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PERFECTION OF IDEALS GENERATED BY THE PFAFFIANS
OF AN ALTERNATING MATRIX, 1

VASIL P. MARINOV

Let R be a Noetherian commutative ring, X be an alternating sXs matrix whose above-
diagonal entries are algebraically independent over R, and let Pfy (X) denote the ideal in R
[X;j] generated by the pfaffians of all the alternating 2¢X2t submatrices of X. It is proved
that Pfy (X) is perfect of depth (s—2f+1) (s—2¢+2)2, and that it is prime when R is a
domain. The theorem is a consequence of a more general result, involving ideals generated by
both pfaffians and determinants of submatrices of X.

In the first part we prove that the ideals of this class are prime or radical, when R
is a domain.

An important invariant for the ideal / in a commutative ring is its depth
(depth /=the length of the longest R-sequence contained in /). In view
of the inequality depth /<pdzR// holding for ideals in a Noetherian
ring R, where pdpR// is the projective (homological) dimension of R// as an
R-module, the perfect ideals (for which depth /=pdpR//) are of special inte-
rest: cf. e. g. [6].

An important class of perfect ideals was constructed by Hochster and
Eagon ([6]) who proved that the ideal generated by £X£. minors of an rxs
matrix M with entries in R is perfect, if its depth reaches the maximal pos-
sible value. Here, as in the rest of this paper, all rings are commutative with
identity.

In [11) Kutz proved an analogous statement supposing M is a symmet-
ric matrix. Buchsbaum and Eisenbud aroused interest in the case of an alternat-
ing sxs matrix M (i. e MT=—M and diagonal entries are 0) in their pa-
per [4]. They showed that in this case the plaifians are the fundamental inva-
riants and not the minors (see Lemma 3) and proved some important state-
ments for the ideals generated by pfaffians of 2¢x2¢ alternating submatrices
Pf,, (M) (see 1). Moreover, it can be deduced from their results, that
Pf, (M) is perfect, when s=2{+1 and its depth is 3.

After this publication the perfection of Pf,, (M) was proved in some cases,
under the natural restriction that the depth of this ideal reaches the maximal
possible value. Jozefiak and Pragacz in [7] prove the perfection in the
case when M is a 25X 2s matrix, 2{=2s—2 and depth of Pfy (M)=6, con-
structing a resolution over R/Pfy, (M). For this result they require 1/2¢R. The
same authors in [8] announce for a ring R of characteristic 0 (i. e. Q=R) and
for each ¢ a complex over R/Rf,, (M) which is exact in case of maximal depth
of Pfy, (M). In particular, the perfection of Pfy, (M) in the considered case follows.
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32 V. P. MARINOV

The present paper is a continuation of the researches along these lines.
In fact we prove the perfection of a class of “mixed” ideals, generated by
pfaffians and by minors. The main result of this paper is:

Theorem 1. Let R be a comnutative ring (Noetherian with identity).
Let M=(c;) be an alternating sx<s matrix with entries in R. Let H=(s,,
Siy...»S,) be a strictly increasing sequence of positive integers such that
Sp=2h+1(0=h<=m—1),s,=s.Let n be an integer, s,=n=s.We write M(i, j)
for the intersection of the first i rows and the first (leftmost) jcolumns. Let
A=Ayn=Ann(M) be the ideal of R generated by (2t+2)X(2t+2) pfaffians
of M (s, s,) (0=t=m), by (t+t'+1)X((+¢t' +1) minors of M (s, s,) (0=t
<t'<=m) and by ¢ ..., Cin. Let h=min {¢:s,~~n}and X, denote the number
of these indices g (1=g=h) for which sz ,=2g—1. Set fun=s5(s—1)2
—2sm+m (m—1)+S,+ ... +S,_1+h+Z, and

g fron1+1 for n=s,+1=2t+2 for some t,
H' =
! fr.n in the other cases.

Then max p, m depth Ag,,= G

Ifn=s, orn=s,+1 orn=s,+2=2t+3 for some t and depth A.,= g,
then Ay, is perfect.

In case R=K [X] for some Noetherian ring K and an alternating ma-
trix X with indeterminates as entries and Ay,= Ay, (X) the following ad-
ditional statements are true:

1. depth A,.,= gy, for n=s, or n=s,+1 orn=s,+2=2t+43.

2. if K is a domain, Ay, is radical and depth Apy,= 8y .

3. if K is a domain and n=s,or n=s:+1, Ay, is prime.

An immediate consequence of this theorem is the following result which
motivated the present investigation: set A/=(1,3,5,..., 2m—3,s) and n=1.

