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PERFECTION OF IDEALS GENERATED BY THE PFAFFIANS
OF AN ALTERNATING MATRIX, 2

VASIL P. MARINOV

Let R be a noetherian commutative ring, X be an alternating sXs matrix whose above-
diagonal entries are algebraically independent over R, and let lg’fz, (X) denote the ideal in
R [X;j] generated by the pfaffians of all the alternating 2¢}2¢ submatrices of X. It is proved
that Pf,; (X) is perfect of depth (s—2t+1) (s—2¢+2)2, and that it is prime when R is a
domain.  The theorem is a consequence of a more general result, involving ideals generated
by both pfaffians and determinants of submatrices of X.

The second part of the paper contains the end of the proof of the main results.

6. Construction of a generic matrix for Ay, To compute depth Ay,
we shall construct an alternating matrix with special properties U depending
on H and n. The technical details of the construction take up the greater part
of the present paragraph (and of the paper). The construction of U will be
made by an induction on m (Induction 1) accompanied by parallel inductive
reasonings, proving the properties of this matrix (Induction 2 and Induction 3).

For this section K is a field, H=(s,...,s,) is a standard description
and n=s, or n=s,+1=2h+2, 0=n<s=s,.

Induction 1.

l. Beginning of the induction: for m=0 we set U=0.

2. Induction hypothesis: For each m’'<m, the m’'m' matrix U is con-
structed.

3. Construction of U.

Note. At the time of constructing U one may notice that U (s’,s) where
§' =S, is the matrix corresponding to the description H'=(Sp ..., Sp_y)
n'=min {n, s'}.

3.1. Classification of the columns: Let D={s,+1,8,+ 1,..., 8, +1}=C={2,
3,..., s} Inductively on r, we construct a function f(r) with integer values:

f(0)y=min C\ D,

f(r)y=min {k: f(r—1)<k and k¢C\ D} for 0<r<m- 1.

Note. If s=2m, we define f only for r=0,1,..., m—2. The jth column
(resp. row) is called a column (resp. row) with indeterminates, if either j¢ D
or j=f(r) for some r. The remaining columns and rows are called ordinary
columns or rows (j¢C).

3.2. Property A: The ordinary columns of U are linear combination of
the columns with indeterminates with coefficients in K (u,)) where u;; are the
indeterminates over K which are entries of U.

Property A will be proved by Induction 2. Here we shall use only the
hypothesis of Induction 2.
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3.3. Filling-in the columns with indeterminates: First of all place 0 on
the diagonal places. After this:

3.3.1. jeD. When j=s,+1 we fill-in the column by indeterminates u,;
when i$s,+ 1,5, +1,..., s,+1; in case n>s,, i+1 we put O as first entry.
The s,+1-—st row is filled-in skew-symmetrically.

3.3.2. j=f(r) for some r. The jth rows and columns for j¢D have already
been filled-in.

3.3.2.a) If s,>2r+1, then j=f(r)=s,. Fill-in the jth column new indeter-
minates u,; where i>s,+ 1, i¢ D. The remaining vacant places will be filled as
follows: Consider the entries {«;;:i=s,} as a vector-column of the matrix
U (s,.s,) and fill it as an ordinary column in U(s, s,). Hence, by the induc-
tion hypothesis for property A, these entries filling the column are not new
indeterminates. By skew-symmetry we fill-in the corresponding row.

3.3.2.6) If s,=2r+1, then j=s,+2=2r+3. In this case the first j places
of the column (except for the first one) are already filled-in. Let u;; for i>},
i¢ D be new indeterminates over K. In addition if n>s,+1, place O in the
first place; otherwise let #,; be a new indeterminate over K. After that fill-in
the jth row skew-symmetrically.

3.3.3. Thus the matrix U is constructed in the case s=2m and the follow-
ing arguments don’t concern this case.

Notes. 1. On each row (resp.column) filled-in up to now the indetermin-
ate entries (represented in Fig. 1 by points) lie on the right part of the row
(resp. on the lower part of the column).

2. Call primary entries of U those with indices (f(7), s,+1) (r=01,...
m—1) and the symmetric to them. They are represented in Fig. 1 by @’
For every row (column) with indeterminates exactly one primary entry lies’

| | |

- ®
(=]

Fig. 1
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on it. All the indeterminates on such a row (resp. column) lie to the
right (resp. downwards) of its primary entry. Every primary entry is an inde-
terminate over K. The number of the primary entries which lie in the sub-
matrix U (s,, s,) is even (0=t=m).

