. u,, *u,,_,~0 holds for all &/,

w |th O/k </m-p—t—1 NO\\ if O\k m, p there ex1<t< uk 1 (since p>0) and
s A

luM*u,,-i—u,,*u _LukH*u _uk+1*L11 _kukﬂ*u q—uA 1= Up—y. But uA |*”p—

=0 since 2+ 1<m—p-+1 and therefore, uk*up_O
Theorem 1.2. Let L has a complete generalized eigenvector system S.
Then :

a) If »¢A and dim Hy=c<, then ewry uk. k=0 is an annihilator of every
separately continuous convolution of L,i. e. L has not separately continuous
convolutions w. a.

b) If dim Hy= == for all ¢ A, then L has no nontrivial separately con-
tinuous convolutions.

c) If L has a separately contt’nuous convolution w. a. f=g, then for

each A ¢ A it follows that dim Hy< =o uo::u,,,x -0 and the system S\{u,,,l} is
not complete.
s
d) If there is a L¢ A with dim Hy< oo and if S\{um,} is complete, then
L has no separately continuous conwvolutions w. a.

A
e) If 1< dimHi<co for each ¢ A and if U ¢a{u,} is complete, then L
has no nontrivial separately continuous convolutions.
Proof a) For an arbitrary convolution of L from Lemma 1.1 it follows

that u,,:-u =0 for flxed AeA,0 -k and for all p¢A, 0=p=m, Now by appro-

ximation we obtain u,tg 0 for each g¢ X when = is separately continuous.
b) The assertion follows in a snmllar way. ¢): It follows from a) that now
A

dim Hy < co for each A¢A. i u(,:u,,,k_O or if S\{u,,,x} is complete for some
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x
L €A then by completeness property it follows in a similar way that «, is an
annihilator. d) and e) follow easily.

Theorem 1.3. The differentiation operator d/dt has not nontrivial con-
tinuous convolutions in the spaces: C*a, b), Ctla, b] if it is considered with
domain C*+'(a, b) or C**'a, b] respectively (0=k--co; —co=a,b--+ =), in
the spaces LY (a, b), L'[a, b](— > <a<b< +- )and in the spaces L| (a, b)(— <<
<a<b<+ o) if it is considered with domain AC(a, b) or ACla,b].

The proposition follows from the fact that now A-=C and dim H), =
for all »¢A, since H,={(e™, te*, 2e*, ... ) is dense in these spaces.

We note that d dt has continuous convolutions if it is considered with
smaller domain Cy ' ={fe¢Ct+': ®(f)=0) or ACo={f€AC: ®(})=0} (see
section 4 and [13]).

. 1, :
Theorem 1.4 The Cesaro operator L= [{ has no continuous convo-

lutions w. a. in the spaces C[0, T| or C[0, T), O<T=" -c. Ewery continuous
convolution of this operator has the form
(1.1) f+g—=af(0)2(0) with a¢C.

Proof. Let f=g be an arbitrary continuous convolution of L. Now every
L=(n+1)"1, »=0 is an eigenvalue with an eigenfunction ¢". For each
n>0 there is an associated generalized eigenfunction —(n+41)2¢"In#¢C[O, T]
(for 7=0 the associated function —In¢ does not belong to C[0, T]). Then it
follows that " «t*=0 for all integer =0, 2>0 and using an approximation
we obtain that fxg=0 for all f, g¢C[0,T] when f(0)=0 or g(0)=0.
Now let f, ¢ are arbitrary functions from C[0, T]. Then f=H0)+f, g=g(0)+g
where f, 7¢C[0, T}, 7(0)=2(0)=0 and we have fxg= f(0)g(0)l«1+f=g,
+ f(0)x g=70)g(0)l « 1. But L(1%1)=L1x1=1=1 since L1=1, i.e 11 is
an eigenfunction corresponding to the simple eigenvalue A=1, hence 1x1=a¢C.

2. Convolutions and multiplier projections connected with a generaliz-
ed eigenvector system. When dim /A= - lLemma 1.1 shows that every
convolution of L is identically equal to 0O in the root subspace . Let us
study now more precisely the act of an arbitrary convolution fxg of L in
H,. when dim /< ~. In this section we denote by {u,, ..., u,} a generaliz-
ed eigenvector basis in /H, for a fixed A¢ A satisfying the conditions Lu,—=2u,,
Lu, =Myt ..oy Lty =Ny 4l i €. Hya=(,, ..., u,) with m=dim H,—1.

Theorem 2.1. There exist linear functionals {Cy( f/)}7 , which do not
depend on such kind choice of the basis {u,, ..., u,,} such that:

2.1 frty=Cy g+ +--+Cy( fr, for 0~k —m

(22)  Cufx2)=Cy )HCA)+ -+ +C(fICL) for 0=k=m; f, geX.

The functionals C,(f) are continuous when fxg is separately continuous
If f+g is w. a. in Hy then C\(u,)+0. In particular C(u,)+0 if Sis com-
plete and if = is a separately continuous convolution w. a.

