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NONPARAMETRIC ESTIMATION ASSOCIATED
WITH DISCRIMINANT ANALYSIS

M. KRZYSKO

Let us assume that in the population m;, the observed random vector X; has a p-dimen-
sional normal distribution with the parameters p;, Z, for i=1, 2. We have an observation x,
which we wish to classify to one of the two populations m or my. Of many approaches to the
problem of discrimination thus formulated, we shall here select a decision-theoretic approach.
The linear discriminant function obtained within this approach is a function of the parameters
p; and E(i=1,2). We are here concerned with the case in which the parameters p; and I are
not known and in which some estimators of the linear discriminant function are used. We shall
introduce two types of estimators, examine their properties and make some comparisons bet-
ween them.

1. The linear discriminant function. Let us assume that the probability
density function of a p-dimensional random vector X, observed in the popula-
tion =, is of the form

() S D =R TP exp (- (x-) T x-w)) i=1.2

The known a priori probability that the event of the observation to be classi-
fied comes from population =, will be denoted by ¢,(¢,>0, ¢,+¢,=1) and the
loss arising from a misclassification of an observation x into population =,
whilst it really belongs to population x, by S(jli) for i, j=1, 2. If §(jli) is the
so-called simple loss function of the form

0, if j=i,
S(jm:{l. it j+i,

then the Bayes risk  is expressed by
2
r=1-% g {f(xlp,-, I)dx
(=1 f

and the optimal (in the sense of minimizing the value of r) classification re-
gion R, that is the set of those x’s for which we can state that the observa-
tion under classification belongs to population =; has the form:

Ri={x:q,f(xIw, T) =, (Xl T), j=1.2, jFi}
or, equivalently,

Ri={x:v(x)=In(g/q) j=1,2, j&i},
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where
) 2, (%) =1In [ f(xlw, T)/f (XIw, D)) =5 (X =) T (x—p)
-5 (=RYET =), G =123 L

The function w;(x), given by (2) is called linear discriminant function
In order to use that function it is necessary to know the parameters y, and
Z, i=1,2. When these parameters are not known, the following two procedur-
es are actually used.

2. The frequency-related estimators of the density function. Let x, and
S denote the usual estimators of the parameters g, and I obtained from two
samples of size N, and N, respectively. If, in the density function of the form
(1), we replace the unknown parameters by their estimators, we obtain the
frequency related estimator of the density function f (x/p;, L) of the form

3) P(xIX,, $)=(2m)~22| S [~ exp[ — & D? (%)),

where D?(x)=(x—x,)'S7'(x—x,), i=1,2.
If we use the estimator (3), the linear discriminant function takes the form

@) ufx) =5 D} (x) =5 DI(X); &, j=1,2; j&i.

Another type of the density function estimator is the Bayes estimator.

3. Bayes estimator of the density function. When the quadratic loss
function is used, then the Bayes estimator of the density function f(x|p, X) is
the expected value of that function with respect to the a posteriori distribu-
tion of the parameters which occur in it.

We shall denote that estimator by h(xl)_(i. S), i=1,2. We have
5) h(X|X,, S)= [ [ f (XIus» D)t (w, ZIX,, S)d y, d £,

where £ (,, Z|x, S) is the density function of the a posteriori distribution of the
parameters (w, Z), i=1,2. Assume that the density function of the joint a
priori distribution of the parameters (w;, Z) is a Jeffreys function [5] of the form

g, T)a| T,
we obtain [4]:
(6) h(X | X, S)=c; [14+ N, (N;+ 1) (N, 4+ Ny — 2)1D] (x)|— Vet Ne—12,
where

=[NV (N + Ny = 20N+ 1)]-72 (M +N:—1)/2) = '
c;=n TV +N NN+ 1)] 1V, 4 No—2)2] (Vs + Ny —2)8 1172 i=1,2

The function A(x|x,, S) is the density function of the p-dimensional ¢ dis-
tribution [3].

