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A LIMIT THEOREM FOR SEQUENCES OF WEAKLY
DEPENDENT STOCHASTIC PROCESSES

F. LIESE, J. VOM SCHEIDT

In this paper a functional central limit theorem for a sequence of stochastic processes is prov-
ed. Each value in these processes is a linear superposition of approximately independent
random variables. Since the solution of boundary value problems and initial value problems
depends linearly on the inhomogenous term our limit theorem may be applied to describe
approximately the distribution of the solution of such problems.

In this paper we study sequences of stochastic processes X,(f), 0<t<l1,
having the property that for each ¢>0 the random variables X,(¢f) and X,(s),
|t—s|>¢ are approximately independent for large n. To give a more precise
formulation of “approximately independent” we use mixing coefficients. Our
aim is to study the asymptotical behavior of the sequence of distribution laws

of the processes W,(f)= [6X,(s)ds. Since, roughly spoken, W,(f) is the sum
of approximately independent random variables for large n we can show, under
some technical assumptions, that the distribution law £ (W,) converges weakly
to the distribution law of a continuous Gaussian process with independent
increments (Theorem 1). Our results include the limit theorems for weakly
correlated processes introduced in [3,4]. Using theorem 1 we can derive a
limit theorem for stochastic processes of the form Y,(¢)= [IK(t, 5)X,(s)ds. The
finite-dimensional distributions of Y ,(f) converge to the corresponding distribu-
tions of a Gaussian process. Under some additional assumptions we can im-
prove this result and deduce the weak convergence of the distribution laws. As
solutions Y(£) of houndary value problems and initial value problems of ordi-
nary differential equations with stochastic inhomogenous term X(s) may be
written in the form Y(£)= [\K(¢, 5)X(s)ds, we can apply our limit theorem to
such problems of stochastic analysis.

1. Notations and results, By a general Wiener process Wou(f), 0-¢<1,
we shall mean a separable almost sure continuous Gaussian process with inde-
pendent increments and Wa,(0)=0 a. s. where a(¢) and b(f) are the mean and
the variance of W,u(f), respectively; a and b are continuous functions. Further-
more b is nondecreasing; Wax0)=0 implies a(0)=0, b(0)=0.

Given a real random variable X we shall denote by (X) the mean and by
D?X the variance of X. For a stochastic process (X(¢))«r on [Q, #,P] we
denote by o((X(f))«r the o-algebra generated by the process (X(f))sr.

Let now T be an interval [a,0]. We now introduce the coefficient of
uniformly strong mixing

o(t, X)=sup [P(A 1 B)—P(A)P(B)]/P(A),
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A LIMIT THEOREM FOR SEQUENCES OF STOCHASTIC PROCESSES 19

where the supremum is taken over all A € 6((X(#))asr<s,), P(A)>0, B€ o((X(£))s.<=0)
and all a<s,, s,=b with | s;—s5]/>1. To simplify the notation we often write
¢,(1) instead of o(t, X,) for a sequence X, of processes.

Let C be the Banach space of all real continuous functions on [0, 1] with
the usual norm. © denotes the c-algebra of Borel sets of C.

Let WAt), 0=¢=1, be a separable almost sure continuous stochastic pro-
cess. It is clear that the mapping

WAt 0) if WA(.,®) is continuous,
F(m)={ 0

is #& — (@ measurable.

We define the distribution law Z(W) of W by ZL(W)=PeF' and write
futher p,= ,..pt for the weak convergence of the distribution laws on [C, G].
We now consider a real measurable stochastic process X(¢), 0=f<1, satisfying
the condition ([} X*(#)dt)< <.

Using the notation W(¢)= [5 X(s)ds we obtain

| Wt)— Wit |=([X A2 fy— 1

which means that WA¢) is a. s. continuous.

Our aim is to study the asymptotical behavior of £ (W), W,(f) [§ X,(s)ds,
if ¢(1, X,) —nox0 for each t>0.