Theorem 2. Let R be a commutative Noetherian ring with identity and
M be an alternating s<s matrix with entries in R. Assume t=1 and 2t<s.
Then maxpg, 5 depth Pfy, (M)=d,=(s—2t+1) (s —2t+2)/2. If depth Pfy,(M)=d,,
then Pf,, (M) is perfect.

Moreover if K is a Noetherian domain and R=K|[X]|=K [x;:1<i<j<s],
where X =(x,;;) is an alternating s<s matrix and x;; (i<j) are indeterminates
over K, then Pf,,(X) is a prime ideal and depth Pf,, (X)=d,.

The proof of Theorem 1 relies on the induction scheme introduced by
Hochster and Eagon in [6]. The same scheme has been used by Kutz
in [11]. In the proof of Hochster and Eagon we see three main moments: the
proof that some ideals are radical, the construction of a generic point for the
radicals of the “fundamental” ideals and the construction of a generic point
for the ideals themselves.

In the present paper the above three moments are conserved but the con-
struction of the first generic point is replaced by an inductive proof that the
ideal is prime (Proposition 10). It must be noted that one of the fundamental
difficulties in the work was the determination an “optimal” ideal class for
which Theorem 1 can be proved.

The first part of the present paper consists of five paragraphs. In 1 the
definition and some principal properties of the pfaffians are recalled and ideals
gencrated by minors and pfaffians are briefly considered. In 2 we introduce
the needed version of the method of Hochster and Eagon for indexing of the
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ideals by “descriptions”. In 3 and 4 are proved the statements of Theorem 1
that some ideals are radical (resp. prime). Some technical statements required
for this are established in 5. The contents of the second part is as follows. In 6
and 7 we compute the depth of the ideal in case K is a field and the matrix
has algebraically independent entries, and in 8 the perfection is proved in the
same case. The proof of the theorem is completed in 9.

The present paper was written on the basis of the author’s master’s thesis
(University of Sofia, 1978). The main results were announced in [12]. I want
to thank Luchezar A vramov for his help as adviser of my master’s thesis
and for his constant interest in this paper.

After finishing my work on this subject I learned that Dan Laksov and
Hans Kleppe have proved Theorem 2. Their proof leans also on the method
of Hochster and Eagon but they work in a different class of ideals ([10]).
Using the result of Theorem 2 and some additional results from their paper,
Avramov in [3] proved that R[X]/Pfs(X) is a unique factorization domain
if and only if R is a unique factorization domain. It follows that the ideals
Pf,,(X), when perfect, are even Gorenstein, a result which was initially obtained
by Kleppe and Laksov using a different method.

1. Ideals generated by minors and pfaffians. Let G=(g,;;) be an alter-
nating n>n matrix with entries in thering R, that is G'=—G and all diagon-
al entries are 0.

There exists for each alternating matrix G a polinomial PfG=Pf(g;) of
its entries known as the pfaffian of G which is uniquely determined by
the following two conditions: det G=(PfG)® and Pf (A’GA)=detA.PfG.
The pfaffians have other properties which make them as useful for working
with alternating matrices as determinants are for working with square matric-
es. The most useful property of the pfaffians is their expansion with respect
to one row: For each k—=n we can expand PfG with respect to £’th row of

n

G by the following formula Pf(G)=_' 0, g Pfy; where oy =sgn (k,j, 1,2,
J=1

~

... k..., J,...,n). (Here sgn denotes the number of inversions and de-
notes an absent element; Pf,; is the pfaffian of the matrix formed from G by
deletion of k’th and j'th rows and columns). For more information about
pfaffians cf. [1, ch. Ill, §5]. A paraphrase in the language of polylinear algebra
can be found in [4,§ 2J.

Let R be a commutative ring and M be an rxs matrix with entries in R.
Let =1 be an integer. We write /,(M) for the ideal of R generated by £X¢
minors of M; in particular /,(M)=0 if ¢>min {r, s}. Obviously /,., (M)=1, (M).

If M is an alternating sxXs matrix and 2¢==s and if we delete n—2¢ co-
lumns and the corresponding rows of M, analternating 2¢>2f matrix M’ will be
left ; M’ will be called an alternating submatrix of M. We write Pf,, (M) for the ideal
of R generated by the pfaffians of all alternating 2¢£XX2¢ submatrices of M; for
2t>s we set Pfy,(M)—0. From the formula for row expansion of pfaffian it
follows that Pfy,.s (M) Pfy,(M). It is evident too that /,(M)=1,(MT) and Pf,,
(M) = Pf,,(MT) where MT is the transposed matrix of M. Consequently the
ideal A from Theorem 1 will be written with these notations as follows:

A- zopf-.w'z (M (s, )+ ot ?://m Lijir M (55, 5)) +(Cago v+ 5 Cn)-

=U<IS

3 Cepamxa, 1
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From the relation det(M)= Pf2(M) for each alternating matrix M follow
the inclusion Pf,,(M)=Rad (/5,(M)). Buchsbaum and gEisenbud [4 Coﬁ
rollary 2.6] prove the following: '

Lemma 3. Let M be an alternating matrix and t=1 be an integer.
Then I, (M) 1y, (M)= Pfy,(M)=Rad (£ (M)).