Proof. Let v, =f=u,, O=k--m. Then it follows by (0.1) that Lv,=2Arv,,
Lv, = v, +vp 1, l=k-~m and using Lemma 0.1 we obtain that there exist
constants C,—=C,(f), 0=k m such that v, - Cuu,+--- +Cytty, 0;-k<=m. The
independence of C,(f) can be obtained directly using Lemma 0.1 again.
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If {ﬁo....,ﬁm} is other generalized eigenvector basis of such kind, then
llkz)lf:oﬁk_,lt;. 0-<k<"m and

R k k !
f‘”k:—'l-‘-“o Be—t fru,= 1‘\-0 Br—t -‘EO A f i
= = =

K k—i k N k N
= X C{f) E Br—ijtty= = C{fls—i= I Croi f)1;.
i=0 J=0 i=0 i=0

The formula (2.2) can be obtained directly but it is more convenient to use

(2.7) and (2.8) we shall prove. At last if f+g is w. a. in My then Cy(u,),

=u,*U,+0, and we obtain the last proposition using Theorem 1.2¢c).
Lemma 2.2. For an arbitrary basis of generalized eigenvectors of men-

tioned kind {u,,....u,} in H, one has:
2.3 c 0, k+p<m
( . ) n(uk)— Ck-—:—p—m(um)v k+[7?'/71
0,k+p<m
def
_ where c,= Cyu,,)-

(2.4) e Up =\ 4t m & B Em

S Chtp—m—ily R+p=m

i=0

Proof. Since u,*u,=u,*u, using (2.1) and Lemma 1.1 we get (2.3).
Now (2.4) can be obtained using (2.1) again.

I. Dimovski asserts (personal communication to the author) that (2.4)
follows from the evident useful formula

(2.5) up*tt,=(L—M)"=*"Pu, su, too.
Theorem 23 Let {u,,...,u,} be a basis in H, such that u,+u,=0,
def

and let c,—Cy(Uy,) (i. e. ¢,==0 now). Then there exists a multiplier projec-
tion P: X—H, of the form
(26) Pf=f +{Goy-t -+ plic},
where «a,=cyt, U= — 5 (A1 - oo+ ULy, k=1,...,m. P is the unique
multiplier projection from X to H, when = is w. a. in X.

Proof. It is clear from (2.1) that for arbitrary a, the operator P defined
by (2.6) maps X in /. To be P a projection it is enough to determine a,
such that Pu,=u,, 0=k=m. By elementary calculations using (2.4) we obtain
finally that it is enough @, to be a solution of the triangle system aoco=1,
€y 416 =0, . . ., UyCp= - +0,co=0. It is known [2] p. 20 that if fxg is
w. a. then all its multipliers commute. Now if P and Q are two multiplier
projections on F,, then they commute and hence P=Q.

Corollary 2.4. Under tie same assumptions as in Theorem 2.3 there

is a basis {iy, . .. ,_11,,,} of generalized eigenvectors in H such that Uy * 1L
=l o Ukl =Upy -, Uy * U, =U,,. (n this basis the convolution f=g has
the simplest form

I {0, k+p<m

Up*llp=q ~
Upsp—m R+-p=m



430 N. S. BOZINOV

and the projection P has the representation

(27) Pf=ftty= Cpl [ to+ - 4 Co f Yl

The system (i, C,), . . ., (L, C,) is biorthogonal.
. det
Proof. It can be easily verified that the vectors w,=wauu,+ - + 0y,
O<-k--m with a, defined in Theorem 2.3 is the sought basis.
Remark 1. We note that other representation form of P in the primary

basis {u,, ..., u,} is:
(2.7) Pf=C,( futy+ -+ C f Yty

- dei . -
where C,(f)=X* v iCAf), 0=k <-m and now the system (uo, C,,),-- ., (U Co)
is biorthogonal. The construction of the numbers «, in Theorem 2.3 in essence
is a construction of the biorthogonal basis of the basis «,, ..., «,. That means
that the existence of a convolution w. a. ensures in general the existence
of a biorthogonal system (more precisely see theorems 2.5, 2.6) but as can be
seen in the following sections the convolution gives us much more information
about the operator L.

Remark 2. It is clear also that the multiplers Q,f=f=u, 0 ~k=m map

X in (u,, ..., u, by Theorem 2.2 but Q, is not a projection when k<m and
there is no multiplier projections mapping X onto («, ...,u,> when k<m
[t is evident also that the multiplier projection P satisfies

(2.8) P(f=g)=Pf=Pg for all f, g¢X,

i. e. Pisan homomorhism of the algebra (X, +,., ) mapping X onto H,
Now let the root space F, be finite dimensional for all A¢ A and let L
A A

haveja separately continuous convolution and , w. a. in each Ha=(tg, ... ., Um,), i. €
A A
Uy* U, -0 for each A¢ A now. According corollary 2.4 without loss of gene-

A A 'y A
rality we can assume that the basis {u, . .., um,} is chosen such that Lu,=2Au,,
A A A
Lu, =l 1y, 1= k<m, and

A A A

(2.9) Uyl =W, O0—k-my, KAeA.
Let us consider the system 2, ={P.}»¢a of continuous multiplier projections

(2.10) Px_fzf*u;,,)_, LEA.

Then the system 2, is orthogonal by Lemma 1.1, and it follows from
corollary 2.4 that th( system S is minimal, since there exists a biortho-

gonal system {(Ilk ‘my—k): MEA, O<k<=m}.