Theorem 1. Let X,(t), 0=t=1, be a sequence of real measurable sto-
chastic processes satisfying the following conditions :

otherwise

(1) sup (X, ()Y =c,<coo,n=1,2,...,
o=st=1
1
(2) sup ¢, ([ 0\ (£)dt)?=c< o, limg,(e)=0, for each £>0,
n 0 n—oo

(3) there exists a real continuous function a(t), 0=t<1, with
Sup (W, (t))—a(t)| — O, where W, (t)= [ X, (s)ds,

(4) there is a nondecreasing continuous function b(t), 0=t<1,

such that D2*W,(t) — . b(t) for each t¢[0, 1],

then & (W)= noee L (Wayp).

Remark 1. Suppose X, is a sequence of processes satisfying the condi-
Sons (1) - (4), then 1im_,o( W, (£)) .. . W(t))=(Wauty) .. . Wa, 5 () > k=1,2,3,

=t .. t=1.

We now apply Theorem 1 to a stochastic process defined on [0, =0).

Corollary 1. Let Z(t), 0=t< o, be a real mesurable stochastic pro-
cess possessing the following properties

(5) (Z(ty=d< o, (Z(t)=0 for every 0=t<o,
©) Jo (b 2yt <,
(7) there is a nondecreasing function b on [0, ) with

nt
D2W,(t) > o O(2) for each 0<t<co, where W, (t)=n""7? [ Z(s)ds,
0
then & (W,) = now L (Wops).
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If Z(¢) is a stationary process the last assertation is the functional central
limit theorem [1]. In this case the assumptions of Corollary 1. may be weakened
[1]. We now consider a special class of sequences of stochastic process in [0,1].

Corollary 2. Let Z,(f),0=t=~1, be a sequence of measurable stochast-
ic processes with

(8) (Z}(t)=d, (Z,(t))=0 for each 0 =¢=1,
9) o(l/n, Z,)=0, n=1,2,...,
(10) there is a nondecreasing continuous function b on [0,1] with

1/n —
im n [ (Z(O)Z(t+s)ds=b(t), for each 0=t<1,
—1/n

7300

then L(W,)— el (Wo ), where W (t)=\n [6Z,(s)ds and b(t)= [{b(s)ds.
We now give an example of a sequence of covariance functions R,(¢, s)
satisfying condition (10) of Corollary 2. We define R, by

y (1—n|t—s|) for |t—s|=1/n,
Rt $)= 0 for |t—s|>1/n

and obtain limu,w 72 [V1, R (¢, t+5)ds=1 and from this b(t)=b .t

In the above example R, is the covariance function of a weakly station-
ary process. It is an interesting fact that in the case of weakly stationary
processes the function b(£) must be always linear.

Theorem 2. Let X,(f), 0=t=1, be a sequence of weakly stationary
processes. Suppose :
(X, (t)=0, 0=t=1; limysw ¢,(t)=0 for each 1>0; there is a continuous

¢

function b(t) with 1lima . (( fX,,(s())ds)’) =0b(t) for each0=t<1,thenb(t)=0c2.t

with a constant c*=0.

For a sequence of real stochastic processes VY, Y, Y, ... we denote by
G (Y,)>nsw E(Y) the weak convergence of all finite-dimensional distributions.

Let 7 be a nonempty set and K(#, s) a realvalued function on 7|0, 1].

We now formulate a limit theorem for the processes Y, (f)= [} K(Z, $)X,(s)ds.

Theorem 3. Let X, (s), 0=s=<1, be a sequence of measurable stochastic
processes satisfying the conditions (1), (2), (4). We assume supo<s<1| K(¢, $)| < oo
for each t¢T, and furthermore that [} K(t, s)(X,(s)) ds converges for each
teT and denote this value by a(t).

Then G(Y,)— e (YY), where Y(t) is a Gaussian process with mean a(t)
and covariance function R(t,, t;)= [} (K(¢), $)K (t5, s)db(s).