Now let M be an alternating s<s matrix. Let @ be an element of R and
b be an invertible element in R. Let 1=k=s, 1<—m-—s, k==m. Add the m’th
row multiplied by a to the k£’th row multiplied by & and subsequently do the
analogous operation on the columns.

Definition. The described operation will be called an elementary trans-
formation of the alternating matrix M and will be denoted by E,(k, m;a,b)
or only by E,. ‘ Y

Evidently, the matrix £,(M) is also alternating and =
for each E,, each ¢ and each M) & Prae (Ea (M) =Pt (M)

2. Descriptions. We shall introduce a considerable number of conventions
and notational devices for dealing with matrices, which will be in force for the
rest of the paper.

Usually the letters 4, j, &, m,n,r, s, t, m, r' etc. will stand for elements of
the set N of nonnegative integers. Let KR be rings. If M is an rxs matrix
with entries in R (we permit “empty matrices” () one or both of whose dimen-
sions are 0) let M (i, j) be the matrix formed by the intersection of the first
i rows and the first (leftmost) j columns. M(;,j)=@ if i=0 or j=0, while
M (i, j)=M(r, j) it i=r, and M, j)=M(, s) if j=s. For a subring K of R
we write K[M]h fl<l)r f[{x:x is an entry of M}]c=R.

Now we shall observe some elementary properties of the idea i, J
(and of Pfy,(M(i, i)), when M is altematiné)? P cals [ (M)

Let M be an rXs matrix. Then:

V) I r=i, L(ME ) =L,(M(r, j)- 1t s=j, [,(M(,))=1 [\ 5));

2 1 t>mzn {Zj, o 1M (6. ) -0 I LM ))=1,(M(, 5));

3) Ly, M(i+k, j)N=L,(M( )) and 1, (M, j+kR)=1, (M, j)). Better:
if u=t and k+m—i—j=u—t, then 1, (M (k, m))y=1,(M (i, j))f (Her(e {s)) included
the case k=i, m=j, u=t.

Now let M be an alternating s<s matrix, Then:

) If s<i, Pty (M, i)) = Pfy, (M);

2) If 2t>min {i, s}, Pfy, (M (i, ))=0;

3) Pfaerpn (M), i+ D) Pfy (M(Q, ). Better : if u=¢ and j—i<u—¢, then
Pf o (M (J, )N Pfar (M0, ©)). (Property 3 for pfaffians can be proved by re-
peated use of the formula for the expansion with respect to a row.)

We shall denote m-tuple of numbers by (s,, Sy, ..., s,,). Let M be an alter-
nating s>xs matrix. S i

Definition. We shall call a description (for M) the m —
H=(syp, Si,+.., Sm), When s, are integers and O(,iso<sl)< e <.s'+-l:stu7"”l£:;z
description H will be called a standard description when s -2f + l.(O/t
~m—1) and s,,=S- 4: Let R b ! N

Proposition 4: Le e a commutative ring with i ity. M= (c;
be an alternating s<s matrix with entries in R, H _é (s ,,lﬁ l t.if,”t.s{t))} b/::’ a (:z"‘éz
scription, 0= n--s and k be an odd positive number. Let " o

Al (M) = /}Eul)f‘li+k+l (M (s,8))) + 2 E/ Livyin M (S, 8))+(Chan ooy Crp)e
A}, , will be denoted also by A, . ‘

s -
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Then there exists a standard description H' =(s), s, ...,S,.) such that
Al (M)=An o (M).

Proof. We shall introduce three types of operations substituting a descrip-
tion H’ for the description /, but conserving the ideal,

Operation 1. Let Z=max {¢:s,<2t+k}, s',=min {s, 22+ k}. Then we
construct A" by (Sgs - -» Sp_1s Sp» Spt1s - - - » Sp) deleting the repeated numbers.

Operation 2. It is applied to A such that s,=2{+k(0<t=m—1),
Sp=min {s, 2m+k}. Then H' =(s;, ..., s, ), where & =(k—1)/2 and

§ = 2i+1, 0=i<k,
' Sipo Ry=i=m+1.