Theorem 2.5. Let the generalized eigenvector system S of L be com-
plete, and let [ have a separately continuous convolution w. a. f=g in X.
Then dim Hyn< ~> for all )¢ A. For each )\¢A the multiplier projection P
defined by (2.10)is the unique continuous projection on H, commuting with L.
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Pa is a total, orthogonal and fundamental multiplier projection system. The
system S is minimal, i. e. it has a biorthogonal system of continuous linear
unctionals.

» »
Proof. By theorem 1.2 ¢) we have dimH,< > and u,*upm,==0 for all

A €A, hence there is an orthogonal system 2, defined by (2.10). Obviously
2, is fundamental since S U ¢aP(X). Let us prove the totality of 2,. In-
A

deed if P,f=0 for all 2¢A, then C,(f)=0 by (2.7) and from (2.1) we get

A
that f*u,=0 for all ¢A, O=k-"m;. Now by the completeness of S it follows
f*g=0 for each g¢X, hence f=0 since fxg is w. a. For A¢A let now
Qx: X—H,. be other continuous projection commuting with L. Then from
QuL—p)™ ! =(L—pl)"™ ' Qs it follows Qu(,)=F, for each p¢A. Hence

R u
PxQ;,llk= Q)‘P)‘Ilk for p €A, O=k=m,. This means Pxer Q)_P)‘ in X,i.e. P,L= Qx.

An important cese for existence of multiplier projections without suppos-
ing completeness of S is the case when L is a closed operator in a Banach
space X possessing a continuous convolution representing the resolvent R, of
L by

(2.11) Rif=r(M)«f. feX

for each A of the resolvent set p(L) and where r(2) is a continuous function
on p(L). Now r(}) is a nondivisor of O for each A¢p(L), i. e. = is w. a.
Theorem 26. The function r: p(L)—X is a holomorphic function on
the open set p(L). If o€ A is an isolated point of the spectrum which is a
pole of the resolvent, then the Riesz projection PM=—(21ti)—1fthkdk map-
ping X onto the invariant subspace H, is a multiplier projection of the form

(2.12) P, f=f =@y, where ¢, = —% J‘r(k)dk € Hy,
l‘;‘”

P, * Qg = P,

and T, is a closed contour enclosing only X\, of the points of the spectrum.
Let ) ==)"" be isolated points of the spectrum. Then

(2.13) @ %@ =0.

Proof. Using Hilbert identity and that = is w. a. we get easily r(A)=r(1’)
=[r(A)—r(*A)])/(h—2") and the analicity follows. Now by integration under con-
volution sign (= is continuous) we get

Py, f=—(2ni)! '{., Rufdh = —Qri)™ [ ()« fdh={—(@ri™ £ AA)dN) = f

and (2.12) holds. From Pi_:PM it follows (@s, *¢s,—@,)*f=0 for each f¢X,
hence @i *@x,=@x. That means @, =Po, ¢ /,,. Analogously ¢, *x@r»=0 for
klr\;;}\ll.
Remark. Theorem 2.6 is also true, if A, A’, ’" are replaced by arbitrary
spectral sets o, o', o’ of the spectrum, with ¢’ No"” =@ and H,, is the
invariant subspace Po(X), where P, = —(2ri)~' [rRudh and T encloses o.
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3. Commuting operators, multipliers and coefficient multipliers con-
nected with a total multiplier projection system. In this section we sup-
pose that L: X,—X, X,cA has a separately continuous convolution w. a.
f+g in X, that dim/7,< - for each A€ A and that there exists a total and
orthogonal multiplier projection system Z,={P;}»¢a of multiplier projections
P, mapping X onto /7, for each LeA.

[t can be easily seen that = has not annihilators if it is considered in
H,, for arbitrary fixed A¢ A. Then by Theorem 2.3 it follows that P, is repre-
sented by an element of /7, hence it is continuous. Without lloss of genera-

A

lity we may suppose that the generalized eigenvector basis {ug, ..., Uy} in

) A A A A A s A

[, is chosen such that Zuwy =Aug Lu,=hu,+up_y, 1-=k<m, and u,*1u,=0
A A A »

A A
for k+-p<mu; Upyxtly=Unip _m, for kt-p=n, and Pif=f*itm, f€ X (ln, *lUm,
A

=lp,)-

Let us note that there exist operators possessing continuous convolutions
w. a. and total and orthogonal but not fundamental system of continuous
multiplier projections, and their generalized eigenvector system S is not com-
plete (e. g. see section 4, examples 1,2 —the case of Dirichlet expansions).

In what follows we give only these parts of the proofs using essentially
existence of the total multiplier projection system.

Definition 3.1. An operator M: X—X is said to be commuting with
the system Pa iff MPL=P.M in X for all L¢A.

We note also that if the operator L: X, —X, X, c X has nonempty resol-
vent set p(L), then its resolvent R; is a multiplier of f*g for these 2 ¢p(L)
for which R, is defined in the wholc .X. This is certainly true for each A ¢ p(L)
if L is a closed operator in a Banach space (see [7] ch. VIII, 1).