We now consider the special case 7=[0,1]. We can improve the result
of theorem 3 in this case if the kernel K(¢{, s) has some additional properties.
We suppose that K(¢, s) admits the representation

(1) K(t, s)= (2 k(t, u)du,

where i(t,u) is a realvalued measurable function on [0, 1]x<[0, 1] with
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=

1 1
sup g‘lk(t, u)|du< o, im [|k(¢,, u)—k(ty #)|du=0 for each 0=fH=]1.
=1 -ty 0

Theorem 4. Suppose that X,(t),0=t=<1, is a sequence of stochastic
processes satisfying the conditions (1)—(4) and K{t,s) is a kernel which
admits the representation (11), then L (Y,)=> e £ (Y) where Y is a Gaussian
process with mean a(t)==a(l) [} k¢, u)du— [} k(¢, s)a(s)ds and covariance func-
tion [} K(t,.5)K (¢, s), db(s)-

Remark. If a(f) in theorem 1 is a function of bounded variation it can
be easily seen that the mean a(f) of Y(f) may be written in the form
a(t)= [LK(¢, ), da(s).

2. Proofs. We first summarize without proofs several facts basic for the
sequel.

a Lemma 1 [lk Let X, Y be real random wariables on [Q,%,P] with
< |XP)<o, (| Y9)<o, 1p+1/g=1,9>1, then

XY )—(X)W(Y)|=29"7(| X|P)VP(| Y|

where ©=SUp.ain. | P(AN B)—P(A).P(B)|/P(A).

Lemma 2 [1]. Let U,t), 0=t=1, be a sequence of separable almost
sure continuous processes. Assume that there are constants ¢=0, a>1, y=0
with (| Uts)—U () |")=c|t;—t | for every 0=t, t,=1, then & (U,) is rela-
tively compact.

Lemma 3 [2]. Every separable almost sure continuous stochastic pro-
cess W(t),0=t=1, with indepsndent increments and W{(0)=0 is a general
Wiener process.

Proof of Theorem 1. The basic ideas of our proof are the same as
in the proof of Theorem 19.2 in [1]. But the compactness, however, is proved
directly without the criterion given there.

1) Denote

XA = X)X A0, V.t 8= [ K ()ds.

The inequality
_ t—1ty
(12) (Vi(ty, 19))=3360 ¢ty =6 ( [ @z(s)ds)?
will play a fundamental role in the sequel.
In order to prove (12) we use the known inequality (|U[P)V=(|U |P:)!/7,
1<p,=p,< =o. Using the notation in (2) we get
(XA = (XA + A X, ()P (| X(8) )+ 6Xa(B) (| Xo(8) 12+ X, (t) = 14c,
Because of

— ty 1, 4 1, — — ; _
(Va(t t?))l‘g}f [ [ / KX(81)X(83) X (83) X,(84)) | dsydsqydsyds,

we deal with [(X,(5)X(S2)XA(s3)X,(s,) for s;=sy=s;=s, and put s=s,
Sg=S+1t, Sy=S+t+u, Sy=s+t+u+v with t,u,v=0, Using Lemma 1 and
(X, (s))=0 we obtain
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[ X ()X, (S + ) X (S + 1t +1) X, (S +Et+u+v))|
= 2014 () (XA(SNK| XS+ DX (s +E+1) X (S +E+u+v) 4354
and by Holder’s inequality
(X(s+OX,(S+t+u)X(S+t+u+v)['3)
XIS FONHX Ms+E+u)V XX (s+E+u+v)B<14c,.

Hence

(13) KX A($) X, (S + )X, (S+ L+ )X (s +t+u+0))| <2801 (F).
A similar consideration yields

(14) KX XS+ )X (s + t+u) X, (s +t+u+v)) < 280) (v)c,.

