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ON THE IMPOSSIBILITY OF CERTAIN DISTANCE-
REGULAR GRAPHS

MICHAEL A. GEORGIACODIS

1. In [10] Tutte considered the following question: what is the [east
number of vertices N, say of a regular graph whose valency (k) and girth (y)
are given.

He proved a lower bound for N, namely N=I+k+k(k—1)+-..
+k(k—1)=92 if y is odd and N=1+k+k(k—1)+ -+ - +R(R—1)—2+ (k—1)2-1
if y is even.

A graph which attains this bound is called a Moore graph if y is odd
and a Generalized Polygon if y is even. A lot of work has been done on the
classification of such graphs. Generalized Polygons have been studied by Feit
and Higman [7), Singleton [9], Benson (3] and Moore graphs by Hof-
fman and Singleton [8), Vijayan (11}, Bannai and Ito [1] and Da-
merell [5].

In his book [4] Biggs considered both types of graphs as special cases
of the distance-regular graph of diameter d whose intersection matrix is the
(d+1)X(d+1) matrix

(1) B=

k-1 k—c

The case c=*k is a Generalized Polygon and the case c=1 is a Moore graph.
In this paper we investigate the feasibility of the intersection matrix B
using the methods and formulae given by Biggs [4].
Supposing that a graph of this type does exist Biggs has derived a for-
mula for the minimum polynomial of its adjacency matrix A; from this in theos
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rem 1 we calculate the multiplicity of each eigenvalue. Using this result Ban-
nai and Ito [2] have proved that the roots of the characteristic polynomial
of B are all of degree =2 over the rationals.

Consequently, if we reduce that polynomial modulo 2 this must have all
its roots in GF(4). But in general this is not so.

Our main resultis the following:

Provided that k is even, the graph does not exist for any d>2 when c
is odd and for any d¢{2, 4, 8, 3, 6, 12, 24, 5, 10, 20, 40} when ¢ is even.

2. The characteristic equation of B. We adopt the notation of Biggs [4]
which is A=k—1, ¢g=+Vk—1, A=2gcosa. Then the characteristic equation
of B is given by the following result [4, lemma 23.3]:

The number » is an eigenvalue of B if either h=k or L=2gcosa and

(Q.l) 0= g sin(d+1)a +csinda ﬂ sin(d—l)u_éFAcosa).

sina sin a q sin a
If we put 8=¢ and multiply by 6¢ then (2.1) becomes

(22) (¢0+c+1)(g0+1)82=(g+0) {g+(c—1)8}

Lemma 2.1. Let G/))=g* 'F,cosa).
Then (A—k)G/)) is the characteristic polynomial of B and

(2.3) Gi=A+c, Gg=A+ch+c—k,
(2.4) Gd= )‘Gll——l —th__g, d>2-

Proof. The CebySev polynomials of the second kind are of the form [6,
(10, 11, 2)] U,(cos a)=sin(n+ 1)a/sin a and satisfy the following recurrence re-
lation [5, (10. 11. 16)]:

(2.5) U, (cosa)=2cosa U, (cosa)—U,_,(cos a).
Hence from (2.1) we get
(2.6) F (cos a)=qUcos a)+cU,_,(cos a)+ d’;l U,—o(cos a).

From (2.5) we obtain F(cos a)=2cos a F,_,(cos a)— F,_,(cos a) which gives (2.4).
) Now putting d=1, 2 into (2.1) we obtain (2.3). The polynomial (A—£&)U,
is monic and of degree d+1 having as its roots those given by [4, lemma 23.3].
Therfore (A— k)G, is the characteristic polynomial of B.

Lemma 2.2. Let x be any real number + +2q and ¢, y be the roots of
(2.7) V2—xy+h=0
Then for any d=0

(2.8) Gx)=(k—) E Y+ (x+ %=L

Proof. Since #=¢? and x=2¢cosa, the roots of (2.7) are @,y=ge®.
Hence for integer r: (¢"—y’)=2ig" sin ra. Take (2.6), substitute for U, from

(2.5), get Fy(cosa) = (x+c)Uy_ (cosa) + ﬂU,,_,(cos a). Multiplying by ¢¢—!
7 g
and expressing in terms of sina we get (2.8).
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3. The multiplicity of 1 as an eigenvalue of A. In the following Theo-
rem we express the multiplicity m(X) of an eigenvalue A of A(T) as a func-
tion of A. If the graph exists m(A) must be an integer, this imposes restric-

tions on A.
Theorem 1. Let . be an eigenvalue of the matrix B of (1.1) and m(}))
its multiplicity as an eigenvalue of A. If L= —2q then

N h—h—1  [(h+1—c)(e+2h+2—2) N
B =D T AT T 240+ A )] =S0)

(say) where N=the number of wvertices of the supposed graph.