Theorem 3.1 Let either the operator L be defined in the whole X or
its resolvent set p(L)+ @ and the resolvent R, be defined in the whole X
at least for one vep(L). Let M: X—X be a linear operator. Then a), b), c)
and d) are equivalent.

a) M(X,)c X, and M commutes with L in X, and with Py in X.

b) M(Hh)c H,. and M commates with L in Hy for each A¢A and with
Pain X. :

¢) There is a scalar family {p,: O==k=mu, L €A} such that

A A A A A
(3.1 Mt =Pyl + - Rl Ok

r A A LA
(3.2) C M) mCo )+ -+ WoCu( 1), O-<k-—my hold for each heA.

d)y M is a multiplier of fxg.

If the closed graph theorem holds in X, then a), b), c) or d) imply that
M is a continuous operator.

Proof. a)=b)<>c) are trivial. b)=d). Using (2.5) and (2.9) it can be
proved easily that M(f+g)=Mr+g for f, ge¢H, Ae¢A. Now let h=M(f=*g)
—Mfwg for arbitrary f, g¢ X. Then by (2.8) we get Puh—=M(P.f+Pig)
~MP, f+P.g=0 hence h=0. d)= a). Now if L is defined in the whole X
the proposition follows from the fact that all multipliers of a convolution w. a.
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commute ([2] p. 20). In the other case R, veép(L) is a multiplier, hence R
and M commute in X. Let f¢ X,, then f = Ry, g€ X (X, = R(X)) hence Mf=MR.g
=RMg¢X,, i e MX)=X, and (LM—ML)f=(L\M—ML\)f=LMR\j
—MLvva=LvRva—MLvva=fo—Mf=0, where Lv"—-"L——VI.

Definition 3.2. Let # be a set of operators M: Xy—X, XycC X. An
element a¢ X is said *o be a cyclic element of M in X iff the set (MY -Mna :
Mc M, k,=0,1,2,...} exists and its span is dense in X.

Theorem 3.2. Let f+g be a separately continuous bilinear commuta-
tive and associative operation w. a. in X. Then:

a) If M is a set of multipliers of f=*g with a cyclic element in X, then
every continuous linear operator M: X—X commuting with all operators
of # is a multiplier of f*g.

b) If L: X,—X.X,=X has a cyclic element, and if f=g is a convo-
lution of L, then every continuous linear operator M: X—X, M(X;)= Xy,
commuting with L in X; is a multiplier off=g.

o) If L: X;—»X, X,=X has a multiplier resolvent of the form (2.11),
and the span of the set {r(\): A¢p(L)} is dense in X then every continious
linear operator M: X—X, M(X,)= X, commuting with L in X, is a multi-
plier of f*g.

d) If L: X,—X, X,=X has a complete generalize” eigenvector system S
and if f+g is a convolution of L, then every continuous linear operator
M: X=X, M(X,)= X commuting with L in X, is a multiplier of f*g.

Proof. a) and b) follows using I. Dimovski’s idea [6]. Let a be the
cyclic element of #. From Masa=axMa we get MMf‘---M:sa *N7{
o -NPng=M;'---Msa» MNT*---Nina for arbitrary M,, N;¢#, k,p;=0.1,2, ...
and from density of the span it follows that Mf+g=f+ Mg for all f, g¢ X.

b) and c) follow in the same way. To prove d) we note that from ML=ILM
in X, it follows as in Theorem 3.1 that M(H,)= H,. for ¢ A. Then it is clear
IS

" A "
that Mum, * m, =Um, * Mi, for arbitrary 4, p€A since if A=-p both sides of

* L
this equality vanish. But w,=(L-A/)™ kum;_ hence Mfs=g=f+Mg for all
f, g€ Hy. and by approximation we obtain the validity of this equality in X.
Remark 3.1 It can be proved easily that every cyclic element is a non-
trivial nondivisor of 0 for f=g.
Remark 3.2 Let A be countable and let S be complete. If there are
A

a4, €C, a,+=0 such that Z,¢aciltm, is convergent, then this series defines a

cyclic element relative to the operator set .# ={L} ) 2?5 and this element is not
divisor of 0. Especially such elements always exist if X is a Banach space.
Theorem 3.3. Let M: X—X be a linear operator. Then a), b) and c)
are equivalent.
ay Mis a coefficie{zt multiplier of Pa.
A

b) The equalities C M [f)=uC(f) hold {or all 0=k<m, AEA.
A 8
c) For all x¢ A, PAM=MPs. and Mu,=pu,, 0<k=m,.
» A

If M is continuous and if S is complete, then Mu,= pity, €A, 0O<R=m,
implies that M is a coefficient multiplier of P.
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Proof. a) = b) follows from (2.7). a) = c). Since every coefficient multi-
plier is a multiplier of fxg we have MP,=P.M. Now using (2.7) again we get
A A A

Mu, =pu,. The case ¢)=-a) is similar.

The above considerations show that the representation problem for the
coefficient multipliers can be reduced to the problem for finding of a certain
mmultiplier set of a convolution w. a. f*g for L.

The multiplier problem for an arbitrary bilinear, commutative and as-
sociative operation f* g in X is trivial if = has a unit element e¢ X. Now every
its multiplier M can be represented by the formula Mf=n=«f, where n=Me.
A more general case is considered by I. Dimovski [6]. He proved that if
there exists an operator of the form Rf=rxf, f¢ X, r¢ X is fixed, which is a
right inverse of a given operator D: X,— X, X,c X, then every multiplier M
of = can be represented by the formula

(3.3) Mf=D(nxf) with n=Mr.