We apply Lemma 1 again and obtain
(X)X (s + )X, (s +E+ 1) X (5 + t+u+ D))
CUXAS)XA(S + DI KX (S +E+ 1) X (S + t+1u+v))|
+ 205 () Xu($) XUS+ )2 XAS +t+u) Xu(s+t+u+ )12
XA XS +18)) (X(s+1t+u)X, (s +1+u+ )|+ 280y (u)c,

and
X)X 5 +0))] == 204 (8) (X)) (Xol(s + )"
=2{14\c, 0:(2),
X As+t+u) X (s+t+u+v)|=2A/Tde) (v)c,
Therefore

(15) (X)X +E)X (S + E+ 1) X, (S +1 +1u-+ D)) = 28¢, [on (1) + 204 () 01 (2)).

In order to estimate (V, (¢, %)) we use the estimate (13) for {(¢, u, v):u, v=t},
the estimate (14) for {(# u, v) :u, t<=v} the estimate (15) for {(¢ u, v):t, v<u}
and obtain

I T T EXAS)XA($2)X(55) X (S )5 dSyd seds,

182588

< (f | [ 280} ()c,ddudvyds + [ (] | [280} (@)c,dtdudvyds

(16) ty, uvt t, utsv

- /t ([ J ] 28¢,10}(w) + 20, %@)0} X t)|dtdudv)ds

= 28¢,(t, ) (3 | [ [o)(O)dtdudv+2 [ [ @) (v)elXu)dtdudv),
u vt u vt

It is ¢, (u)-¢,(v)--1 for O=u—v-1 and therefore
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(17) tr—ty tity to—ty ’
f{ o) (1)) (v) dtdudv= Jf Uf [ 0w} X(v)dtdudv
=(t—t)( g QU3(u)du)?
and
(18) | (f 0, ‘(t)dtdudvér?t‘ [ gt Of wl;"(t)dadv]dtg"f[j Of<py8(u)<py8(v)dudv]dt

<1 (" oy,
Applying (17) and (18) to (16) we get
ff f f|</\7n(sl)Xn(Sa)/?n(Ss)/\;n(&»Id51dszd53d54

to—ty
=140c, (t,—£,)2( J‘ o8 (2)dt)?
and
- ty—t,
(V3 (245 12))=3360c, (£,—¢,)?( bf 9, ()de?

which is the stated inequality.
According to inequality (12), Lemma 2 and assumption (2) £(W,) is relati-

vely compact. Because of W, (¢)= W,(f)—(W,(¢)) and condition 3 £(W,) is re-
latively compact, too.

2) A short calculation shows that the inequality in Lemma 1 is valid for
complexvalued random variables {, n substituting the constant 2 by 8. Hence

(19) KEM)—(Cxm)l =8P (| L|P)VA( m |74

where (|{|7)< oo, (In7h<eo, I/p+1/g=1, p>1. ¢ is defined analogously as
we have done in the case of real random variables. Denote by s, ..., s, %,
., t, real numbers with 0=s,<f <s;=f<---<s5,=<¢f,=1 and by

o= exp (x, (W(t) = Wils) maw= T exp (x(Wa(ty)— Wi(s),
where x, ..., x, fixed real numbers. We obtain applying (r—1)-times (19)
K I"l gl.n>— I!Il (CIn)l = I(Cl,n T]l.n)“(Cl.n) (nl.n)l + |<Cl.n>| | (nl.n)_ IH"‘ (Cl.n) |
<80} (sa— 1)+ (i — T @ |<8(r—1)0}2( Min (5,~t,).

Assumption (2) implies

(20) lim | ¢ ll C: n— ll (Cz m|=

n—yo0
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3) Let p be an accumulation point of £(W,). The limit relation (20) implies

I 1L exp (ix, (g(t)— gs udg)= 11 [ exp (ix, (g(t)—g(s ().

From P(W,(0)=0)=1, n=1,2,..., we get p({ f: f(0)=0})=1. Because of Lemma
3 p is the distribution law of a general Wiener process. We denote by a,(?),
bu(¢) the mean and variance belonging to p.

The inequality (12) implies

(21) sup(Wa(t) < —-.