Proof. To simplify the algebra we adopt the convention that if W is a,
rational function of 0, the W is the function got by replacing 6 by 6~ through-
out. By [4, p. 158] the miltiplicity is given by N/m(})=ZX(A)=2X{ ,ku; where
ky=1, ky=khi(1=i<d), ky=c'kh?" and u=(uy, u,, ..., u,)is aleft eigen-
vector of B corresponding to the eigenvalue A.

Since the first d columns of B are the same as in the matrix B of [J]
the formulae derived there for @ in terms of any eigenvalue A hold u;=C(8/q)'
+D(671/q), where

(3.2) C=(h0—0")/k0—0""), D=C, 6=e, 0+0""=1r/q.
Thus k2= 1 =h~1+kh=H(C? +2CC+C?), kud=kh—(C20%+2CC+C207%), 1 =i
<d, and Ruj=c"'kh=(C20% + 2CC + C20—249). Hence

d —~
(3.3) T(M)= E kul=h"'+kh T H{Z+ Y+ 2},
=0
where -
(3.4) Y =2CC(dc+1)

and Z=C?*{cZ{ 0% + (1 —c)024}. Consider Z. Sum the series and multiply by (g0
+c—1)k2(0--1)* then
k(02— 1)%(g0+ ¢ — 1)Z=(h0*—1)(g0 — 1){(g0+c—1)(q0+ 1)024(02+c— 1)
—c(g0+c—1)(go+ 1)},
using (2.2) to eliminate 024 we obtain
k2(69—1)“(q6+r—l)Z:(heﬁ—l)(qO—l){(c—1)6'2+qce+(c ~1) (c—g?)}.
Multiplying by 07%(¢g0~'+¢ 1) we have
AZ — 00hq(c — 1)+ 03{Ac3— 1) — h(c — 1)+ 0{h2(3qc—gc?—q) + hglc —1)*
—g(c— 12} —h¥c—1)+h(2c*—4c + )+ h(—c?+c=c+1)+(c—1)?
+071(c — D){h2qg—hg—qc(c —1)+q(c+ 1)} +072{h%c 1) he(c—2)
—(h—c)(c —1R}+07(c—1)(c—h),

where A— k%02 1)2(q0+c—1)0 HgO ' +c—1)= A= k03—4h){(c — DA+ (c—1)
+h}. Hence by (3.2)
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AZ + 2)=(8°+06")g(c— 1) {h(c—2)+c}
+(02+072) (A2 +c—2)—h(3c2—6¢c +2)+c(c— 1)}
+(0+0"N)g{h(4c—c>—2)+h(c—1) (@ —2c—2)—hc
+(2—1)(2—0)} = 2h%c—1)+2h%(2c2 — 4c 4+ 1)+ 2h(—*+ 2 —c

(3.4) +1)+2(c—12=23c—1) {h(c—2)+ c}+ A2{h%(c?+ c —2)—h(3c?
—6c+2)+c(c =12} +MA3X(—c2+4c—2)+h2(c—1) (c2—5¢
+4)—h2c+h(c—1) (—c>—2c+2)}
—2h4(c—1)+2h%(2—5c+ 3) + 2h% — 3+ 4c2—Tc + 3)—2h(c—1)3

Substituting (3.5) and (3.4) into (3.3) we get (3.1).

Proposition 3.1. A=2g is never an eigenvalue.

Proof. Let ¢ be irratjonal. Then if —2¢ is an eigenvalue so is + 2q.
But A=+2¢ implies a=0 (since A=2gcosa) and in that case (2.1) gives,
after using L’Hopital’s rule, that g(d+1)+cd+(c—1) (d—1)/¢=0, which is im-
possible since this is strictly positive. Therefore ¢ has to be rational and in-
tegral. Now if the integer »= —2¢ is an eigenvalue then a=n and again by
L’Hopital’'s rule from (2.1) we get

(=1 Ygd+1)—cd+(c—1)(d—1)/q}=0,

—dg*+dg—¢* °—q °—q
—dg+d—1 ?q+dq—d+l ,hence‘?‘;_d‘*’_l ‘
dq—(¢11+1 =q-d‘;‘zd:’: must be an integer, hence d¢—d+1=g,
which is not true when ¢>1.

Now if g=1 then k=2 (since ¢g=+ yk—1) in which case our graph is
a polygon with 2d+1 edges.

4 Using Therorem 1, Bannai and Ito have proved the following.

Theorem 2. If T is a distance-regular graph with intersection matrix
B and walency k>2, then the roots of the characteristic polynomial of B are
all of degree <2 over the rationals.

For proof see [2, (Theorem A)].

In this section and the next we apply this to prove our main result by
considering the polynomial G/}) reduced modulo 2. We denote reduction mod 2
by an asterisk.

Theorem 3. If h and ¢ are both odd and d>2, the graph does not
exist.

