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A REMARK ON THE KRASNOSIELSKIP'S TRANSLATION OPERATOR
ALONG TRAJECTORIES OF ORDINARY DIFFERENTIAL EQUATIONS

G. DYLAWERSKI, L. GORNIEWICZ

The study of periodic solutions for differential equations are extensively developed by
several authors. For topological arguments see (3, 4, 5, 7, 8, 9, 10]. One of the most remark-
able topological methods used in the study of this problem belongs to Krasnosielskii
(comp. 3, 4, 5]). He considered the translation operator along trajectories of differential equa-
tions and reduced the problem of existence of periodic solutions to calculation of the topolo-
gical degree of this operator (for this method see also 7, 8]). Observe, that the above trans-
lation operator was defined as a single-valued map.

We are going to show that even in very simple case of ordinary differential equations
is more natural to consider it as a multi-valued map. So we will define the multi-valued
translation operator along trajectorics of ordinary differential equations. Moreover, by using
the topological degree theory for admissible multi-valued maps (comp. [2] or [6])" we are
able to find periodic solutions. Note, that this paper contained only the case of differential
equations of first order. Some other equations can be studied by using of this method but
we will present it in next papers.

1. Admissible multi-valued maps. For details concerning admissible
multi-valued maps see 2. In this section we will formulate only some defini-
tions and facts which we will use in next sections.

By homology we will understand the Cech homology functor with com-
pact carriers and rational coefficients. Let X" and ¥ be two metric spaces,
A continuous map p: Y-+ X is called a Vietoris map, if the following con-
ditions are satisfied :

(i) p is a proper map, i. e., for every compact Ac X the counter image
p~Y(A) is a compact sef,

(i) p is onto,

(iif) for every point x¢.X the set p~'(x) is acyclic.

In what follows the symbols @, v,y will be reserved for multi-valued maps;

the single-valued maps will be denoted by f, g, A, p.q... ..

A multi-valued map ¢: X — VY is called upper semi continuous (u. s. c), if
(i) ¢(x) is a compact set, for each x¢ X,

(ii) for each open V=V the set ¢~ (V)={x¢ X o(x)=V} is open.
An u. s, . map 9: X— VY is called acyclic provided for each x¢ X the set
o(x) is acyclic.

An u.s. c. map 9: X-+V is called admissible (comp. [2]) if there cxists
a metric space Z and two (single-valued) maps p: Z-X, ¢q: Z-Y such that
the following conditions are satisfied :
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(i) p is a Vietoris map,
(i) g(p~(x)=oe(x), for each x¢.X;
in this case the pair (p, ¢) we will call a selected pair for o.

Observe, that any acyclic map is admissible. Moreover arbitrary compo-
sition of admissible maps is admissible, so the class of admissible maps is
quite general.

Two admissible maps @, y: X—Y are called komotopic, if there exists an
admissible map y: XX|[0, 1]-Y such that x(x, 0)=e(x) and x(x, 1)=wy(x).

Some important properties of admissible maps are summarized in the fol-
lowing proposition:

Proposition 1.1 (1.LL1) If ¢: X—Y and vy: Y—Z are admissible
maps, then the composition yo@: X—Z of ¢ and vy is admissible, too.

(1.1.2) If @, v: X—R" are admissible maps, then the map y: X<[0,1]-R"
given by the formula: y(x,t)=t.o(x)+(1 —1).¢(x), is admissible, where R"
denote the n-adimensional euclidean space and

LX)+ (1=8). y(x)={ueR"; u=t.y+(1—1).z, y€o(x) and z¢y(x)}.
(1.1.3) If 9: X—Y and y: X,—Y, are two admissible maps, then the pro-
duct map oXvy: XX X,—YXY; is an admissible map.

For the proof of Proposition 1.1 see [1] or [2].