3.4. Definition of property B: Denote by u the set of all the indetermin-
ates over K which are entries of U. Specialize the above diagonal primary
entries to 1 (their symmetric ones to—1) and the other indeterminates to O.
We denote this specialization by u=u, Now we can formulate a property
which we shall name property B of the matrix U.

Property B: For every i and j let the entry f;; (1), g;(u) where fi; g;
¢ K [u] lie on the ith row and the jth column of U. Under the specialization
u=u, we have: g,(u,) =0 for each (i, j); fij(uo)=0 for each (i, j) except in
the cases when u;; is a primary entry.

This property will be proved by Induction 3. Now we shall use only the
hypothesis of the Induction 3.

3.5. Filling-in the ordinary columns: We shall fill-in the ordinary columns
in order of increasing of the index. We shall construct them as linear combi-
nations of the columns with indeterminates with coefficients in K («).

Up to this point property B follows for the entries of the columns with
indeterminates by the hypothesis of Induction 3.

3.5.1. Conditions for the linear combination: Now we shall fill-in the jth
column (an ordinary column) supposing all the columns to the left of it (ex-
cept the first one) already filled-in. Some entries on the jth column have
already been written and a part of them are indeterminates over K. These in-
determinates are represented in Fig. 2 by X, and the rest of the column bye.
By note 3.3.3.2. the number of these indeterminates equals the number of the
primary entries which lie to the left of the jth column and, hence, equals the
number of the columns with indeterminates which lie to the left of the jth
column. Therefore the intersection of these columns with the rows, on which lic
the x-entries from Fig. 2, gives a square matrix M; whose entries are repre-
sented by x.

For every column and row of M, there is just one primary entry which
lies on it. A part of the entries of M, including the primary ones, are inde-
terminates over K, and the other entries depend on them.

3.5.2. Uniqueness of the linear combination: We shall show that M, is an
invertible matrix. Put #--u, Thus, because for the entries on the columns
with indeterminates we have property B, the primary entries of M; become
equal to 1 or —1 and the otherones —to 0. We get a matrix in which cvery
column and every row has only one entry not equal to 0. Hence, it is an in-
vertible matrix. Consequently M, is invertible.

We want the jth column to be a linear combination of all the columns
with indeterminates which lie to the left of it. For the coefficients &, &y,
..., k, of this combination we have a system of linear equations: one for
each filled-in place on the jth column. The entries represented by x in Fig. 2
give so many equations as the desired coefficients, and the matrix of this sub-
system is M, Hence where is a unique solution which satisfies the subsytem.
The other equations of the system, except for the one given by the diagonal
entry, are parts of ordinary rows (more precisely: the coefficients of such an
equation and its free term are entries of an ordinary row —the j'th row,
where j'<). But each such row is a linear combination of the rows with in-
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XXX x000 x00x00 000
XXX X x00x00 000
o | 0 0 e 000
i 0 0@ 0
f 0 0 @ 0
xxx00 x000 x00x00 000
0 0 0o e 0
0 0 0 g 0
0 0 0 0
xxx00 x000 x00x00 000
00 0 0@ 0
00 0 0@ 0
00 0 0o @ 0
00 [ 0 0@ 0
00 i 0 0@ | 0
xxx00 x000 x00x00 000
000 0 0 ® 0
000 0 0@ 0
0 .I |
XXX xxx00 x000 x00 x00x00 00
XXX XXX x000 x00 x00x00 00
XXX XXX X x00 x00x00 00
|
XXX xxx00 x000 x00 i x00x00 00
XXX XXX x x | x00x00 00
0 0 0 0 | 0@ 0
0 0 0 0 1 0 ® 0
0 0 0 0 ‘ 0@ 0
XXX xxx00 x000 x00 x00x00 00
00 0 0 0 0o e 0
00 0 0 0 0 ® 0
00 0 0 0 0o e 0
XXX xxx00 x000 x00 x00x00 00
000 0 0 0 0o ® 0
000 0 0 0 a 0
XXX xxx00 x000 x00 x00x00 00
000 00 0 0 0o ® 0
000 00 0 0 0 e 0
000 00 0 0 0 e 0
000 00 0 0 0o ® 0
000 00 0 0 0o e 0
XXX xxx00 x000 x00 x00x00 00
000 000 0 0 0o e 0

Fig. 2
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determinates which lie above it. Therefore every such equation is a linear com-
bination of the previous equations and, hence, the obtained solution (&, ..., %,)
satisfies it. Thus the jth column is determined.

