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ON A PROBLEM OF SCHUR ON THE IRREDUCIBILITY
OF INTEGER POLYNOMIALS

DIMITAR T. PIRGOV, RUMEN I. RAICINOV

In this paper we prove the irreducibility over the field of the rational numbers Q of
the type gm(x)+p, where g(x)=(x—x)(x¥—Xs), ..., (Xx=Xp),n=1, X1, Xy, . .., x, are differ-
ent integers, p is a prime number, n>>26(p—1)+4 and m=2 may be any even number where
o(p—1) is defined in [2]. This result is an extension of a problem on irreducibility of integer
polynomials belonging to Schur.

In 1908 Schur has put the problem about the irreducibility over Q of
polynomials of the type ¢(x)+1 and ¢"(x)+1 m=2, 4, where g(x)=(x—x,)
...(x—x,) and x,, Xy, ..., x, are different integers cf. [l :p 151, problem
121, 122, 123, 124]. This problem and some extensions were dealt with by
Flugel cf. [l :p 151, problem 121, 122, 123] and Brauer cf[l: p. 152,
problem 124]. In [2] and [3] Pirgov studies polynomials of the type
O(x)=¢%(x)+p and ®(x)=Q(x)g(x)+p, deg Q=n. The problem of the irreduci-
bility of the polynomials ®,(x) when p=1 has been investigated by Seres [4].

In this paper we prove the irreducibility of polynomials of the type
¢"(x)+p where m>=2 is an even number, p is prime and n>20(p—1)+4.
Here o(p—1) is the introduced in [2] function representing the maximal num-
ber of different, not equal to +1, integer divisors in the factorisation of the
number p—1.

By Z[x] we denote the set of polynomials over the ring Z of the in
tegers. By Z,[x] we denote the set of the polynomials over the field Z, of the
integers comparable by mod (p). If f(x)=ax"+axx" '+ ... +as1x+a,¢ Z[x],
then by f we shall denote the reduced polynomial f(x)=ayx"+a,x" '+ ... +
an-1X+a,€Z,|x], where a;={k¢Z|k=a mod p)}¢Z,

Theorem. If n=1, x,, Xy, ..., X, are different integers, p is prime,
m=2 is an even number and n>20(p—1)+4 then the polynomial f(x)
=q™(x)+p¢€Z|x| is irreducible over the field Q.

Proof From the contrary. Then from Gauss lemma it follows that f
will be reducible also over the ring Z and hence we have

(1) fx)=gx)h(x), g heZ[x]
and ng=deg(g)=1, m,=deg(k)=1. Obviously f(x)>0, yx¢R so we may
assume that g(x)>0 and A(x)>0, yx¢R. From (l) it follows that

f=gh and because f(x)=(x—x;)"...(x—x,)" then from the uniqueness (to
multiples of one) of the factorisation of any polynomial over the field Z, for

g and h we have
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(2) gx)=alx—x)" ... (x—x)" h(x)=blx—x))"...(x—x,)",
where a b=1, 0=a,, B;=m, a, B,€Z, a,+P,=m, i=1,2,... , n. From (1) it

follows that g(x)=1x"¢+ ... and A(x)=1.x"n+ ..., hence glx)=1.x"¢s+...,
h(x)=1.x"n+ ... (and thus a=b=1). Since n;-=deg(g) = ng =1 and ny

=deg (#)=n,>1 we conclude that there exist indices i, Jo€{l, 2,.... n}such
that a; >0 and B;, >0. From the well known proposition if f(x)=a,x"+ ...
+a, ¢ Z[x] and f=0¢Z,[x] then pja, a,, ..., a, and from (2) we have the

following equalities for g and 4
g)=alx—x\)" ... (x—x,)"n+pg(x),
3) R =b(x— X)) . .. (x—x,)%+ phy(x),
where g,, £, €Z[x]. Now in (1) we substitute directly x=x, and x=x, and
taking into account (3) we obtain the equalities

(4) gx;)=h(xi)=1, g(xi,)=h(x;)=p.

Knowing that the sets A={j=1, 2,..., n|g(x,)=1} and B={i=1, 2,...,n
| A(x;)=1} are not empty (naturally (1) shows that AJB={l, 2,..., n} and
AnB=Q) we let ¢'(x)=1a(x—x;) and ¢q"'(x)=Is(x—x;). Evidently we
have n, =degq’ =1, n;-=degqg’’ =1 and since AyUB={l, 2,..., n} we have
ng +ng=n.

Hence max (ny, n47)==n/2. Also for the polynomials ¢ and # we obtain
the equalities
) ) —1=g'(x)G(x),  h(x)—1=g"(x)H(x),
where G, H¢Z[x|. In the first equality of (5) we substitute x=x; and in the
second x=x;, and because of (4) we find p—1=¢"(x; )0(xi,)=q"(x;,)H(x};).
Taking in account that the numbers x; are different, for o(p—1) we obtain
the estimate o p—1)=max (n,—2, n, —2)=n/2 —2which contradicts the
condition o p—1)<n/2—2 of the theorem. The theorem is proved.

At last we shall note, that the condition n>20(p —1)+4 is not a sub-
stantial limitation, because there exist sufficiently big prime numbers for which
o(p—1)=2. Really, the biggest prime number from Lemer’s table [5] for
which o p—1)=2 is the number 10006 163.

This result is a substantial extension of the problem of Scur because
when n and p are fixed the number m may be any even number, while the
results of Fliigel [I] and Brauer [l] are about polynomials of the same
type but with non-prime p: for m=2, p=1 and m=4, p=1 respectively.

The question of the irreducibility of f(x) when 2<degf -2c(p- 1)+4
remains unsolved at present.
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