Let K7 denote the closed ball in R" with the center 0 and radius r, let

S7~! denote the boundary of K™ in R", n=>2.
We will consider admissible maps of the form ¢: K"—R" such that

o(S;HY=R"/{0}). We will use the following notation:
AK?, R)={¢: K!—R"; ¢ is admissible and o(S= = R"/{0})}.
It is well known that the Brouwer degree can be extended to A(K", R"). We
will formulate it in the following theorem:
Theorem 1.2. There exists a multi-valued map Deg: AK", R")— Q
such that:

(1.2.1) If feA(K;, R") is a single valued map, then Deg(f)={deg(f)}
where deg (f) denote the Brouwer degree of f,

(1.2.2) If Deg(9)+{0}, then there exists x¢ K7 such that 0€o(x),

(1.2.3) If ¢ and v are homotopic, then Deg(¢)NDeg(v)+=@ (here ho-
motopy y, has additionally the following property 2SF'x[0, 1)) is contain-
ed in R"™\{0}). where Q denotes the field of rationals.

For details concerning Theorem 1.2 see last chapter in [2]. We will use
the following complementation to the property (1.2.3).

Proposition 1.3. Let f,o ¢ AK}, R"), f is single-valued. Assume that
the map y given by the formula y(x,t)=t- f(x)+(1—%)- ¢(x) for every
x¢K7 and t¢|0, 1) satisfies the followingcondition x(SF X0, 1= R™N{0}.
Then Deg(o)={deg(f)}; i. e. Deg(9) is a singleton.

Proof. Let (p,¢) be a selected pair for ¢. We have the following dia-

gram:
ST L R0}

in which p is a Vietoris map. For the proof it is sufficient to show that
Qunaroply=fin
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But it immediately follows from the commutativity of the following
diagram:

Kyt £ .
Jo
i ) .
so=1x[0,1]: I S— VYY) R ({0}
J
4 ! /°P
s £ r

in which p(y,6)=(p(y).£), q(y.t)=t-f(p(¥)+(1 —t)g(y) foreveryy¢l and
te[0,1] and if(x)=(x, 0), {(x)=(x, 1), jo(¥)=(¥.0)., ji(y)=(y, 1), for each

x€S7 " and yeT.

2. The translation operator. In this section we will generalize the Kras-
nosielskii’s translation among trajectories of differential equations operator
(comp. [3, 4, 5]). We are going to define it as a multi-valued operator for
which the topological degree is defined i. e, as an admissible multi-valued
map (comp. section 1).

Let f: [a, b]<XR"— R"™ be a continuous map. In what follows we will
assume also that there are real numbers a=>0 and B=>0 such that:

(2.1) [| f(¢, x)|| =a+P || x]||, for each £¢[a, b] and x¢R".

Remark 2.2 It is well known that if f is continuous and satisfies (2.1),
then for arbitrary £,¢[a, b] and x,€¢ R" the Cauchy problem:

y'(&)=f(t, ¥(t)).
V(o) = x,,

has at least one solution on [a, b].
Now, we are interested to consider the following ordinary differential

equation:
(2.3) Y )=, y(-)).

Let us fix ¢, ¢,¢€[a, b) such that £, >¢,. For given £, and #, we can asso-
ciate with problem (2.3) the following two multi-valued maps: y,,: R"— C([a, b], R")
given by putting:

Vi(x)={yeC([a, b], R"); ¥(t;,)=x and y'(¢)= f(t, y(t)). for each ¢},
where C([a, b), R") denote the space of all continuous maps from [a, b] into
R" with the supremum norm;

Q00 R+ R
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given as follows:
01, t(X)={z € R"; there exists y ¢y, (x) such that z=y(¢,)}

Definition 24 (comp. [3]). The operator ®;, :: R"—R" defined by
the following formula: ®, ((X)=x—0¢, (x) is called the translation along
trajectories of equation (2.3) operator, where x— @, W(X)={ue¢R"; u=x-z2,
2€Qs, (X))}

Recall, the following well known fact ([6]).