Operation 3. It is applied for k=1 and to A such that s,=2¢+1
0=t=m—1), s,,=min {s,2m+1}. Then H'=(sy ..., S, ). where g=s—s, and
s = {s,-, 0<=<i=m,
‘ Smti—m> m§t§m+q

Apply to the initial description operation 1 so many times, as possible
(that is, while # exists). After that apply once operation 2, followed by 3.
Finish by applying again operation 1 several times (while it is possible). We
leave to the reader the verification that this leads to a standard description.
To complete the proof of the proposition we must show that every operation
conserves the ideal. For operations 1 and 2 this follows from the relations
between /,(M(i, f)), Pf, (M(i,i)) with various values of the parameters: see
the bazinniny of th2 parazra ph. For operation 3 we have:

m+q ’ ’ . ’
Awn =Ann+ L Pfyg(M(s, )+ z Liyjir (M (s, 8))
i=m 0§li25]m+q

For m=i<m+gq we have
Pfppa (M (s, SN Py (M (57 v S, )= o S Pfopmia (M(S,,05,))=Pfamsia
(M (S Sm)= At

Suppose 0=<i<j<m+q and m<j. By property 3 for minors /(M
(s;» s; Nl ismir (M(S), S,))- Hence, when m<i, [, (M(s;, 5/' N Lot (M (S

Su)) = Plomia (M (Spy Sm)=Ama (by Lemma 3). When i=m, [, (M(s;,s))
liymir (M (Spy Sp))= A n. Therefore Anrn = Ann

Definition. By a generic alternating matrix over R we mean X=(x),
where x,; i<jare algebraically independent over R, x;;=0 for i=j, x;j=—Xy
for i>j. If X is a generic alternating sXs matrix over R we denote R[X]
=R|[x;:1=i<j=5s].

Now we shall prove that in the cases which are interesting to us we
can assume without loss of generality that n<s. By Bus we denote the ra-
dical of the ideal A .

Lemma. 5. Let R be a Noetherian ring, X be a generic alternating ma-
trix over R and X' be the matrix constructed by deleting the first row and
column of X. Let H=(s,,..,,S,)) be a description such that s,>0.Set H'
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=(so—1,...,8,—1). Then An;(X) is prime (resp. radical) if and only if
Apo (X') is prime (resp. radical) ideal. The radical Bus(X) is prime if
and only if Buo(X') is prime. If R is a field, AuJX) is perfect if and
only if Ano (X') is perfect, and also depth Ap,(X)=depth Ap (X)) +s—1.

Proof. Obviously R[X] "Aus(X)=R[X’] “Ano(X’) as rings. From here
the first three statements follow at once. The following famous lemma of Rees
gives immediately that Az (X) and Ag-o(X’) are perfect or not alike.

Lemma 6 [6, Proposition 19]. Let R be a field, S=R|[x,,. .., x,] and
a be a homogeneous ideal of S. (Here x,, ..., x, are indeterminates over R).
Then S/a is a Cohen-Macaulay ring if and only if a is perfect. To finish
the proof of Lemma 5, we compute

depth Ap;s (X)=ht Ay (X)=dim R[X]—dim R[X] Aus(X)

=s—1+dim R[X']—dim R [X'] “Ano (X)=s—1+htdn o (X)=s5—1
+depth Ago(X).

3. The radical of Ay, is prime if n=5,+1=2k+2 or n=s,. By using
the technical Lemmas 7,8, and 9 we shall prove the statement in the headline
for generic alternating matricies over a Noetherian domain.

Lemma 7. In the ring R let b be an ideal, let q be a prime ideal and
Py .. ..p, be incomparable prime ideals, such that the following condition

is satisfied: a= 1 p;=qSb. Then:
i=1 o

1) b&p, for 1 <i<n;

2) if there exists a x in R, such that a, in prime, then there is a
unique index i, such that x¢p,.

The elementary proof is omitted.

Most ideals with which we shall work in the rest of the paper (e. g. /,(M),
Pf,, (M) or their sums) have natural systems of generators. When we refer
about a generating system for such an ideal we mean such a set of gene-
rators.

Lemma 8. Let R be a ring and X a generic alternating s><s matrix
over R. Let H=(s,, ..., s,) be a description, 0=n=.s, and k>0 be an odd
number. Assume 0=i<j-m and (i, j)+(1,2), (1, 3),..., (L,n); if k=1, we
assume in addition s,<j. Then there does not exist any minor or pfaffian M
of the generating system of Afr.(X) such that M= +x{;+M’', where p=0,1
...,and M" is a polynomial not containing a pure power of x;; in its ex-
pansion.

