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ALMOST HERMITIAN MANIFOLDS WITH VANISHING
GENERALIZED BOCHNER CURVATURE TENSOR

OGNIAN T. KASSABOV

We deal with fhe generalized Bochner curvature tensor and the Bochner curvature tensor
introduced respectively in [1] and [11]. In section 2 we prove, that if an almost Hermitian
manifold is a product of two almost Hermitian manifolds M, and M,, then M, (resp. M,) is of
pointwise constant holomorphic sectional curvature p (resp. —p). In section 3 we obtain a classi-
fication theorem for non Kahler nearly Kahler manifolds with vanishing Bochner curvature
tensor and a classification theorem for nearly Kahler manifolds with vanishing Bochner curva-
ture tensor and constant scalar curvature.

1. Preliminaries. Let M be a 2m-dimensional almost Hermitian mani-
fold with Riemannian metric g and almost complex structure / and let y be
the covariant differentiation on M. The curvature tensor R is defined by

RX. Y, Z, U)=g(vxvyZ-VVxZ=Vixn Z, U)
for X, Y, Z, U ¢ Z(M). From the curvature tensor R on may construct a tensor
R* [1] by
RAX, Y, 7, Uy= HR(X, ¥, Z, U)+R(X, Y, JZ, JU)
+RUX, JY, Z, U)+RUX, JY, JZ, JU)}
+'1‘t13" (RUX, JZ, Y, U)=-R(JY, JZ, X, U)+R(X, Z, JY, JU)-R(Y, Z, JX, JU)

+R(Y, JZ, IX, U)=R(X, JZ, JY, U)+R(JY, Z, X, JU)-R(JX, Z, Y, JU)}.
The tensor R* has the following properties:
) RMX, Y, Z U)y=-R¥Y, X, Z, U),
) RMX, Y, Z U)==RXX, Y, U, 2),
3) o RYX, Y, Z U)=0,
X2

where o denotes the cyclic sum and R* is the only tensor with these pro-
perties for which

RYX, Y, Z, U)=R"JX, JY, Z, U), R(X, JX, JX, X)=R (X, X, JX, X).

Let {E; i=1,..., 2m} be an orthonormal local frame field. The Ricci
tensor S and the scalar curvature t(R) of M are defined by
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2m 2m
S(X, Y)=ZIR(X, E, E, YY) (R)=X S(E, E)):
= i=1
Analogously one denotes
2m 2m
SUX, Y)=ZRYX, E, E, Y). ™(R)= I SXE, E)
i= i=1

and it is easy to see that S*(X, Y)=8*UX, JY)=S*Y, X).
The generalized Bochner curvature tensor B* for M is defined by [1]

B* =R — s 0+ W) (89 + o il (7 + ),
where
QX Y, Z U)=g(X, U)QY, Z)-g(X, Z)QY, U)
+&(Y, 2)QX, U)—g(Y, U) QX 2),

w(Q)(X, Y, Z, U)y=g(X, JU)QY, JZ)—g(X, JZ)Q (Y, JU)
—28(XJY) QZIU) + g (V. JZ)QX, JU) — &Y, JUYQX, JZ) —2g(Z, JU)Q(X.IY),
(X, Y, Z, U)=g(X, U)glY, Z)-g(X, 2)&Y, V),

(X, Y, Z, U)=g(X, JU)g(Y, JZ)— g X, JZ)g(Y, JU)-2a(X, JY)&(Z, JU),

or an arbitrary tensor Q of type (0, 2).

An almost Hermitian manifold M which satisfies (y,/)X =0 for all X ¢ Z(M)
is called a nearly Kdhler manifold. It is well known that for such a manifold
R(X, Y, Z U=R(JX, JY, JZ, JU) holds good for all X, YV, Z, U ¢ Z(M)[3).
In general a manifold which satisfies this identity is said to be an RK-—mani-
fold. For an RK—manifold S(X, YV)=8(UX, JY) holds. The Bochner curvature
tensor B for an RK-manifold of dimension 2m =6 is defined [12] by

B=R~ g5 (04 ¥) (S+38) — gk (30—¥) (S=5")

(R)+3T(R)
16(m +1) (m+2)

R)—t'(R .
(my + o) + -k%—,,,l—,;,:,—_)g) (3, —my),

where
2m 2m
S'(X, V)= }2‘ R(X, E, JE, JY), v (R)=Z% S'(E, E).
i= i=1
It is easy to check that for an RK-manifold 45*=S5+3§".