Proposition 25. If f: [a,b]XR"— R" is a continuous map which
satisfies condition (2.1), then y.,: R"— C((a, b], R") is an acyclic map.

Because the map ¢, e, is the composition of y,, with the single-valued
continuous map ey, it is an admissible map (comp. (1.1)), where e, : C([a, b], R"—=R"
is given by putting e,(y)=y(f,). Therefore from (2.5) we obtain:

Proposition 26. If f: [a,b]XR"— R" is a continuous map and sa-
tisfies (2.1), then for arbitrary t, t, the translation operator ®;, « is an
admissible map.

Remark 2.7. Assume moreover that f: [a, b]XR"— R" is a w-periodic
map with respect to first variable i.e., for each x¢R" and #¢ [a, b], if ({1 + )€ [a.b),
then f(¢, x)=f(t+o, x). It is easy to see that 0¢®a+o, a(x) for some x¢R"
implies that there exists a w-periodic solution of (2.3). In fact, then we can
find yo€ v,(x) such that yya)=x and y(a+e)=x, so by simple calculation
we obtain that the map y,: [a,b] — R" defined as follows: y,(£+no)=y(?),
where f¢[a, a+ o] and (£+n-®)€[a, b), is a o-periodic solution of (2.3).

Therefore as a simple consequence of (1.2) we obtain

Theorem 28. If f: [a,b] XR"—R" is a continuous, w-periodic map
which satisfies (2.1), and for some closed ball K" the translation operator
D,. 0 o Satisfies the following conditions :

Q) Buso, o(S1)= RO},
(i) Deg (®a: 0, oK™+ {0}.

then the problem (2.3) has a w-periodic solution.

Remark 29. Assume only that f: [a, 8] <R"— R" is continuous and
satisfies (2.1). It for some #,>¢, there is x¢R" such that 0¢®;, ,(x), then we
obtain a solution of (2.3) which has the same values for ¢, and £, so we ob-
tain a solution of some boundary value problem connected to (2.3).

Observe that in this case theorem (2.8) remain true (without assumption
w-periodic).

3. Applications. Several applications of (2.8) and (2.9) are possible
(comp. [7]). We would like, follow [5], to present one of them. In this section
we will assume that f: [a, b] X R" — R" is a continuous w-periodic map which
satisfies (2.1).

Definition 3.1. A Cl-map V: R"— R is called a direct potential
for f iff there exists ry>0 such that the following conditions are satisfied .

() if ||x||=r, then grad V(x)=0,
and

(ii) (grad V(x), f(t, x))>0, for each t¢|a, b] and || x||=7,.
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Remark. It is easy to see that the topological degree of the map grad
V is well defined with respect to every ball K7, r=r, Moreover deg (grad V)
is the same for every r=r, It allows to define the index Ind V of direct
potential V' by putting:

Ind V=deg (grad V), where deg (grad V) is considered with respect to
ba” K;') f?zfc.

To formulate the main result of this section we will need some lemmas.

Lemma 3.2. Assume that the map f: [a, b]XR"— R" is continuous,
satisfies (2.1) and has a direct potential V. Then for every t,¢|a, b] there
is ry\>r, such that for every r>r, and for every t¢|a,t,) the following con-
dition is satisfied : @, o(S; )= R {0}.

The proof of Lemma 3.2 is strictly analogous to respective lemma in
(5, p- 70].

Lemma 3.3. Assume that the map f: [a, b]XR"— R" is continuous,
satisfies (2.1) and the following condition :

f(a, x)==0, for each x¢S}™', r>0.

Then there exists >0 such that % (Sr ' %[0, 1)) R™ {0}, where A(x, s)=
—sf(a, x)+(1 = $)®; q(x), for each x¢ S, te(a, a+3).