Proof. Suppose the contrary and set x=x,.

The equality p=0 is impossible because M is a form of positive degree.
If p=1, M is a form of degree 1. Therefore k=1 and M is a 2<X2 pfaffian in
X (S0, 80). More precisely M=x,;. Therefore j=s,-—a contradiction to the
hypothesis.

If p=2, M is not a pfaffiafan because in any of the pfaffians the degree
of x is not greater than 1. If p=2, deg M=2, i.e. M is a 2X2 minor in X
(5S¢ 8y) (and £=1) and this minor contains the entries x,;, and —x,;. Just one
such 22 minor exists; it is formed by the intersection of /th and /'th rows

— 0
and the corresponding columns. Hence M-det(_x ';) But the matrix of



IDEALS GENERATED BY PFAFFIANS OF AN ALTERNATING MATRIX, 1 37

M is not contained in .X(So, 5,). Therefore this case is impossible as well. If
p>2, Mis a pXp minor and M= +x”+ ... is impossible because x is con-
tained as variable just 2 times in the expansions of the entries of X. Thus the
lemma is proved.

Corollary. Under hypotheses of Lemma 8 x;¢rad A}, (X).

Proof. Set A=A}  (X), B=rad A and x=x, By the assumption that

x is an element of B, it follows that x?=X,f, M;+g, where f,¢R[X], M,
are minors or pfaffians from the generating system of A,

(X195 « ooy Xyp) for £>1,

ga =
{(xm, ey X)) H(x 1 =r<t=s,) for k=1.

Therefore there exists such an z, that f, M,=cx?+ ... (c€R, c==0). Since cx®
is a sum of products of two factors, one of which is a summand in the cano-
nical expansion of M, as a determinant or a pfaffian, such a factor may be
only of the type +x? where p=0,1,...,a. We get M,=+x7+ ... —a con-
tradiction by Lemma 8.

In 1 we noted that the transformations £, conserve the ideals Pf,,. But
only some of these £, conserve the ideals Az n.

Lemma 9. Let R be a ring, M be an alternating s X s matrix with en-
tries in R, H=(s,, Sy,..., Sy,) be a description and 0=n=s. Suppose j and
J' satisfy at least one of the following conditions:

1) 1=j<j'=s;

2) s, <j <j=s, jor some t=1 and n<j;

3) s, <Jj'<j=s, for some t=1 and j=n,

4) 1=j'<j=s, and n<j';

5) 1=j<j<s, and j=n.

Then A%, (E, (M)=A%, (M) where E;=E, ([, ji--os-.2)

The proof consists of some elementery verifications of invariance with
respect to £, of the ideals /,(...), Pfs, (...) and (x5, ..., X;,) the sum of
which equals A%, .

Difinition. The operation described in Lemma 9 will be called an
admissible elementary operation (or A%,  — admissible) if it satisfies the
conditions of the lemma for some description of A} .

Proposition 10. Let K be a Noetherian domain and let X be a generic
alternating s> s matrix over K. Let H=(s,, 5,, - .., Sp) be a standard description
such that n=s, or n=s,+1=2r+2. Then Bun=rad Aun(X) is prime.

Proof. We proceed by induction on s and by secondary induction on
s—n. Denote A=Ay, (X) and B=rad A.

Let us consider the case s,=s, i. e. m=0. Then H=(s,)=(s). Hence Asu,n
(X)=Pfy (X)=(X19, X130« - » Xyp Xo3y 1+ s Xap « - - » Xp—1,)- [ herefore Ais a prime
ideal and, hence, B=A is prime. Consequently in the rest of the proof we
can assume that s,<s.

Beginning of the induction:

x

If s=1, X=0 then A=0 and hence B=0. If s=2. Then X=(__g 0)2"1(1

H can be only equal to (1, 2). Therefore Ao =Ana=0. It follows that Buo
=By1=0 and Ay2=(x) is a prime ideal,
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Induction hypothesis: s=3 and for each s’<s the proposition is true. We
shall prove the proposition for s.

Beginning of secondary induction: Assume n=s. Then by Lemma 5 Bp.nx
(X) is prime if and only if Baro(X’) is prime. But X" is an (s—1)X(s—1)
matrix and by induction hypothesis B-o (X’) is prime.

Hypothesis of secondary induction: n<s and for each n’>n where n’=ss
or n' =syp+1=2h"+2 the proposition is true.