Proof. From lemma 2.1 we get

therefore c—1= has to be an integer,

therefore

(4.1) G,=)\G,_, +G,_,,
(4.2) Gy=A+1, G =A+Ar+1.
The solution to the recurrence (4.1) is

(4.3) G,=Kp?+ Lo“,

where p, o are the roots of the auxiliary equation y2?+Ay+1=0. Substituting
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(4.3) into (4.2) we find K=(l+0)/(p+0) and L=1+(1+p)/(p+0). So G
=(p2*tl+1)p4p+1). Thus
(4.4) G*(A)=0 iff p2+14+1=0.

We call the elements of GF(4) 0, 1, ®, ©* where ©, ©? denote cube roots of 1.
Now A=0 is impossible since from (4.1) we have G(0)=1 for all d. A=1
corresponds to p=w or ®2. A=w or ®? corresponds to p=a root of the equa-
tion p2+owp+1=0 or p2+w?p+1=0. These do not have roots in GF(4), but

(2+ox+ ) (2+oix+D)=x*+x*+x2+x+ 1=+ 1)/(x+ 1),

So L=m or ®? corresponds to p=a primitive 5th root of 1. Therefore G*(})
has roots of degree =2 if and only if the equation (4.4) has roots in the set
R={o, 0% &, €% €3 &'}, where e°=1.

Equation (4.4) has distinct roots in its splitting field and they form a
cyclic group under multiplication. If n is a generator then its order equals
2d + 1. Therefore if 2d+1>5 i. e. if d>2 the equation (4.4) has at least one
root n:néR i. e. the graph does not exist. Thus we have proved Theorem 3.

5. Theorem 4./f ¢ is even and h is odd and d has an odd factor f>5
the graph does not exist.

Proof. Again reducting G, modulo 2 from Lemma 2. we obtain

(5.1) G,=2G, ,+G,_, G,=0, G,=h

As in p. 4 the solution to (5.1) is G,=Kp?+Lc? but this time with K=L
=1. Thus G,=p?+p 4 Let d=2Xf (f being odd) then G;=(p/+ p~/) and
as in 4 if f>5 the equation p/+1=0 has a root not in the set R. So G;=0
has a root in GF(4). Hence if d has an odd factor f>5 the graph does not
exist.

Now if fe{l, 3, 5} the question remains open. In order to tackle this part
we prove the following two lemmas.

Lemma 5.1. If d=2'Xf where f is odd, then 2*
G £2).

Proof. G,=p?+ p““=(p/+p'/)"=(H,(p))7’ (say) then for all odd f, &
—p+p~' divides H, Thus A¥ divides G*(}).

By Theorem 2 GgA) is a product of at least fx2'~' quadratic factors
over the rationals. Reduced modulo 2 this product is divisible by 22 there-
fore at least 2! factors of G} have constant term zero. Hence at least 27!

factors of G, have an even constant term. Thus 22! divides the constant
term of G, which is (=hA)“22(c—k) by lemma 2.1. Therefore 291 divides
c—k since & is odd. By the same argument 297" divides the constant term of
Gr+2) which equals Gy +2).

Lemma 52. Let d=2x<f where f=1 or 3 or 5. Let ¢ and vy be the
roots of y*+2y+h=0. Then: (i) ¢?+y?==2 mod 4 and (ii) (97— v)/(¢/ —y/)
is divisible by 2' but not by 2'*..

Proof. First suppose =0, so d=1 or 3 or 5. Then ¢+vy=2, ¢+’
= (0 + W) — 3ow(@ + ) = 2mod 4, @5+ v’ = (¢*+ ") (¢? + v*) — ¢*W(y + @) = 2mod 4
So (i) holds for £=0.

1—1

divides c—k and
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Suppose now the result holds for given # Then @+ y3=(@?+y?)?
—2(py)?==2kh%==2 mod 4. Hence gi) holds by induction for every £

Now (97— y9)/(9/ — /) = (0% +y??) (97" +y¥*)---(¢/+y/). By part (i) each
factor==2mod 4, hence this product is divisible by 2 and not by 2*.

Theorem 5. If ¢ is even and h is odd and d¢/{2, 4, 8, 3, 6, 12, 24,
5, 10, 20, 40} the graph does not exist.

Proof. From Lemma 2.2 we have

yd—1— pd—1 @d —yd
(5.2) C+2)=(k—0) o—v +(+=2+0) —

Now (w4 ' —@?')/(¢—y) is an integer and by Lemma 5.1 22! divides
k—c. By Lemma 52 the second term of (5.2) is=(+2+c¢)X2*Xodd num-
ber-7" say, and since ¢ is even, either 4 divides ¢ which implies +2+¢
=2mod 4 or 4 does not divide ¢ which implies +2+c=4mod 8, hence the
largest power of 2 dividing 7 is <2/*!, therefore 2¥~'<or+2 or t<3. Thus the
only possible graphs are those with diameter

de{2, 4, 8, 3, 6, 12, 24, 5, 10, 20, 40}.
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