Proof. Assume contrary that for each >0 there is xeSﬁ'“',te(a,a-i—a)
and s¢[0, 1] such that O¢y,(x). By putting 6=1,1/2,..., we obtain the fol-
lowing sequences ¢, ¢(a,a+38), s,¢[0,1], x, ¢S " and y,: [a, ] — R" such
that: 0= —s, - fla, x,)+(1 —=s,)(—=y,(t,)+x,), for each n and y, is a solution
of the Cauchy problem with y,(@)=x,. So for every n we have:

Xu= Vi) =pafia, x,). where p,=+ -0,

It implies that:

(i) f (. v 0 fa, x,)dr=0.

We can assume, without loss of generality that lim x,=x, We choose 1,
such that:

In=(f(tw Yu(Ta)) f(@, X,)) = min (f(%, ya(O) fla, x,)).

Obviously limt,=a. Now, by simple calculation we obtain: limy,(t,)= X,
So as a consequence we have lim/,=|| f(a, x,)||*>0, but it is a contradiction
with (i). The proof is completed.

By using Lemma 3.2 we have ®aa, oS,/ )= R\ {0} for some r>r, and
o-periodic f which is continuous, satisfies (2.1) and has a direct potential V.
Because V is a direct potential then from condition (ii) in Definition 3.1 fol-
lows that f(a, x)40 for every xeS. Consequently, by (3.3) we have

Ind(V)=deg(—f(a, -))=Deg(®:a) for arbitrary ¢ which is near of a
(comp. (3.3)). Let x: S/7"'<[0,1] — R"0} be a multi valued map given by
putting :
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2(x, 5) = ¢st+(l—a)an-m. a(x)'

It is evident that for ¢ near of a the map y is an admissible homotopy bet-
ween @, and ;.. o So by (1.2) we have Deg(®;q)=Deg(Ps:0,4) and be-
cause Ind (V)=Deg (®;,) we obtain:

(3.4) Ind (V)=Deg (®s+ 0, a)-

Now, as a consequence of (3.4), (2.8) and (2.9) we can formulate the fol-
lowing result.

Theorem 3.5. Let f: [a, )] XR"— R" be a continuous, o-periodic with
respect to first variable map which satisfies (2.1). Assume that f has a di-
rect potential V such that Ind(V)=+0. Then equation (2.3) has a o-periodic
solution.

REFERENCES

1.J. Bryszewski, L. Gorniewicz. A Poincire type coincidence theorem for multi-
valued maps. Bull. Acad. Polon. Sci., 8, 1976, 593-598.

2. L. Gorniewicz Homological methods in fixed point theory of multi-valued maps.
Dissert. Math., 129, 1976, 1-71. :

3. M. A, Krasnosielskii. Translation along trajectories of differential equations. Pro-
vidence, 1968.

4. M. A, Krasnosielskii. The theory of periodic solutions of a non-autonomus diffe-
rential eguations. Russian Math. Surveys, 21, 1966, 53-T4.

5. M. A Kpacuoceabckuil, [I. 3a6peiiko. Feomerpuyeckne MeTOAbl B HEAHHEAUHOM
dynKkuHonanbHoM anaause. M., 1975. :

6. J. M. Lasry, R. Robert. Analyse non linéaire multivoque. Centre de Recherche de
Math., de la Décision, No 7611, Paris-Dauphine.

7. J. Mawhin. Recent results on periodic solutions of differential equations.— In: /nt. Conf.
Diff. Equat. New York, 1975.

8. J. Mawhin. Ly-estimates and periodic solutions of some non-linear difierential equa-
tions. Bollettino UMI, 10, 1974, 343-354.

9.J. Mawhin, C. Minoz. Application du degré topologique a I'estimation du nombre
des solutions périodiques d'équations différentielles. Ann. Math. Pura Appl., 96,
1973, 1-19.

10. H. O. Peitgen. On continua of periodic solutions for functional differential equations.
Rocky Mount. J. Math., 3, 1977, 603-617.

Institute of Mathematics Received 3. 4. 1981
University of Gdansk
Gdansk Poland

'Diepartment of Mathematics
igher Pedagogical School of Stupsk
76500 Stupsk Poland