This is a universal formula which does not solve the multiplier problem
in general because the open problem for characterizing of the representation
elements n arises: to describe the set of n¢X for which nxf¢ Xy for each
f€X. This problem must be solved separately for each concrete case, as it
is made for instance in section 4 for differentiation and for Sturm-Liouville
operator.

Another nontrivial problem arising in our approach is the question for
finding of a convolution for the operator L: X;—X, X;c X in X. In section 4
are given examples of convolutions for the differentiation d/df and for the
Sturm-Liouville operator @2/d#>—gq(t) considered with suitable domains, such
that their resolvents are represented by these convolutions too. In section 5
sufficient conditions for existence of convolutions for a certain class of closed
operators in a Banach space are given.

We note that if the operator L has a nonempty resolvent set p(L) and if
the resolvent R, is defined in the whole X for any v¢p(L) then R, is aright

def
inverse of Ly=L—v/ and if Ry=ryxf, f€¢X, then (3.3) in the form
(3.3) M f=(L—vl)(n=f), where n=Mr,

can be used.

Theorem 3.4.a) Let dimHy=1 for all r¢A. Then a linear operator
M: X=X is a coefficient multiplier of the system P iff M is a multiplier
of fxg.

b) A multiplier of the form Mf=nxf,f¢X is a coefficient multiplier

A
of P iff n satisfies the conditions Cy(n)=0 for k=1,2,...,m, for these
A

LEA, with dim Hh>1 i. e. iff n~ Za¢aballm, with w.€C.
c) Let M be a multiplier of the form Mf=(L—vl)(n+f), fe¢ X, for vep(L)
and Ref=r,+f. Then M is a coefficient multiplier of Pa iff n satisfies the
A l A
conditions Cy(n)=(L—v)Cy(n), Cy(n)=0 {or k=2,3,...,m, for these A¢A,

with dim Fh>>1 i e iff n~ Zw ¢ ataRullm, or equivalently iff n ~ Zi ¢ AbaParv.
Proof. a) follows from theorems 3.1 and 3.3.b) follows from the same
theorems and the formula (2.2). The first part of the proof of b) follows by
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A A
the equalities Piin= PiMry=.Pory= sy % Um, = WRlim, - The conversation of b)

follows by the equalities PMf=PiLfn=f)=LP(nsf)=LPn)=f=L,

A s
(MRt * f] = MLy RS(m, * )= Psf since P, commutes with L, and R, and
Ly=L—Vl.
Remark 3.3. In the case when {f,},¢a is a direct sum decomposition
A A
of X' (see definition 5.2) then n=Zy ¢ aAMallm, OF 1= Iy ¢ AUARNUm, = Zs ¢ AMLPLTy,
4. Examples of certain convolutions and multipliers connected with
linear differential operators of first and of second order.

l.Convolutions and multipliers connected with the prob-
lem y'=iy, ®(y)=0 with a functional ®. a) Let D be a finite convex

domain in C, let D denotes the closure of D, and letﬁOEDA. With H(D) is de-

noted the space of all holomorphic functions f(z) in D endowed with the usual
inductive topology (see [8] p. 378-381). Let ® be an arbitrary continuous

linear functional in FH(D). Then it has the form (see [8] p. 378-381)
(Df:-;,% JrfEy(©)dE with a holomorphic function y({) on the complement of
D with y(c0)=0. Let us consider the spectral problem y’=2.y, ®(y)=0,where
VyeH(D). It determines a generalized eigenfuntion system S={e"n’,ze"n".
def
2" leMn®)ey, where {A, ). are the zeros of the entire function E(A)= ®(e*?)
and where m,< co are theirs multiplicities. Now A={L,}7-1 is the spectrum of
i

the operator L =d/dz considered in the space Ho— {feHD): ®(f)=0}. The

root subspace corresponding to a i, is Hkn=(e"n", zetn®, ..., z"'n_'exn"). The
operator d/dz has a convolution in H(D):
(4.1) f*g=®{[ f(z+L—1)g(r)d1}

representing the resolvent R, (defined by the problem y'—ly:f,(b.(y):O) by
the formula Ry f={e*/E(X)}=f. The problem for expanding of the functions

in Dirichlet series of the form X;.oP,f, where P,f= 2:5 Jr, @A [§f(C—x)e~dx}

etz

XE—(}—)dt=2:';o_‘Ck(f)z"e)‘k’ (T, is a contour containing only A, in its inside)
is considered by A. F. Leontiev [9, 222-335]. Now the convolutional
approach can be applied to determine the coefficient multipliers of the com-

plex Dirichletlexpansions since it happens that these projections are of the
form P,= ——Q—,u.f,-”dex and they are multiplier projections of the form

(4.2) P,f=f*¢, where ¢, (z)= - % rf l:"(? dreHa .

In [20] I. Dimovski has proved this representation and that ¢,*¢,=0
for n=m and that ¢,*¢,=¢, The system 2,={P,}>=  is a total system in
H(D) according to a theorem of A. F. Leontiev [9], but the system S is
not complete in AH(D), since ([11], [12]) every function f¢ H(D) from the clo-
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sure of the linear span must satisfy the equation of the mean periodic func-
tions: ®.{ f({+2)}=0 for | 2| less than a certain §>0.