It is known that in this case the sequences W,(¢), (W, (£)—(W ,(¢))? are uni-
for(ml_v integrable. Therefore we have by assumptions (3) and (4) a,(f)=a(f),
b ()=0b(1).

Sinc(e)the distribution law of a general Wiener process is uniquely deter-
mined by its mean and variance there exists at most one accumulation point
of #(W,). According to the relative compactness, which has been proved in
part 2, we get £ (W,)=nse £ (Ways). The proof of the assertion in Remark 1
follows from the last limit 1elation and the fact that the sequence W, ())...W,(¢,),
n=1,2,..., is uniformly integrable according to (21). B

Proof of Corollary 1. We apply Theorem 1 to X, (s)=yn Z(sn). In
order to deduce the relations (1)—(4) we first note, that o(¢, X,)<o¢(nt, 2).
Let ¢,=n2d, then

cu(] 0"t Xo)dtP<d([ 9V (s, Z)ds)"

n=1,2,...,and lim,_.. (¢, X,)=lin,. ¢(€ o n, Z)=0. The assumptions (Z(¢))=0
and (7) imply (3) and (4).

Proof of Corollary 2. We first deal with ((Vz [ Z,(s)ds)?. Using the
assumptions (9), (10) we get

- t ¢
lim ((yn jt' Z,(s)ds)*)=limn {! b’ (Zn(8))Z, (So))dsds,
0

t—l/n ln t _
=limn [ [ (Z,,(t)Z,,(t-f—s))ds:i{b(s)ds.
n—oo I'n —1/n
Put ¢,=n%, then according to (9) r,,(fl‘)_(p}.’”(t)dt2z—;n'—’dl,/'n2=d.
Proof of Theorem 2. Put /,(s;, $)= [}: X,(s)ds, then

qq 9P 4P
(LLp. @)D= JR,,(S'*t)det=6f l.)f R,(s—t)dsdt=((1,0, ¢g—p)y) - b(g—p).
pp n—sco
For any real numbers §,<s,<S3<s, we obtain by Lemma I

(22) tim [ ( [ X,(s)ds [ X, (s)ds)|

n-soo

<21im ol (sy— ) (| XSSP (( [ X, () dspy

n-ro0
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= _ e N2 1im 012 (Se— So) =
=2(b(sy—s$,) b(5,—53)) ,lxl:i(P,, (53— $2)=0.

Therefore 1iMu— e (/(Sys S2)+ 1, (83, 54))2) =b(53— 1)+ (4—S3).
Let X, Y be random variables with (X2)< oo, (Y 2)< =c* A simple calculation

shows that | (X2)—(X+V)2 > | = (Y’)+2<X2)~; (Y2)'2. Applying this inequality

we get
K(L(S1s S2)+ Lu(S30 SO — XS0, SN =L X(S2: $3))

+ 2(1%(Sgs SaV 212515 SNV HALY(S50 SN
The last inequality implies as n— o |b(sg—~s,)+b(s4—s3)#b(s4—s,)lgb(s3—s2)
+ 2612 (53— 89) [6V2 (53— 5,)+ b2 (s, 53)]. 1f 53 tends to s, we obtain b(s;—Sp)
+b(sy—5,)=0b(s,—s,) as b is a continuous function.

This functional equation proves, together with the continuity of &, is our
assertion.

Proof of Theorem 3. 1) Let Z(¢), t¢ T, be a sequence of stochastic
processes and Z(f), t¢ T, be a Gaussian process with mean zero and covari-
ance function R(#,s). Using characteristic functions it is easy to see that
G(Z,) > now G(Z) if for every £, ..., £, €T, X4+ X, €(-—co, +0) the distri-
bution law of x;Z,(t)+ - - - +x,2Z,(t,) converges weakly to a normal distribu-
tion with mean zero and variance Eﬁj=lxiij(ti. t,).