Now we shall prove the proposition for the given s>2 and n<s. Assume
xiy, ¢ A and one of the following conditions is satisfied:

1.1) iy=1, joe{n+1, n+2,,.. 541}
(1) 1.2) s,>1, i,=2, j,=S+1

1.3) s,=1, n>1, i,=2, j,=3
Note these i, jo,({,<Jj,) have the following property: for each i such that
1<i<s, i+i, either £, (i,iy;...,...) i Au~admissible or x; ¢ A; for each
j such that l<ij=<s, j=j, either E,(j, jo5+--,...) is Amunpadmissible
or x;;€A (for x5 the property holds because Amn=Ay,, where H' =(sy, s,

., S,). The entry x will be called strategic for Ap, if it satisfies one of

conditions (1).

Let ¢ be generated by all the variables which are elements of the generat-
ing system of A and lie on the same row or on the same column as x. More
precisely

(Xy_) ..... x,,,) for [l)= 1,
(X12, Xog» Xogs « + - » X25,, X15,41) for x satisfying 1.2) and n>s,,
€ =1 (X9 Xa3 Xgp - - ., X25,) for x satisfying 1.2) and n=s,,

(x,0) for x satisfying 1.3) and n=2,
(x19, x13) for x satisfying 1.3) and n>2.

Obviously ¢ is a prime ideal. Let X be the image of X in K'[X]/¢ under the
canonical homomorphism.Then K [X]/e=K [X], Ann(X)/€=Ann(X) and the en-
tries x;;=x,;+¢ which don’t equal 0 are independent variables over K. Denote
K=K |x;: {i, j} N {i, jo} =@}, i. e. the described polynomial ring localized at
the system {x"}7 . Marking by tilde images under localization, it is true that K (X1,
=K [x;:{i, J}0 {io jo}=@)] and (Au,n (X))~ = Am.n(X).Since x is an invertible
strategic entry all entries on its row and column, which are not equal to 0, can
be anihilated by Ay, -admissible elementary operations. In the matrix so ob-

taind the other entries are of the type x,;— (i,»,":v,»u,-—ij,,-‘ifo),’){ and the dif-
ferent from O among these entries form a set of independent variables over K
and generate K [X].- over K. Denote this matrix by Y. Hence the equality A,
(X)=As.,(Y) holds in K[X]

Let ¥ be obtained by deleting the i 'th and j;th rows and the corres-
ponding columns of Y. Hence the entries of ¥ which are not equal to O (i.e.
the nondiagonal entries) are independant variables over K and they generate
K [X]. It is clear that Au.n (X)= A (Y) where H’=(s'o. St v o s Sm—1) and

s;— 1, t<h

Sepi— 2t

for ip=1, s;:{ and n'=0
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0 for 2#=0,1

for i, =2, st=58,4,—2 and n'=
n—2 for A>1.

Note that we

can use the induction hypothesis for Ag- . (Y) because Y is a generic
alternating (s—2)X(s—2) matrix and moreover either n’ =0 or A’ is a standard
description and n’ satisfies the hypothesis of the proposition. Since Y is a ge-
neric alternating (s—2)X(s—2) matrix over the domain K, by the induction
hypothesis on s, Bu,n' (Y)=Buna(X)- is prime. In view of the fact that by

Lemma 8 x¢ Bu,. (X), x¢ By, (X) and hence the hypothesis of Lemma 7, 2)
hold for @= Bpu,, (X). By this lemma there exists a unique prime ideal P,/C—K
[X] from the Noether-Lasker decomposition of Ba,, (X)= NP,/C, for x ¢ P,
set u=u(x).

Now we shall show that for each index i/ there exists a strategic entry
x for which i=u(x). Denote
~{ Bup for n=s,=1

n Br,s ., for the other cases.

By the secondary induction hypothesis g is prime. Denote
X3 for n=s,=1
Xo={ x93 for so=1, n>1,
Xo,5,4+1 for s,>1.

Therefore x, is a strategic entry and by the corollary to Lemma 8 x,¢ g. Con-
sequently B= N P;=q cb=rad (A+({x:x is strategic entry of A})). By Lemma
[ +

7,1) b ¢ P, Therefore a P, containing all the strategic entries doesn’t exist.

The proof of the theorem will be finished by the following:

Lemma 11. u(x) does not depend on x.

The proof of the lemma is given in the last paragraph of this part.

4. Proof that the ideals A, (X) are radical. In this paragraph K will
be a Noetherian domain and X will be a generic alternating sXs matrix
over K.