Now from theorems 3.1, 3.2 and 3.3 it follows:

Theorem 4.1. (I. Dimovski [20]) Let . be an arbitrary fixed com-
plex number which is not a zero of E()). Then a continuous linear operator
M: HD)—H(D), M(Ho)=Ho commutes with d/dz in He iff M is a multi-
plier of f+g in H(D) or equivalently iff M can be represented in the form

(4.3) Mf=(d/dz—) (msf) with m¢HD).
or in tre equivalent forin
(4.3) Mf=af+nsf with necH®D), a¢C.

Corollary 4.2. An operator M in H(D) is a coefficient multiplier of
the complex Dirichlet expansion defined by the projections (4.2) iff M ad-
mits a representation of the form (4.3') with n~ X_\n,9, or_equivalently
iff M admits a revresentation of the form (4.3) with me~Span R, i e
m ~ SeomnP (e EQ)). If the entire function E()) has simple zeros only, then
the set of coefficient multipliers coincides with the set of operators repre-
sented by (4.3) or (4.3") vith arbitrary m¢ H(D) or n¢ H(D) respectively.

b) The proposed approach can be applied to the real exponential Dirichlet
expansions too which are generalized eigenvector expansions of the problem
y’ =iy, ®(y)=0 with an arbitrary continuous linear functional ® in C[0, T]

def

Now £(}) ,L<D,(e“), the resolvent R; and the projections P, have the same
form

def 1 814
(4.4) P.f= [*¢, where cp,,(t):—é;‘,rf E%d:
and Berg-Dimovski convolution "
t
(4.5) fxg=0 [ft+E—T)g(v)dr}

can be extended in the space L![0, 7] (see [13]). Many cases can be consi-
dered, e. g. X -L'[0, T), C[0, T] or BV[O, T] (see [14], [25]). We shall formu-
late the main result when X -—=C[0, 7]. Now a complete description of the
multipliers of f+g can be obtained when has the form

T
(4.6) (D(f):kf(to)’Jf'J‘K(t)f(t)dl
with #,¢€[0, T]. K¢ BV[0, T], k¢C or when it has the form
T
(46 ®(f)=kxf(0)+sz(T)+t[K(t)f(¢)dt

with K¢ BV[0, T), ky, ky€¢ C. For details see [14]. We note that from a Leon-

tiev's theorem ([12] theorem 7) it follows that the system P={P,}:= is total
in C[0, T']. For a functional ® of the form (4.6) or (4.6") the result is similar
one, but it is not identical to the complex case:
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Theorem 4.3. Let . be an arbitrary complex number with E())=0.
Then a continuous linear operator M in C[0, T| has for an invariant sub-

def
space Ch={f€C'[0, T]: ®(f)=0} and commutes with ddt in Co iff M is
a multiplier of f=g, or equivalently iff M can be represented in the forn

(4.7) Mf=(d/dt—L)(m=f)

with a me BV NC when k=0 or when |k, |+|ky|=0, or with a meC[O, T]
when k=0, or when k,=ky=0, i. e, when ®( f)= [TK(t) f(¢)dt with K¢ BV[0, T].

Corollary 4.4 An operator M in C[0, T] is a coefficient multiplier of
real Dirichlet expansion defined by the projections (4.4) iff M admits a
representation of the form (4.7) with m¢ BV N C, m~Zap,Ri, (m ~2an,P,
{e¥/E(M)}) in the cases k+0or |k |+ | ks |0 or with m¢ C[O, T}, m~Z;-i1,R00,,
(m~Zrap,PfeM/EQ)}) in the case ®(f)=[JK(¢)/f(t)dt, K¢ BV{0, T]. Let
now E(\) have simple zeros only. If k==0 or if |ky|+|ky|==0, then the set
of coefficient multipliers coincides with the set of operators represented by
(4.7) with arbitrary me¢BV N C. If ®(f)=[TK(t)f(t)dt, KeBV[0, T] then the
set of coefficient multipliers coincides with the set of operators represented
by (4.7) with m¢C[O, T].

¢) A similar approach can be applied to the multiple dimensional complex
Dirichlet expansions [10;16; 24] but now they are generalized eigenvector
expansions relative to a system of linear operators with simple point spec-
trum, and the approach must be applied with certain modifications.

2.Convolutions and multipliers connected with Sturm—
Liouville expansions. Let us consider the Sturm-Liouville operator
L=d?/dt2—q(t) with a complex valued ¢g¢L'[0, 7). Using a convolution f=*g
found from the author and I. Dimovski ([17, 18]) we can apply the present
approach to the spectral problem Ly=A.y, ay(0)+By’(0)=0, ®(y)=0; a,BeC.
Here ® is a continuous linear operator in C'[0, T]. For details we refer [15:
19; 26]. There is a complete description of the multipliers of fxg, of the
operators commuting with L in the space of continuously differentiable functions f
with absolutely continuous derivative f' satisfying af(0)+Bf(0)=0, ®(f)=0,
and of the coefficient mullipliers of the generalized Sturm-Liouville expansons
in some spaces, e. g. when the functional ® has the form ®&(f)=f"(T)+¥(/)
with W¢C[0, T]*, or if ®(f)=[JK(¢)f(H)dt with Ke¢BV([O, T].