Put Y ()= [0 K (¢, SN X(S)—(X(sWds. Let X(¢).£€¢T, be a Gaussian pro-
cess with mean zero and covariance function R (¢, f)= [} K(t,, $)K (L5, $)db(s).
In order to prove G (V,)— s G(Y), according to the above remark, it is enough
to show that for every measurable bounded f the distribution of JLf(8)X,(s)ds
converges to a normal distribution with mean zero and variance L2 (9)db (s).

According to Theorem 1 this statement is valid for step functions
f(S)=ao,ay+ - - +u,,_,I(,,"_l_a"ﬁ—a,,lmn,n. where /, stands for the indicator
function of the set A.

Let now f be a bounded measurable function on [0,1] and f, be a se-
quence of step functions with

1

[(f(s) fuls))2ds ~ 0,
{ m—so0

(24) j f2(s)dl (s?,..-.; 0} F2(s)d b(s).
Using inequality (12) we get
(25) sup (| J’(I(S)—f..(S))X,.(s)ds D= [‘f (f(S) [,(s))*ds]"? sup [0} X2 (s)ds)"?

<L ()~ FulPds]? (3360 )

with ¢ from (2). Setting o2= [} f2(s)d b(s), 0% =[4f2(s)d b(s) we obtain for
a real 2

[ exp iz [ ()X, (5)d5) exp(— T 260|521 [ (£(9)—Fls) Ky (s)ds )

FIERD iz [ Fal(s)K, (S)s)—exp (— 5 2203 | +] exp (5 2%0%) —exp (— o)l
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The first term tends to zero as m— o uniformly in n according to (25).
Because of theorem 1 the second term converges to zero as n—c-o for
fixed m since f, is a step function.
The third term is small for large m because of (24). Thus we proved that

the distribution of [} f(s)X,(s)ds tends to a normal distribution with mean zero
and variance [} f2(s)d b(s).
To finish the proof we remark that & (Y,)— s G(¥) and

V0 = [ Kit, $)CXsDds = alb)=(Y ()

imply € (¥,)—nae G (V).
Proof of Theorem 4. We have by Fubini’s theorem

(26) Y (6)= [ K(t )X, (s)ds = j j‘ k(¢ 1) X, (s)duds

= j(}X,,(s)ds)k(t, u)du = W,,(l)jk (¢, u)du—flV(/,, (w)k (¢, u)du and therefore

1 1
Y, ()Y (=W, (1)—(W,(1)] J k(t, u)du —df(W,,(u)—(W,,(u)))k (¢, w)du.
We now consider the mapping 7 which is defined by

(Tf)(®) =f(l)i'k(t, u)du—-{lf(u)k(t, u)du.

Using the assumed properties of k it is easy to see that 7 is a continuous
mapping from C into C. In the proof of Theorem 1 it was shown that
L (W, (t)—(W,(t))) is relatively compact. The continuity of 7' implies that
L (Y (t)—(Y,(t)) is relatively compact, too.

Theorem 3 yields & (¥ (£)— (Y (£))) = nsw G (Y(£)) where Y(#) is a Gaussian
process with mean zero and covariance function JLK (¢, ) K (ts, $)d b(s). Thus
we obtain

(27) L (Y)Y, = £ (Y(D).
Using the definition of a(f) in Theorem 1 we get by (26)

I(Y,,(t))—a(l){lk (¢, u)du+ja(u)k(t. u)du |

KW,y —a(h)] [ ke, @) du+ [ KW@~ a(w)] (¢, 0)] du.

According to the assumption about k(¢, #) the mapping f~k (¢, u) is a conti-
nuous one from [0, 1] into L,([0, 1]). We have therefore supo1 [{ |R(¢, u)ldu< -

and by condition (3)
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(28) sup KY(ep+alt) | k(. u)du-o}a(u)k(t, wydu| — 0.
o=st=1 0 n—soo
@7 and (28) imply Z(¥,) = £ (1).