Now let M be a nearly Kihler manifold and X, Y, Z, U, V¢ X(M). We.
shall use the following formulas (see [3; 6; 12]):

(1.1) RX. Y, Z U)-R(X, Y, JZ, JU)= —-g((vx)) Y, (v2)U),
(1.2) 28(vx(vy)) Z, U)= , 3 RX, JY, U, 2),

(1.3)  2Av(S=3NY, 2)=(S=8)(vx)Y, J2)+(S=-S) Y, (vx))2).
(1.4) X(*(R)-v'(R)=0,

7 Cepamnxa, 1



98 O. T. KASSABOV

(1.5) 2 (S=S)(Es ES—58)(E, E})=0.
i,j=1

From the second Bianchi indentity
c (vxR)(Y, Z, U, V)=0
XY,z

it follows
2m
(1.6) ‘_:Z:l(v.e,- R) (X, Y, Z E)=(vxS)(Y, 2)=(vyS)(X, 2),
2m 1
(1.7) ‘El (ve; 8) (X, E) = 5 X(2(R)).

2. Product of almost Hermitian manifolds and the generalized Bochner
curvature tensor.

Theorem 2.1. Let an almost Hermitian manifold M be a product
My X M,, where M, and M, are almost Hermitian manifolds. Then M has
vanishing generalized Bochner curvature tensor if and only if M, (resp. M,)
is of pointwise constant holomorphic sectional curvature p (resp. —p).

Proof. If B¥*=0 we find

RYX, Y, Z, U) = —2(—”71;W{g(X, U)SHY,Z)—g(X, Z)S*Y.U)

+g(Y, 2)S*X, U)—gY, I)SHX, Z)+gX, JU)SY, JZ)
—g(X, JZ)SHY, JU)+g(Y, JZ)S*(X, JU)—g(Y, JU)S*X, JZ)
—2g(XJIY)S*Z, JU)—2g(Z, JU)S*X, JY)}

1 ey {8 D)g(Y, 2)—g(X, Z)e(Y.U)+ (X, JU)g(Y.IZ)

g(X, J2)g(Y, JU)—2g(X, JY)g(Z, JU))}.

We denote by R, the curvature tensor of M,. Analogously we have R}, S}
™(Ry). Note that R=R,, R*=R] and S*=S; on M,. Let X¢X¥(M,) and

(2.1

{E; i=1, ... 2k} be an orthonormal local frame field on M,. In (2.1) we
put U=X, Y=Z=E, and adding for i=1, .. ., 2k we obtain

. [ TR (R+DT(R)
(2.2) SiX, X)"{‘f(,il‘k)" ) 2(m+l)(m—k)}g(X' X)

From (2.1) it follows for a unit field X¢ X (M,)

¢ ___' Qo o f.(l\’)
(2.3) R(X, JX, JX, X)= g ST, X) M
Because of (2.2) and (2.3) M, is of pointwise constant holomorphic sectional
curvature p. Hence
. k+1 ,
(2.4) SHA X =0 ngx, X)

for X¢¥ (M,) and
(2.5) ™Ry) = k(k+ ).
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Analogously M, is of pointwise constant holomorphic sectional curvature p’ and
(2.6) ™(Ry)=(m—k}(m—k+1)u'.

Using (2.3)—(2.6) and t™(R)=1%(R,)+ t%(R,) we find p’'=

The converse is a simple calculation by using the fact that M is of point-
wise constant holomorphic sectional curvature p if and only if R*=21 - (m + ™),
see [1].

Corollary 2.2. Let an alinost Hermitian manifold M be a product of
more than two almost Hermitian manifolds. Then M has wvanishing genera-
lized Bochner curvature tensor if and only if it is of zero holomorphic section-
al curvature.

For the case of a Kihler manifold M in Theorem 2.1 and Corollary
2.2 see [10].

3. Nearly Kdhler manifolds with vanishing Bochner curvature tensor.

Lemma. Let M be a 2m-dimensional nearly Kdhler manifold, m>2. If
the Bochner curvature tensor of M wanishes, then the tensor S—S8' is
parallel.

Proof. Let {E£;; i=1, ... 2m} be a local orthonormal frame field. From
(1.1) we find

(S—S')X, V)= 22 & xNE, (7 DE),
which implies
(VXS SWY.V)=2 £ &(7(T3)En (V42)ED.
Hence, using (1.2) we obtain
(7 x(S—SWY. V)= TR, JY, (7 DE, E)

+R(X, (Vy)E; Ep Y)+R(X, JE, Y, (Vy))E)}

From B=0, (3.1) and (1.3) we derive 7(S—8")=0.