Remark (added in proof). While the paper was being printed the author
managed to generalize the results mentioned in Section 4, 1b) and 2) for
more general classes of functionals ®. For details see [26], [27].

5. Convolutions connected with generalized eigenvector expansions.
Existence. By the same assumptions as in section 3 we shall find a connec-
tion between the convolution f* g2 and other convolutions of L: X, —-X XX
and P, AEA. ~

Definition 5.1. An operation »: XX X—-X is said to be a convolu-
tion of a set of operators .# if it is a convolution for each operator of M.

Theorem 5.1. Let either the operator L be defined in the whole X or
its resolvent set p(L)+@ and the resolvent R, be defined in the whole X

at least for one vep(L). Let »: XXX~X be an operation in X. Then the
conditions a), b), ¢), d) are equivalent.
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« is a convolution for L and P in X.
= [s a convolution for L in H, for all M¢ A and for P, in X.
c) The mixed “generalized associative” relations :

(5.1) (fxQ)sh — f=(g=h)-f=(g=h) hold for f, g heX.
d) The relations

r - L A L3 i A
(5:2) CUfr @)= = 1niCAf = @)= = v = Ciy(£ICAR)

A
hold for O-—k- nu, ¢ A and all f, ge X. Here {y,: O0=k<mu, L€¢A} is a
P A A A A
scalar system determined bY Umys Umy =Y my g+ -+ +Yollmy-

. A

The convolution = is w. a. in X iff v,=+=0 for all M¢A.

If the closed graph theorem holds in X then every operation = satisfying
(5.1) is separately continuous, i. e. every convolution of L and Pa is sepa-
rately continuous.

Proof. Obviously a) = b). b) = ¢) Using (2.5) applying on the convolu-
tions % and = it follows easily that (5.1) holds in H,. Now by totality (as in
Theorem 3.1) we obtain that (5.1) holds in X.

c) = a). Since = is w. a. it can be easily proved that every operation
= satisfying (5.1) is bilinear, commutative and associative, and it is separately
continuous if the closed graph theorem holds in X. We shall prove that every
multiplier of = is a multiplier of = Indeed if o=M(fxg)—Mf=g then from
(5.1) it follows w=k—0 for each 2¢ X hence £#=0 since = is w. a. Hence *
is a convolution of 2, A¢ A and of L if L is defined in the whole X. The
case if L is not defined in the whole X can be considered as in theorems
3.1, 5.5 to prove that X, is an ideal of X with respect = and that = is its
convolution.

a) = d). From (2.4) applied on the convolutions = and = it follows that

A A
(5.2) holds in I, and using the evident relation C(f)=Cy(Prf) for feX it
can be proved that (5.2) holds in X.
d)=c) Now let o—=(f+g)xh—f=(g*h). Then from (5.2) and (2.2) it
A A

follows that C,(®)-—0 for O—k-—-my, A€ A, hence ®=0. It is clear that y,+0
for all A¢ A ilf = is w. a. in A, for all L ¢ A. Now it is not difficult to prove
that = is w. a. in X iff = is w. a. in A, for all A€ A.

We shall study more precisely the properties of the operations *: XX X—-X
satisfying the mixed “gencralized associative” relations (5.1).

Lemma 52. Let X be a linear space, and let f=g be a bilinear, com-
mutative and associative operation in X and let its set H, of nontrivial
nondivisors of 0 be nonempty. Then :

a) (. Dimovski [6]) An element r¢ X belongs to H, t{é the operator
Rf=rxf, feX is right invertible. If a linear operator D: Xp—X, Xp= X
satisfies DR —1 in X, then every operation =: XXX— X satisfying (5.1)
can be represented in the form
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(5.3) fsg=Dnxfxg), where n=rxr¢X.

b) A nontrivial operation =: XXX — X satisfying (1.5) is w. a. in X
iff rer¢H, for each r¢H,. If there exists r,¢H, with roxro¢H, then
rxrc¢H, for all r¢H, and = is w. a.

c) If fxg has not divisors of 0 then every operation =: X <X — X
satisfying (5.1) has not divisors of 0.

The proposition can be proved by elementary algebraic considerations.

Theorem 5.3. Let f+g be a separately continuous, bilinear commuta-
tive and associative operation w. a. in X. Then:

a) If M is a set of multipliers of f=g and if # has a cyclic element
in X, then every separately continuous convolution =: XXX—X for the
set of operators # satisfies the mixed *“generalized associative” relations
(5.1).

b) (I. Dimovski [6]). If the operator L: X; — X, X, X has a cyclic
element in X and if f=g is a convolution of L in X then every separately
continuous convolution = of L in X satisfies (5.1).

c) If the operator L: X, — X, X, =X has multiplier resolvent of the
form (2.11) and if the span of the set {r(A): Ae¢p(L)} is dense in X and
vep(Ll) is fixed, then every separately continuous conwvolution % of L in X
satisfies (5.1) and can be represented in the form :

(5.3") frg=(L—v(nsfxg), where n=r(v)sr(v)e¢X.

d) If the operator L: X, — X, X, X has complete generalized eigen-
vector system and if fxg is a convolution of L in X then every separately

continuous convolution = of L in X satisfies (5.1).
def

Proof. Since the operator Myf=fx g (ge¢X is fixed) commutes with the
corresponding class of operators, then M, is a muliplier of f=g by Theorem 3.2.
Hence (5.1) follows.