If we use the estimator (6), then the discriminant function takes the follow-
ing form:
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(7) w,(x) =1n [A(x|x;, S)/A(X|x;, S)]

= NNy (1 NV + 1)UV + Ny = 2)7 D)

N+ N — ’ _ i NM(Vj+1)
SR g (L (N + 17N+ Ny = 2) 7 DH0L+ 5 I gy
i, j=1,2; j+i
4. A comparison of the two types of estimators. We shall now con-
sider the consistency and the mean bias of the estimators u;(x) and @, (x) of
the linear discriminant function v, (x). As x; and S are estimators from samples
aken from the normal population M, I),

lim x,=u, p lim} S=Z,
le.-voc =K pN.. NTJO.,

where p lim denotes the asymptotic convergence in probability. Hence,

p lim (x—x)ST(x—x)=(x—p) T (x—p)
Ny Ny—oo
and
p lim u;(x)=v,(X).

NNy

Consequently, u,;(x) is a consistent estimator of the linear discriminant
function v, (x). Similarly,

Ni
TR\ S—
p lim _,1 :“Y‘ﬂ(ivl_‘f_l_vx:zl_‘_(xl]_
Ny Ny—0o 1 —
Ny+Ny,—1

= (x - “L)'z—l(x - F:)

and
. N(N;+1)
lim

am n —"_-N,{N,- = 0.

Hence,
plin @, (x)=2,()

Therefore, w,,(X) is also a consistent estimator of the linear discriminant
function v, (x).

The fact that the two estimators (4) and (7) of the discriminant function
v,,(x) are asymptotically equivalent does not mean, however, that for finite
samples there are no substantial differences between them. A convenient way
of capturing the quantitative difference of the estimators (4) and (7) is to
examine the expression

(8) In [k(x)|x,, S)/p(x|x,, S)]
=4 D20 = I [ N N+ DTN+ Ny = 2) D (W)

2N,

r“Nr" N,—l)/?l E.)J S
(M + Ny —22(N+1)

. v I=1,2.
I v+ N - 2)2) =1,

4
+,2ln
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Fig. 1 shows a graph of the expression (8) as a function of the argument
D?(x) for p=4 and Ny=N,=N=38, 16, 32.

The value of the expression In(%/p) over the interval 0=D2<100 varies
approximately from 10—3 to 10%3, from 10—* to 10% and from 10—3 to 10! for

N-8

N-16

N-32

N=8, 16, 32 respectively. It can be seen that, especially for small samples, the
values of the two estimators differ considerably.

We shall now find the mean bias of the estimators u;(x) and w,;(x) of
the linear discriminant function v, (x). By mean bias we shall mean the follow-

ing expressions:
E {1y (%) = v (%) ]I x~N (w,, D)}

and

E{[w; (x)=v; (X)]| x~N (p, I)}.
We have

E[vy (x) | Xx~N (n, L)] = ; (= w)' T (W —w) =47,

where A, is the Mahalanobis distance between the populations x; and =,
Further

: =1 M+N—2 PMNAN-2) 11
Euy (x) | x~Mp, )] = 2 Ni+N3—p—3 .’/'*'Q(Nl.:.ﬁz__'.p':ﬁj (7\7; - ’/V‘) .
Therefore,
(9) E{[u;;(x) = vy (X)] | x~N (n;, )}

- P+l __A2_+_ P(NI+NI__2_)_(__I___I_)
2N+ Neg—p—=3) "4/ T 2(N\+N,—p=3) \N; ~ N »

We shall now calculate the expected value of the estimator w, (x). If
X~N(p, I), then
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V2 ‘Vi 2
Vi (Ni+1) (N +N,—2) D" (x)’VF"x"’z
(the central F distribution with v;=p and va=N,+N,
dom). Hence,

—p—1 degrees of free-
N;
En(l+y o1 vien,—2) D 01 X~N (e D} = E[In (1+ {8 Fo)l
This last

expected value will be calculated using the method of charac-
teristic functions. We have

¢ (t)=E{exp[it ln(H—

L Equ b= L Pl = TGt i
Hence

2it)/2]
T (vo/2) T[(vi+ Vs ’

—2i6)/2)

En(1+ L R, =2

‘l’[ i+w)]— \V[Q als
where [1, p. 258] w(x) :M.

dx
If x~N(p;, Z), then
V2 Nj 2
vi (NVj+1) (N +Ny—2) D (X)~F., Wy A

(non-cent*ral F distribution with v, =
dom and non-centrality parameter

E{ln[1+

Further on

p and vo=N;+Ny—p —1 degrees of free-
A =N{N;+1)7'A}). Hence

(N +1)(N1+N —2) D2(x)“ X\JIV([I“ z)} E[ln (1 +

Fvv).)]