3. Applications to stochastic differential equation problems. 3.1 We
consider the stochastic boundary value problem

(29) Lu)l=X(t); U,[u]=0,i=1,...,m, 0<t<l.
L is a deterministic differential operator of order m, L[u]=22_ g(t)u'®, g,(t)=-0.
U;u]=0,i=1,..., m, are deterministic boundary conditions

Ul ="% (@ (0) + Byt (1)

X(f) is a separable a. s. continuous stochastic process. Further on we assume
that Green’s function G(x, y) of the differential operator L[u] and the above
boundary conditions U, [u] exists. Under these assumptions the solution u(¢)
of the boundary value problem (29) exists almost sure and may be written in
the form wu(t)= [} G(t, s)X(s)ds. We substitute X by a sequence X, of processes
satisfying the assumptions of theorem 3. Then we obtain € (#,)— s € () where
£(t),0=t<1, is a Gaussian process with mean ({(f))=a(f) and covariance
function R(t, ;)= [} G(¢,, s)G(ts, s)d b(s).

We now suppose that L [«] is a selfadjoint and positively definite operat-
or. Then Green’s function G(x, y) is symmetrical G(x, y)=G(y, x) and there
are at most countable many eigenvalues O(A,<X,= ... of the eigenvalue pro-
blem L[u]=2u, U;[u]=0 i=1,2,..., m. The eigenfunctions corresponding to
the eigenvalues have the property [}o,(f)o{t)dt=3,. By Mercer’s theorem one

gets G(x, y)=X %(p,» (x)o; (), where the series converges uniformly. There-
fore the covariance function may be expressed by the eigenfuctions

oo 1
Rt )= X 550,10, (12) [ 9(10,()H(S).

We obtain in the special case b(f)=oc?%
o 1
R(t), t;) =0 l:‘-:l 22 P (t,) 9, (25)-
Example. «V=X, u(0)=u"(0)=u(l)=u""(1)=0.
Substituting X by a sequence X, of processes with mean zero satisfying

the assumptions in Theorem 3 we obtain & (#,)— nw= G (§), where { is a Gaussian
process with mean zero and covariance function

Rty )= [ G(ty, 5) Gita, S B(S)

where
x(yv—1)(x2+y?=2y)6, O=x=y=1,

Glx )= { Wx—1X 2+ x2—2x)6, 0<y=x<l.
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A simple calculation shows that A, =(kn)*, @«(f)=y/2 sin (kn#). Therefore we have
for a sequence weakly of stationary processes X, satisfying the conditions in
Theorem 3

lim (u, (¢)u,(t ))——-2—(ﬁ s —I—(Sin kmty) (sin knty)

oo n\f1 "‘?_81!2;:1/28 1 2)
because b(f)=c?.

3.2. In this section we deal with initial value problems for linear differen-

tial equations having a stochastic inhomogenous term X(¢)

(30) g a(Hyut(t)=X(t) 0=t=1; uP0)=upo, p=0,1,...,m—1.
k=0

X(#) is a separable a. s. continuous stochastic process. We assume that ax(?)
are continuous functions. Such initial value problems have unique solutions.

If u,t),k=1,...,m, denotes a fundamental systems of solutions of the
homogenous differential equation the solution of problem (30) may be written as

m m t w (S)
_ % W) .
u(t) k=lckuk(t)+ ,E‘"k(t)g‘ W (s) ds

WA(¢) denotes Wronski’s determinant W(#)=det (&) (¢), 1=i=m, 0=j=m-1).
W,(f) is the determinant which is obtained from Wranski’s determinant substi-
tuting the &-th column by (0, ..., 0, X(#)), k=1, ..., m. The constants ¢,,...,cp,

are determined by the initial conditions X7 ¢, 4 (0)=upp.