Proposition 12. Let H=(s,, ..., S,) be a standard description, s,<n
<Spitr H =(Sor v v oy Spers My Spits e Sm)y N =540y Then Bun=Bu' . Bt n-

Proof. By the inclusions Ay .= An-, and Apn=Apn, it is clear that Bu.
— B and Bipn— Bu.n» hence By, Brn N Buna . The opposite inclusion will
follow from the relation Apr.. N\ Ag.n B, for which it is sufficient to show
that AH'_,,. AH_,,' ’:All_n- But

At = A+ Plopea (X (1 M)+ T Lip (X (Sun)+ T Ligpa (X (1, )
0<i<h hlism

and Apn = Apn+ (X1 - -+ » Xnr) Where x,= x;,. Hence it suffices to show that
1) for n+1<k=n'=s,,,, if P is any (22 + 2) < (2k+2) pfaffian of X (n, n),
Xp P€Amn;
*U0) for nal<k=n', if M is any (i+h+1)X(@+h+1) minor of X (s, n),
(0<<i<h), x, M€ Apn:
3) for n+1=k=n', if M is any (i+h+1)X(i+h+1)minor of X(n,s),
(h<i=m), x, M¢ Anne
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These three cases can be proved in similar ways. For example let us
prove the third case. If the first column of M coincides with the first column
of X this is obvious, for then M€ (xy, ..., x,)=Ann, Otherwise, let M’ be the
(i+h+2)<(i+#+—2) minor constructed by adding to M the £’th row and the
first column. M’ ¢ Ay, (here for i=h+1 we use Lemma 3). The expansion by
minors of M’ with respect to the first column is a sum containing + x,M, and
all the other terms are in (x,, ..., x,). Hence, x,M¢Ax . as required.

Proposition 13. Ay, (X) is radical (s,=n-=ys).

Proof. Consider the rings {K[V]:Y is an alternating submatrix of X7}
and order the ¥’s by inclusion. For a fixed Y, order the ideals A, (Y) (where
H is a standard description) by inclusion of the specified generating sets. By
[6, Proposition 24|, it suffices to show that for each Y, H,n one of the fol-
lowing conditions holds:

1) Aun(Y) is radical.

2) There are Y’, H’, and n’ such that Y'<VY, H’ is a standard description
of Y and if Ay, (Y') is radical, then Ay, (Y) is radical.

3) B, (Y) is a prime ideal and there exists a form of positive degree
X€K[Y] such that: a) x¢ By, (Y) and b) Au.(Y)+(x)=Az ; (Y) for some
H and n. R A ~ )
"7 4) There exist x¢K [V], standard descriptions /Hand /, integers n and n
such that: a) A, (Y)+(x)=Ag;(Y) and D)Ag,.(Y)=Ana(Y): (x) and Bua(Y):
(x)=Ba (Y).

By Lemma 5 we can use 1), 2) to reduce to the cases where n<s. Let
X=Xx1, p1- If n=5,, 3) holds by Proposition 10 and the corollary to Lemma 8.
If s,<n<s,., we have By,=Bu () Bu, by Proposition 12 and by the
proof of Proposition 12 (x). Asrn < Apn. Since x € Bun N\ Bu'n, Brin: (X)Z Bron
(because By, is prime by Proposition 10).

Proposition 14. Let H—=(s, ..., s,) bea standard description. Then:

1) If n=s, or n=s,+1=2h+2, Ay is prime.

2) If s,<n<s,\, A=A n N Auw (H' and n' are defined in Propo-
sition 12) is the decomposition of the radical ideal as an intersection of

rimes.
r The proof follows from Propositions 10, 12 and 13.

5. Proofs of some technical results. Proof of Lemma 11. (All the no-
tations from the proof of Proposition 10 will be used below.)

1. First we shall prove for strategic x and y that, if they both lie on
one row or column, or if 2>0, for no minor or pfaffian M in the generat-
ing set of Au,(X) can the equality M= +x?y7+ .. .hold(p,qg=0,1,...)(The
arguments here are very similar to those in the proof of Lemma 8). Suppose
the contrary. We encounter x as a variable only on 2 places in entries of X
and these places are symmetric with respect to the diagonal. Therefore the
power of x in the expansion of the pfaffians is not greater than 1, and in
that of the minors - -not greater than 2. The same holds for y. Hence, the
possible cases are p, ¢g=0,1,2. By Lemma 8, the case p=0 does not occur,
and by analogy ¢ =0 is not possible either. Having in mind the symmetry bet-
ween x and v (and hence between p and ¢) in this proof, the cases to con-
sider are (p,q)=(1,1),(1,2), (2, 2).

Further it will be useful to know the entries of X in which occur the
variables x and y and to know exactly the place in the expansion of M where
-x?y? comes out. For this purpose we shall denote by x,y the varibles in



IDEALS GENERATED BY PFAFFIANS OF AN ALTERNATING MATRIX, 1 41

K[X] but by x,;— the entries of X (i. e. x;; may be with i=/). Thus, every
variable appears with iudias regularly ordered (x;:i<j) or irregularly (—x;:i
> j). Hence, the given monomial can appear in the expansion in the pfaffians
and minors in 0,1 or more ways according to the appearence of different
variables, taking part in it, with regularly or irregularly ordered indices. Let
x=x;,; and y=Xi.