1 1
© 220 m Plg it/ g (=200
(1) = Efexp [it In(1+ 1 Fyv,0)]} = }:_o_e a2m Plg 2

ml 1
Hence

1

Blg vit/ g vl
) (0) © M2} /Qym
Elin (143 Fypyo)] == L.

1
,,,zo m! {\Vlj(WJ.'V-l)—f-m]_W[EV’]}
Therefore
g _)»2 .
E["’l/(")lx‘*N(m.I)I—N‘+N‘ EU (m)" {v l;(zv.mv 1)+ m)
Ny4Ny—1 1
vl Wi Ny=p =D} - ‘i“—{wlz(Nth DI-v(g (Mi+N,

-p-Dl]}

Using of the recurrence relation vy (x+1)=wy(x)+x""' and the identity

oo

g ey

Prig.=h=, i
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we get:
w o2 (5 oym L 1
}w% {53 VM+Ne=Dwm]—v[5 (N+No—p—1]}
s 1 n : 1 . 1 ,
=mz=n;)—+—,—n— l'r(x'ﬁ(mﬂ)_}k)—i—\v [5 (M+N,— 1] —wy [5 (N +N,—p-1)).

Using that transformation we obtain
NiN;j+1) = Ny +Ny—
, ~ N =P g M+N,—1 2
E[u'i/ (x)Ix \(P' z)] 2 In Ni(Ni+l)+m=0 N1+Nz—l+2rri Pr (x2(m+1)§'1’)'
Thus, the value of the mean bias of the estimator w;(x) equals
(10) E{[w;; (x) — v, (X)]x~N(w,, )}
NNj+1) = N +N,—1 Nj

P it 7, _ Mit+Ne—=1 2 i ey oAe

= oMy mEID T 2, Mt Va1 +2m Pr(Kom = N1 Al)—3 Ay

Tabulated values of the mean biases of the estimators u;(x) and w; (x) for
various of A2, p and N,=N,=N are contained in Table 1. In this table the

Table 1
The Mean Bias of the Estimators u;j (x) and w;; (x) When Ny=N,=N

Estimator and n

| u u w
dimension p p=2 | p—=4 p=S3 p=2. 4, 8
. - |
N ‘
15 32 o4 | 1 32 64 15 32 64 16 32 64

Al !

1.1004 0.05 003 001 011 005 002 02! 003 001 —0.01 —0.02 —0.01

2.8325 016 007 003 0235 0.2 005 061 024 011 —0.13 —0.07 —0.04

6.5690 036 0.17 0.03 0.66 029 0.14 1.41 056 025 —045 —025 —0.13
10.5222 0.60 027 0.13 1.08 0.47 0.22 2.32 092 0.42 —0.93 —0.55 —0.29
21.6504 1.20 055 0.25 2,17 095 045 461 1814 083 —292 —1.74 —0.96
33.1931 2,12 0.97 047 3.82 157 079 813 324 147 —7.02 —4.46 —2.60

values of A? are chosen in such a way that ®( —A/2)=0.3, 0.2, 0.1, 0.05, 0.01
0.001, where ®(—A 2) is the probability of misclassification.

It can be seen from Table 1 that the mean bias of the estimator u;(x) is
positive and increases with p. The mean bias of the estimator w;(x) is negat-
ive and independent from p when N, =AN,=N. For small p and increasing
values of A%z;(x) is the better estimator. In other cases, especially if p, N
and A2 are all sirall, the mean bias of the estimater @w;;(X) is less than mean
bias of the estimator u,(x).
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