3.5.3. Existence of the linear combination (verification of the diagonal en-
try): Now we shall verify that the diagonal entry of the jth column is 0. Let
S, 1<j -s, and let us consider the first s, entries of the jth column. They
form the jth coiumn of U(s,, s,) and the diagonal entry of the jth column of
U is a diagonal of the jth column of U(s, s,).

If s,<s, together with construction of the jth column of /' we make the
construction of the jth column of U (s,, s;), Therefore, by the induction hypo-
thesis, the diagonal entry of the jth column of U (s,.s,) is zero, as required.

If s,=s, all the primary entries are to the left of the jth column. In ad-
dition, their number is even. The matrix M, is alternating. Consider again the
system of equalities by which we determined (&, 4, . .., k,). It is of the form
a ki +ap ket ... +a, Ry=5b,(1=i=p), where M,;=(a,,) is alternating. We
want to verify

whether the equality determined by the diagonal entry is satisfied, i. e.
whether — b, &, —by, ky— ... —b, k,=0. This follows from the computation:
bl k‘+b2 k2+ e J‘_bp kp-:(allki+a19k2+ oo +(11p kp) kl+((121 k1+(1._)2 k._)‘{” e e
T oy kp) Ryt oo (A RitAp kot oo Ay Ry) Ry Eicicip (@t )k ki 2P,
a,; k?* =0. After determination of the jth column fill-in the jth row skew-sym-
metrically.

3.6. Filling-in the first column: After determining all the columns except
the first one, the first row is determined. Note that the first » entries of the
first row are 0. Fill-in the first column skew-symmetrically to the first row

Induction 2 (for property A).

We make this induction on m. For m =0 the property is obvious, so let
m>0 and suppose that for each m’<m the property holds. The induction step
is made in 3.5. of Induction I

Induction 3 (for property B).

We make this induction on m. For m-—-0 U=0 and the property is ob-
vious, so let m>0 and suppose that for each m’<m the property holds. For
the entries of the columns and rows with indeterminates we have required pro-
perty. Therefore, all other entries which now interest us lie on an ordinary
column. Having in mind the method for determination the (&, ks, ..., kp) in
Induction 1, 3.5.2., the condition on the denominators follows immediately from
Kramer’s formulas. Also by Kramer’s formulas the condition on the numerators
follows, because with #=u, all free terms of the system of equations specia-
lize to 0.

7. Computation of depth Ag.,.. In the following two propositions K is a
field, H—=(s,, ..., s,) is a standard description, n=s, or n=s,+1=2h+2, U
is the matrix for Ap, constructed in 6. We use in the proofs of the proposi-
tions all consepts and symbols introduced in 6, and also introduce one more
concept: a row (column) with indeterminates in U (s, s,) is a row (column)
on which lie the primary entries contained in U (s,, s;).

Proposition 17. Let 0<<t—=t'<m and t+t +1-—s, Then the first row
of U(s, se) is a linear combination of the rows with indeterminates of
(/(S N S(').

tl’roo f. The proposition is obviously true if either s -2m or m=0. By
induction on m, we suppose that for each m’<m the proposition is true. If



IDEAIS GENERATED BY PFAFFIANS OF AN ALTERNATING MATRIX, 2 127

$; <8, i. e. t'<m, the question reduces to the U (s, s;) and we have the
proposition by the induction hypothesis. If s, =s, i. e. #’=m. the condition
t+t'+1=t+m+1=s, give us f(m—1)=s,. Indeed, if we express the function
f explicitely, we see that: f (r)=r+g+2 fors, ,=r<s,—¢—2;¢9=0,1,...(s_,=0).
Hence, we sce that f+m+1<s, implies m—1=s,—¢—2. Let u=min {v: m—1
~<s, v 2}, hence u=¢. Consequently f(m—1)=m—1+u+2=m+u+l<=m+t
+1=s,. Let ¢ be the smallest number such that £+m+1x<s,. Obviously, if we
prove the proposition for £, it will follow immediately for all integers up to m.

Let us turn to the last ¢=s—s,_;—1 columns. In the case f=m and
Spe1=2(m—1)+1 let g=s—s5,_,—2. These ¢ columns form a submatrix N of
U(s,, s). The columns of N lie to the right of all the columns with indeter-
minates of U/ and, by property A, are their linear combinations. These combi-
nations are determined by the submatrix F of U(s,, s) whose entries are de-
noted in Fig. 3 by x. F is formed by the rows and columns of the primary
entries in U (s,, $).