1. Suppose x and v lie on the same row or column, i. e. that either
iy =iy OF jy=Ja.

a) Let p=1 or p=2; ¢=2; then xy? equals either — x;;, X;. Xj.i. OF Xj;,
Xiyjs Xz and x? Y2 = Xi, Xju, Xioj, X, These are all possible ways x? y? can
appear in the expansion of M and always there are two entries lying on the
same row or column. But this is impossible in the expansion of a determinant
or a pfaffian.

b) Let p=¢g=1; then xyv=x,,,, Xi;, Of XV =X, X;.i. are impossible for the
same reason as in case a).

Consequently one has either: xy= —xi,, Xji. OF XY= —Xj,i, Xizjy In this
case M has degree 2. Hence, M is a 2X2 minor or 44 pfaffian. Two of
the indices i,, #y, j;, jo are identical. Therefor M cannot be a pfaffian. Then M
is a 22 minor of X(s, s;). Hence, either j,=<s, or j,=s, which contradicts
the definition of strategic entry.

2. Suppose #>0 and x, y do not lie on the same row or column.

a) If p=1,¢=2,M is not a pfaffian. Hence, M is a 3X3 minor of X (s,
sg), But the expression is xy?= —x. Xi,. x;i,. Therefore j=s, which contra-
dicts the definition of strategic entry.

b) If p=g=2, M is not a pfaffian. Therefore it is a 4X4 minor of X
(So» S3) OF X (84, 8). If M is a minor of X (s, 53), the equality —x? y?=x? x.,
Xj.i, implies that j,=s,: contradiction.

If M is a minor of X (s,,S,), because of x? y®=x,; X;i, Xij, Xji» it fol-
lows that iy, j,, iy, jo=s,. Since 2>0, this is possible only under conditions
1.2) and 1.3). But they are incompatible. Therefore x and y both satisfy the
same condition i. e. x=y, which contradicts Lemma 8.

¢) Let p=¢—=1; then M is a 4>4 pfaffian or 22 minor, If M isa pfaf-
fian, it is in X (s, ). Hence xi, X X, Xz, are entries of X (s, ). There-
fore iy, iy, ji, jo=8, -- contradiction (as in the case b)). If M is a minor, it is
in X (so s,). Therefore i, iy, /i, fo==s, — contradiction.

II. Let both x and y be strategic entries. Suppose u(x)+=u(y). Therefore
VE€Pyx and x¢€P; for each i-+u(x). Consequently xy ¢ P; for each i, and xy¢B.
Hence, x* y*=Xf; M;+ g where f,¢ K [X], with M, minors or pfaffians in the gene-

’
rating system of A and g€(xys ..., X;,). It follows that one of the M; should
be of the form +x? y?+ .... By part | above this cannot happen if either x
and y both lie on the same row or column, or if #>0. Therefore in case
n-=s,=1 the lemma is proved.

Let u,=u(xy;,) where jo€{n+1,...,5,:,} In the case £#=0 it follows, by
all proved, that for s,=1; n=1,2 we have u (xg3)=u (xy3)=u, and for s5>1
and n=s, we have u(x2.5,41)=u(X1541)=Uo

Therefore u (x)=u, for each strategic x, as required.

Lemma 15. Let F be an invertible p>Xp matrix, Y be a pXq matrix,
d be an \<p matrix. Let G=FY and c=dY. Then c is a linear combina-
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tion of the wector-rows of G. If d is a linear combination of the vector-rows
of F, ¢ is the same combination for G.
Proof. If A=(a,) is an mxn matrix and in K™ and in K" are fixed the

bases {e;,...,e,} and {f,,...,f,}, let us denote by K™= K* the map e

— X a; f;. Then we see all statements from the following commutative
=1

diagram:
F
= ) 4
kP — i X
\ lY /
G ¢
Kq/

Lemma 16. Let a,=(a;y, Qjay---,Qp), (i=1,2,..., ki k=p), b=(b,, by
.y by), c=(cy,ch ... C,) be wvectors in KP and let 1, ...l Sy, Spt,
k

t,,....t, be elements of K,b=Xr;a,c=X s;a, and also c;= X t; a; + tb
{ i i=1

for k different values of j betw‘een L,2,...,p.
If the kxk matrix (a;;) is invertible, then c=X ¢ a;+tb.

The proof is straightforward linear algebra.
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