Theorem 3.1. Let M be a 2m-dimensional non Kdahler nearly Kdahler
manifold, m>2. If M has wvanishing Bochner curvature tensor, it is locally
isometric to one of:

a) the sixth sphere S%

b) CD!(—c¢)xS%c) where CDY(—c) (resp. S%c)) is the one-dimensional
complex hyperbolic space of constant sectional curvature —c (resp. the sixth
sphere of constant sectional curvature c).

Proof. According to the lemma the tensor S—S§’ is parallel Let M be
locally a product M (2) X oo X Mi(h), where S—8"=x,g on M), and A,==%;
for i+j. As it's easy to see M(1,) is a nearly Kidhler manifold for i=1, o k.
From B=0 it follows B*-0.So Theorem 2.I, Corollary 2.2 and [9] |mply that
if £>1 M is either of zero holomorphic sectional curvature, or locally a pro-
duct of two nearly Kihler manifolds of constant holomorphic sectional curva-
ture —p and p, respectively, p>0. Since M is non Kihler, the former is impos-
sible and the latter occurs only when M is locally isometric to CD"™—% —¢)

(3.1)
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X S%c) [5]. On the other hand CD”—3(—¢)x<S%¢) has nonvanishing Bochner
curvature tensor, if m>4. Indeed it doesn’t satisfy the condition R(x,y, 2z, 2)=0
for all x, y, z, u spanning a 4-dimensional antiholomorphic plane.

Let £=1. Then

(3.2) 5—8"= 5 lHR~T(R)e.

Now (3.2) and (1.5) imply

(((R)—T(R)N(R)—57"(R))=0.
If (R p)—7'(RXp)=0 for some pe¢M then t©(R)—1'(R)=0 because of (1.4).
Then from (3.2) and B=0 we obtain

. 1 (R)
R= W(‘P+W)(s)“ W(nl + my).

Hence R(X, Y, Z, U)=R(X, Y, JZ, JU) holds for all X, ¥, Z, U¢% (M) and
so M is a Kahler manifold [4], which is a contradiction. Consequently

(3.3) T(R)—5t"(R)=0.
Now (1.4) implies that ¢(R) and t’(R) are global constants. From B=0, (3.2)
and (3.3) we find

; - — (4m+3)t(R) %R)
(34 R=—557 @+ YXS) =~ omimt im+2) ™+ 2) + S =131 — Ta)-

Using (1.6), (1.7), (3.4) and X{(1(R))=0 we obtain
(3.3) Cm+3N(T7xSNY, V)= (7pSXX, Y)}=3(VwSNX. TY)=3S(7 xJ)Y, JY)

In particular (77 xS)(X, X)=0 and hence
(3.6) (VxSY, Y)+2(7SYX, Y)=0.

From (3.5) and (3.6) we derive (77 4S)Y, ¥)=0 which implies 7S=0. Since
M is not locally isometric to CD'(—¢)xS%rc), it follows that S=t(R)/g(2m).
Now (3.4) takes the form

R= W—_th(R)"l + “20m(m2—1) U(R)m,.

Consequently M is of constant holomorphic sectional curvature. Since M is
not Kihler, it is locally isometric to S% [5].

From [8] and Theorem 3.1 we obtain

Theorem 3.2 Let M be a 2m-dimensional nearly Kahler manifold:
m>2, with vanishing Bochner curvature tensor and constant scalar curvature.
Then M is locally isometric to one of the following:

a) the complex Euclidian space CE™,

b) the complex hyperbolic space CD™

C) the complex projective space CP™,

d) the sixth sphere S°

e) the product CD'(—c)xS%c);

f) the product CO™( —c) <X CP™(¢), m,+ my=m.
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We note that Theorems 3.1 and 3.2 can be proved also by using Theorem

2.1, Corollary 2.2 and [6, Theorem 4.11].

Since for an almost Hermitian manifold the condition of constant antiho-

lomorphic sectional curvature implies B=0, see [7], we obtain

Corollary 3.3 [2]. Let M be a 2m-dimensional nearly Kihler manifold,

m>2. If M is of pointwise constant antiholomorphic sectional curvature v,
it is locally isometric to one of the following:

Ao
O > »» O O

© ® N o

- M v

a) the complex Euclidian space CE™,

b) the complex hyperbolic space CD™(4v);
¢) the complex projective space CP™(4v);
d) the sixth sphere S%(v).
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