0 X t X i X

19000 00 ‘909

O X 9% ‘009
X X X900
® [ k]
100ee o%e 0880
L ] L ] L
o [ ] [ ]

|
Fig. 3

By property B of U we see that F is an invertible matrix. Let the ith
column of M(lei=gq) be a linear combination of the columns with indeter-
minates in U (s,, s) with coefficients (¥, ¥o5» - .., ¥p)7. Here p is the size of F.

Let Y =(y,). Therefore Y is a pXg matrix. Let G be the intersection of
M with the rows with indeterminates in U (s,, s). Hence G is a pXXg¢g matrix
and G- FY. Let ¢ be the first vector-row of N and d be the intersection of
the first row with columns with indeterminates in U (s,, s). Hence ¢ is an 1 Xgq
matrix, ¢ is an 1Xp matrix, and c=dY. The entries of 4 are represented in
Fig. 3 by x.

By Lemma 15 (cf. section 5), ¢ is a linear combination of the vector-
rows of G. Since F is an invertible p < p matrix, d is a uniquely defined linear
combination over K (u) of the vector-rows of F. Then by Lemma 15 ¢ is the
same linear combination of the vector-rows of G. Therefore the first row of U
(s, §) is a linear combination of the rows with indeterminates in U (s, s), at
least for these entries, which form ¢ and 4. If there are no other entries (ex-
cept these on ¢ and d) on the first row, the proposition is proved.

Now we shall consider the case when other entries do exist. More than
one primary entry can occur on the last s—s,_, columns of U (in particular
on the last s - s, , columns of U (s, s)) only if f=m and s,,_,=2(m —1)+1.
This is seen from the definition of primary entry, and from the fact that f(r)
>s, is satisfied only if s,=2r+1, O=r<m—1 (see 6, 3.3.2.a)). But in this
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0. ..

case the proposition is proved, because the entries on ¢ and d are the only
ones on the first row of U (see Fig. 4).

Therefore in the rest of the proof we suppose there is just one primary
entry on the last s—s,_, columns of U(s, s), namely the entry with indices
(f(m—1),s, ;+1). Consequently there are one less primary entries and one
less rows with indeterminates in U (s,, s,,,), namely all the rows with indeter-
minates except the f(m— 1)th row.

Let F’ be obtained by deleting the last column of F and &’ be obtained
by deleting the last entry of 4. Hence d’ is a linear combination of the vector-
rows of F with the same coefficients which express d as a combination of
the rows of F.It is seen by the construction of U(s,, _,, S,,_,) that the f(m—1)th
row (which is ordinary there) is a linear combination of the rows with in-
determinates which lie above it. Moreover the first row of U(s,_,, Su_) is,
by the induction hypothesis, a linear combination of the same rows. If we
choose these entries on the first row which correspond to the columns with
indeterminates in U(s,, s,,—,), we get the vector d’. Then by Lemma 16 the
first row of U(s,, s, ,) is such a linear combination of the rows with inde-
terminates and of the f(m—1)th rowas d’ is of the vector-rows of F’. There-
fore this linear combination gives the entire first row of U (s, s). Thus the
proposition is proved.

Note. In the above proof we have shown that with the same hypothesis
as in proposition 17, f(m—1)=s, if ' =m.

Definition. By a generic point for a prime ideal we mean a homo-
morphism from the given ring to a domain whose kernel is the ideal in
question.

Proposition 18. Let X be a generic alternating sx<s matrix, and
R~ K|[X]. Consider K |U|c K (u)(= K (u,), where u,, are all the indeterminates
entries of U). Then the K-homomorphism @ mapping K (X] onto K|U)|,
which takes each entry of X to the corresponding entry of U, is a generic
point for Ay, (X). Moreover coht Ay, (X)=2sm—m(m-+1)—S;—s8— ... —
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s,,,;l—h~2,, for n=s, and coht Aun (X)=coht Apn,1 (X)—1 for n=s,+1
=2h+2.

Proof. 1. We shall prove Au,(X)=ker ®. Hence it is sufficient to
verify by induction on m that Ay, (U)=0. 1If m=0, U=0, hence Au,n(U)=0. So
suppose m >0 and that for each m’<m the proposition holds. Let l<=j=k<=m.
If #<m—1 by the induction hypothesis /.., (U’ (s, $p))= Asirn (U')=0 where
U =U (S Spt)s H' =(Sus -+ 2 s Spe1)o W =i {71, Sy} But Ty (U (s, 54))
is the extention of /;, .., (U’ (s; s,)) with respect to the inclusion K[U']=K [U].
Hence /1 (U(s;, $))=0.

