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ON A COMMUTATIVITY OF AUTOMORPHISMS
OF A BANACH ALGEBRA

A. B. THAHEEM

In this note we shall prove that if A is a semisimple commutative Banach algebra and
S, T are automorphisms satisiving the equation Sx+S8—Lx=Tx+T—1x for all x ¢ A, then §
and T necessarily commute.

First we set our notations and some preliminary concepts. Following
Rudin [1], let A* denote the Banach space of all continuous linear func-
tionals on A and S* (resp. T*) be the adjoint operators of § (resp. T). Let A
be the set of all complex homomorphisms of A and A the set of all Gelfand
transforms x, x¢A. It is easy to see that S%A)=A, T*A)=A and also
Sx+S-lx=Tx+ T 'x if and only if S*x*+S* 'x*=T*x*+T* 'x* for all
x¢A and x*¢A*

Theorem. Let A be a semisimple commutative Banach algebra and
S, T be automorphisms satisfying the equation Sx+S'x=Tx+T'x, for
all x¢A. Then S and T necessarily commute.

Proof. Put P ={x*¢A*: S*x*=T*x*}, Py={x*¢ A*: §*x*=T*"'x*}. Ob-
viously P, and P, are invariant under S* and T* Put L;=P,nA, Ly=PyNnA.
Then L, and L, are also invariant under S* and 7% Further, L, L,=A. We
shall prove that, in fact, L, ) Ly=A.

Let h¢A and x¢ A, then

(1) X(S*h)+ x(S* T h) = X(T*h)+x(T*'h).
Now suppose on the contrary that h¢L,)L,, then (2) S*h+T*h and S*h
£T*'h (or S* 'h==T*h).

There are two possibilities for S*4 and $*'# in the sense that either
a. $*h=8""h, or b. S*h+S8*"h. Since S*h, S*'h, T*h, T* 'h¢A, therefore
there exists an clement xo€A (x,¢A) such that in case a, X, (S*h)
= Xo(S* 'h)=A=0 (A is a constant) and x,(T*k) =x,(T* 'h)=0. This combin-
ed with (2) contradicts (1).

Similarly, y, can be chosen in A such that in case b., y(S*h)=p+0 and
Vo S* T h)=Yo(T*h)=y,(T*'h)=0. Again this together with (2) contradicts(1).

Hence, in any case we must have S* =T*h or S*h=T*'h. This shows
that L,ULy=A.
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It is immediate that S$* and 7* commute on A and, therefore, for any
heA and x¢ A, it follows that A(STx—78x)=0. This implies that S7x—78x
¢Ker(#) and hence (S7x— TSx)¢radical (A)={0}. Thus S7x=T7S8x for all
x € A. This completes the proof of the theorem.

Remark that the theorem cannot be generalized to a Hilbert space. For
example, let O<E, F<1 be projections on a Hilbert space H. Define linear
transformations S, T by

TE=AEE-+M(1—E)E, X is a complex number, |A|=1,
SE=AFE+M1—F)E (&€ H).

S and 7T are invertible isometries on A with ST'&=AFE+A(1—F)E and also
SE+SE=TE+ T& But S, 7 may not, in general, commute.
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