Remark. I. Dimovski [20] has shown that a general operational cal-
culus of Mikusinski’s type for an operator L: X — X can be constructed in
the form of a ring of multiplier quotients M,={M/N: M¢.#,, N¢H,} where
M, is the set of multipliers of a convolution w. a. f*g for L in X and H,
is its multiplicative subset of all nontrivial nondivisors of 0 in .#,.

Now by assumptions of Theorem 5.1 it follows:

Theorem 5.4. All convolutions w. a. for L and P, in X hawve one and
the same ring of multiplier quotients.

Proof. Now = and % have one and the same set of multipliers.

This proposition shows that the Mikusinski’s operational calculi for L and
P, are equivalent in some sense to the “transform” calculus defined by the
formal Fourier expansion f~ X P f.

Definition 52 [21, p.xéé\]. A sequence of closed subspaces {H,}>  in a
Banach space X is said to be a direct sum decomposition (or Schauder de-
composition) of X iff for each f¢ X there exists a unique sequence {f;}7,
such that f,¢ H, for all i=0,1,2, ..., and f=3",f, in the topology of X.
It is known [‘51. p. 88] that there exists an orthogonal sequence of conti-
nuous projections P;: X — H, such that f=ZX70P,f for each f¢X.
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Theorem 55. Let L: X; — X, X,=X be a closed operator in a Banach
space X with countable simple point spectrum A, let its generalized eigen
subspaces H. be finite-dimensional for all A¢ A and let {H)}n¢a form a di-
rect sum decomposition of X. Then:

a) The operator L and the projection system Px={P}.¢a correspond-
ing to the direct sum decomposition have a continuous convolution w. a.
and X is a Banach algebra with respect to it.

b) The Banackh aloebm X has nontrivial nondivisors of 0.

Proof. First, let us suppose that /. is a continuous operator defined in
the whole X.

r Y B A
) Let {uo,.. . lim, } be a basis in A, satisfying the conditions Luy=hu,,
Lzzk»_kzz, +uk-~1. 1~k for each AE¢A. Let us introduce the functionals
k(f) O<k<=my, Le¢A by formula

my

A
(5-4) Prf= X Co=a(f Wty

Ty r Ty A
It is clear that Cm —q(#,)=0 for (X, p)3=(n, ¢) and Comy—q(ty)=-1fork=p, p=gq.
Let now f, g¢ X. Theorem 5.1 shows how an operation in /) must be
introduced to be a convolution for L and P, in X. Let
my

kR A A
(5.5) PrfePig=712 Z Um—r E Cof(f)CAL)
k=0 Jj=0

A
where the numbers y, ¢ C will be chosen later. Since all Cy( f) are continuous
there exists 8,¢C,A¢ A such that ”PA,ftPA =781 f1l 1l gl for all £, geX.
Let us chose v, such that the series X, (A7.8x to be convergent with sum
less than 1. Then it is clear that the senes Si¢aPyf=Pyg is convergent in X

for all f, g€ A" and the operation /*g_ _1(,\pr*qu is a continuous bilinear
operation satisfying the inequality || f= 2|l fllgll, /. g€ X.
We shall prove that = is a convolution for L d1d P;_, rLeA in X. Indeed

A 0
it follows easily from (5.4) that u,=u,=0for A4p; u :uq_Ofor) =W p+g<m,
A n A
and u,*U;="Y\llpsg-m, for h=p, p+qg=my Now it is not difficult to verify

the relations fxg=gxf, fx(gxh)=(f*g)=h Po(f*g)=P, f+g for arbitrary
A " v
fixed L€ A and L(f=*g) -Lf=g, for arbitrary f=u,, g=u, ,and k=u, Hence
by the completeness of the generalized eigenvector system S ={u,: 0=k=m), A €A
and the continuity of A, L and = the validity of these relations follows in
Now let us suppose that L: X, — X, X, X is a closed operator, and let
vep(L) be fixed. It is known ([7] ch. VIII, 1) that now the resolvent R, is a
continuous operator defined in the whole X. It is clear that every generalized
eigenspace /, of L is a generalized eigenspace of R, too corresponding to
the eigenvalue (A—v)™ and conversely, i. e. {i}sr¢a is a direct sum decom-
position for the bounded operator R, too. According to the first part of the
proof there exists a convolution f#g for R, and P, A¢A in X. We shall
prove that f=g is a convolution for L. Indeed, since X, =R(X)if f¢.X,, ge¢ X,
then f=Ru heX, hence feg=(RA)*g=RJ(h+*gecX, i e. X, is an ideal
of X with respect to f+g. Let now k= L(f*g@)—(Lf)»gfor feX,, g¢X. Then
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k=L(f*g)—(Lvf)=g where L, =L—v/iand Rik=RLAf=g)— (R\L.f)xg=f*g

f+g=0. Therefore, k—=/,Rk -0.

The proposition b) follows from remark 3.2.
Some results of this paper when the operator L is defined in the whole X

are announced in [22; 23].
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