If &= m, there are two cases:

a) When j+m+1>8; [y (U(Ss5))=0.

b) When j+m+1=s; by Proposition 17 the first row, and by Property
A for U (section 6) all the ordinary rows of U(s;, ), are linear combinations of
the rows with indeterminates in U(s;, s). By the note after Proposition 17 f(m—1)
<5, Having in mind this and the definition of primary entry we see that there
are r primary entries more in U (S, s) than there are in U (s;, 5). We see also
that the number of all primary entries (i. e. for j=m) is 2m. Hence there are
j+m primary entries in U(sy s) and j+m rows with indeterminates. Conse-
quently, rank U(s, s)=j+m and L pi\ (USj, $p)) =1 i1 (U (S), 5))=0.

Now consider Pfajio (U (S5 5)). 1T j<m, Pfajia(U(s; 5))=0 in K[U(s;, s))
—K|[U] by the induction hypothesis. On the other hand, Pfy;o(U (s, s)) is its
extension in K [U], hence it is 0 as well. If j=m, Pfy,;, (U)=rad (/y14, (V)
-0 by Lemma 3. Therefore Aw,. (U)=0

2. Now we shall prove ker ®=Ap,(X), i. e. Au.=ker @.

Let D=K|[X]/Aun(X); D is a domain by Proposition 14. Let X be the
image of X in D and L be the fraction field of D. It will be shown that X' can
be “factored” in the same form as U over L.

First let us specialize the entries of X in the following way: set 1 for
the above-diagonal entries which correspond to the primary entries of U, and
0 for the others. We get a matrix X, for which Ax,.(X,)=0 and the columns
of X, corresponding to the columns with indeterminates of U are linearly in-
dependant. This follows by Property B of U (section 6) (X, corresponds to
the specialization u=u, of U). Because Amn(Xy)=0. X, is a homomorphic
image of X in some ring. Therefore the columns of X corresponding to the
columns with indeterminates of U are linearly independant over L. The corres-
ponding statement for the row of X follows in a similar way.

For each pair (i, j) such that 0<i<j<m by definition rank (X (s, S))
=i+ j. But as in 1, an easy count shows that the number of primary entries
of U(sy sy) is 2j. Hence their number in U(s,, s;)is i+j (in case i+j+1=s)

Consequently there are i+ j linearly independant rows in X(s, s,) (corres-
ponding to the rows with indeterminates in U(s;, s;)) and the other rows are
their linear combinations. Moreover, the combinations are uniquely defined,
which is seen by specializing to X,. Therefore the other rows can be con-
structed from the linearly independant rows in the same way as those corres-
ponding to them were constructed in U.

In case i+j+1>s, i+k+1=s, for some &k and we know that in X
(s, s,) there are i+k linearly independant rows and the first row, which is
their linear combination. The first row of X is alinear combination of linearly

9 Cn. Cepanka, kn. 2
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independent rows corresponding to the ones described in Proposition 17. There-

fore all the rows in X(s, s,) are defined and linearly independent.
Let u,; be all indeterminate over K entries of U. Let a: K(u,;)—~L be a

K-homomorphism defined as follows: u(zl;r):k[,:x,/+A11,n (X). Thus U is

K [v] C——ae K(U1)

K[x]

A ot

I\‘[.\’]/A,?'(,\')C—-———z———' L s

dur 5

taken onto X and the following diagram is commutative: Hence 7, (ker D)
=ai, @ (ker @)=0. Consequently B (ker ®)-0. Hence ker ®—=Ax,(X) and,
therefore, ker ® = A, (X), as required.

3. We have only to compute coht Amn-—dim K[U]. But K[uy,]=K[U]
=K (u,), and dim K[U]=trdegx K[U] which is just the number of indeter-
minates u,;. For n=s, it is equal to: [(s—1—1)+(s—2—1D+ ... +(s—Ah—1)]
+(s—(h+1)+ ... +(s— m)+(s—s,—m)+(s—s,—m-+ D+ (s—8sy—m+2)+ ...
+(s—Spy—m+m—1)—h—2,=2sm—m (m+1)—S;—8;— oo —Sp—1—h—Z,.
For n=s,+1=2h+2 it is one less than for n-—=s,.