Let A,,(t) denote the determinant obtained from W{(#) by omitting the
k-th line and the [-th column. Then we have for u(f)

u(t) = él Cll(t)+ Of v [é' ()R (S)an (DX,
We put

Kt )= g £ (=1 A (Saa () Do (5)

=1
Let X,(s) be a sequence of processes satisfying the conditions in Theo-
rem 3. Denote by u, the sequence of solutions of the initial value problem
belonging to the sequence of inhomogenous terms X,. We obtain by Theorem 3
G (1,) > nseo @ (1), where u is a Gaussian process with mean
m 1
(u (t))=' zl Chuk(t)+ lim JK(t' S) (X,.(S)\ds
k= n—so0
and covariance function R(f,, t,)= [} K(¢,, S)K(t;, s)d b(s). Denote

wnO=t,(0)= £ cuud)+ [ Kt )X, (5Xds,

Ugn(t)y=u,(t) =*§ Cld(t) +Jl' Ky(t, )X, (s)ds,
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where K, (¢, )=K(t, ), Ky(t, s)=‘§ (¢, ). We assume additional that
lim,, . [L Kyt sXX,(s)ds exists. Denote

Yia(®) =(:f K; (8, $)X, (5)ds, K(t, s)=x:K:1 (8, 8)+ X2 Ky (2, 9),

where x; are fixed real numbers, then we obtain from Theorem 3 & (x, 41,
+ X Uo,n) > nsee @ (£), where { is a Gaussian process with mean limq—.. [ (x,K(Z, 5)
-+ x9 K(2, $)(X,(s))ds and covariance function

2 1
R(¢,, t2)=ijil xiijKi (21, )K;(t5, 5)d b (5).

Using similar arguments as in the proof of Theorem 3 we obtain the converg-
ence of all finite-dimensional distributions of the vector process (1, (¢),u2,4(2))
to the corresponding distributions of a Gaussian vector process (§,(?), £s(2))
having mean

m 1
(169 =k2=l Cplly(t)+ :“2 ({Kl (2, $)(X, (s)ds,

m 1
G = I cur®)+ lim [Kyt, $)(X,(s)ds
and covariance function R (¢, £5)=(C, (¢,)&; (£2))—(C{(£;))(C; (£5)), where
1
Ry (ty, )= of K, (41, )K; (23, 5)d b (3).

The limit theorem for the vector processes (u1,.(f), u2.(f)) may be applied
to calculate approximately the expectation of the number of level crossings.

If we deal with initial value problems with constant coefficients a,(f)=a,
the roots of the associated algebraic equation X7 ja@,A*=0 possess in many
cases negative real parts. Thus we have for large ¢ approximately u,(£)~0.

Example. We consider a one masssystem described by ‘the initial value
problem &' +2Bu’ +w?n= X(t), w(0)=uy, 1'(0)=u,, with stochastic exitation
X(). We assume w?—p2>0,>0. These conditions are fulfilled, for instance,
for vibration problems. u,(f)=e~# cos(wt), uy(t)=e ¥ sin(wt) form a funda-
mental systems of solutions. Here we have put w=(w?—B?"2 The initial con-
ditions imply ¢y =uy,, €9=(to+ o)/ w.

The solution of our initial value problem may be written as

t
u(t)=eB (c, cos (wt)+c, sin (wt)) + o [ X(s) e8¢~ sin (w (¢ = s))ds.
For a sequence X,(s) satisfying the conditions in Theorem 3 with
K(t, s)= - e3¢~ sin (w(t - 5)) fo. (5)

we obtain € (#,)— e @ (#), where u is a Gaussian process with mean
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t
lim ;U— [(X,(s)) e=B¢=9) sin (w(t — s))ds + e~ (¢, cos (wt)+ ¢y sin (wr))
)]

and covariance function
1 Min (£4,85) )
R(t,, tg)= gz e POt €2 (sin (w(t, —$)) sin (w (5 — $))d b ().
0
Provided that the X, are weakly stationary we have b(f)=oc?¢ and

2 , 1 1 .
R(t,, t-z):ﬁg et (E cos(w|t,—ty|)+ w S (w|t, =t 1)

4

c?

9, 2
1wrw(

e84+ (B cos (wl(F, +ta))— sin(w(t, + 1))+ iﬁ w? cos (w | t,—ty ).
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