Ler for the rest of the paragraph K be a field, X be ageneric alternating s<s
matrix over K, R=K|[X] and H=(s, ...,s,) be a standard description. In
addition 0=n-—=<s and Aun,—= A (X).

Proposition 19. For a field K and (H, n) such that Apn is prime,
the depth of Awn is equal to gun, Where

s—%——_l)— 2sm+m(m—1)+So+8+ ... +Sp+h+E,ifn=s,

gf['n_l+1 if ﬂ:5h+1;2}l+2.

P roof. By standard properties of ideals in polynomial rings (cf. [9), [2])
we have depth A, —=ht Apy,=dim K[X]|-coht A, and dim K|[X]=tr degk
K[X)=s(s—1)2. Hence depth Asyn,=s(s—1)2—coht Ap.n and the result
follows by Proposition 18.

Corollary.If Au.,is not prime, depth Awn=8gun with h=min{f:s,>n}.

This follows from the formula depth a1 b=min {depth a, depth b} and
Propositions 14 and 19.

8. Perfection. In this section X is a generic alternating s>{s matrix over
the Noetherian ring R, [{= (S, ..., S,) is a standard description. We prove the
perfection of the “fundamental ideals” in Propositions 21 and 22.

Proposition 20. Let R=Z and O<=n=s. Then Z|X]/Ann(X) is
is an abelian group without torsion.

Proof. By Proposition 14, 2) we see it is sufficient to suppose AH, n
prime, and in this case the result follows from the relation As,.(X)NZ=0.

Proposition 21. Let R—K be a field and n-s, orn—=s,+1 orn=s,
+2=-2hn+3. Then Aun(X) is perfect and depth Ay n(X)=E&H.n

Proof. We can assume the result inductively, for smaller matrices, and
for larger ideals of the form Apr gy’ —Sporn' =s,+1 orn' =sup +2=2h"+3.
By Lemma 5 we can reduce to the case, where n<s.

gH.n:
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If n=s, or n—=s,+1=21+2, Ay, is prime, homogeneous and x=x1,n+1
is a form which is not a zero divisor on Ag,; hence, Aun+(x)=An+1 and
Amn,n, are perfect or not alike, by [6. Corollary to Proposition 19]. But Ax a1
is perfect by the induction hypothesis, and our proof is complete in this case.

If n=s,+1<s,,, where s,+=2h+1, or if n=s,+2=2h+3<S,4,, we have
Apgn=Amn | A, as in Proposition 14 and by the induction hypothesis
Atrny At and Apn + Apone =An o are all perfect. By Proposition 19 we
see Ay n@CAm and Ap. GCAn 2. For the depth we have depth Apr p=depth
Anrm + 1 =depth Ag, + 1. Hence, by [6, Proposition 18] it follows that Asu.»
is perfect.

Proposition 22. Let n=s, or n=s,+1 or n=s,+2=2h+3. Then
Ann(X) is perfect and depth Ap,=gHn

Proof. According to [7, Proposition 20}, the conclusions of Propositions
20 and 21 are sufficient to prove the desired result.

9. Completion of the proof of theorem 1. First consider the case R=K
[X], X a generic alternating matrix. Let n=s,0r n=s,+1 or n=s,+2=2t+3.Then
the perfection of Ax,, and the equation (1): depth A, = gu,» are proved in Propo-
sition 22. Proposition 13 shows that As, is radical (K is a domain), and by
Propositions 14, 2) and 22 it follows that depth Asu,,=min {depth Ap,.,depth
At }=8n.n; thus (2) is proved. Part (3) is found in Proposition 14, 1) for n<s
and by Lemma 5 for n=s.

Now let R and M be arbitrary and n’ =s,. Suppose first that none of the
relations n=s, or n=s,+1 or n=s,+2=2¢t+3 is satisfied. We have

depth A, (M)=depth Au,. (M) (obvious)
=pdz (X) (Z[X],/An.» (X)) (by Proposition 20 and [5, Proposition 4])=depth

Apne (X)=gun (by the particular case already considered)= gsu,n-
If n=s, or n=s,+1 or n=5,+2=2¢t+3, a similar argument shows depth Ax,»
(M)=pdz [X) (Z[X)/ Amn(X))=depth Asn(X)=gn.r; moreover [5, Proposition

4] shows that in the case depth Awun(M)=gu,n Apn (M) is perfect.
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