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ON NEUMAN’S PROBLEM FOR A CLASS
OF DEGENERATE PARABOLIC EQUATIONS

NICKOLAI D. KUTEV

In this paper the existence and uniqueness of the classical solution of Neuman's problem
for a class of degenerate parabolic equations is proved. The method of parabolic regulariza-
tion is used.

1. Introduction and conclusions. The aim of this paper is to investigate
Neuman'’s problem for a class of degenerate parabolic equations

(1) Lu= X a/(x, x) U T bi(x, Xo) U, — (X, Xo) e+ d(X, o) = f(x, Xo)
ij=1 ¢ i=1 ¢

in the cylinder G=Qx (0, 7). Here Q is a bounded domain in R", which is

C¥+4+% smoothly diffeomorphic to a ball, /=2 is an integer and 0<A<1. We

consider the homogeneous boundary conditions

(2) Bu= Z of(x, X, )l + 0, X = 0 on 0Qx(0,T), u(x,0)=0 on Q
k=1
| v_'::(v‘ v, ..., V") is the inner unit normal to 0Qx(0, T), c;:(c',c?,...,o”).

suppose that (o, v)>0 and o(x, x,)<0 on dQ [0, T].

Further we shall make the following assumptions regarding the operators
L, B and the domain Q:

(i) By aiix, x,)) EE - p(x, %) [E12=0 in G’ OG, E€R", e(x, X0) =0 for(x, X,)
€', ae¢CYG'), ceCAG") and c(x, x,)+p(x, x0)>0, d(x, x,)=0, (x, x,)€G.

(ii) The coefficients of the operator L and their derivatives D:D" of order

a| +2B<20+2 are Holder continuous with exponent % in G. Moreover, the
coefficients of the boundary value operator B and their derivatives DiD? of
order |a|+2Bp<2/+3 are Holder continuous with exponent 2 on dQ><|0 Tk

(ii) The boundary 0Qx[0, T] is nonchara~teristic, i. e. LJ,_a“(x, xo)viv/>0

on 0Qx|[0, T).
L
(iv) The compatibility conditions of the data :ﬁ (x, 0)--0, £=0, 1,...,

0
[+ 1, x€0Q hold.
Under these assumptions, we have the following principal result:
Theorem 1. Suppose (i)—(iv) hold. If ¢(x,0)+0 for x¢Q and if there
exists a point Pi¢G:~GN{x,=1}, 0=t=T, in which the operator L is strictly
parabolic, then the boundary wvalue problem (1), (2) has a unique classical

solution u(x, x,)¢ C'(QG).
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NEUMAN'S PROBLEM FOR A CLASS OF DEGENERATE PARABOLIC EQUATIONS 137

Let us consider some variants of Theorem 1 for a domain © which is
C%+4+» smoothly diffeomorphic to the annulus 7,<|x|<r. In this case the
boundary conditions are slightly different. We define the operators.

Bju= I o*(x: xo)x,+0(x, xu=0 on §,
k=1

(3)
Byt = X tH(x, Xo)de, + 1 (x, XJu=0 on S,
E=1

u(x,0)=0, xeQ,

on the boundary S,US,UQ, where the coefficients o* 1% o, t and their
derivatives D:D% of order |a|+ 28 <2/ + 3 are Holder continuous with

exponent A. Moreover, we suppose that (o, v)>0, o(x, x,)=0 on Sy (t,v)>0,
1(x, x0)=0 on S..
We can also consider Dirichlet-Neuman problem for the equation (1), e. g.

4 Bu= £ o*(x, xo)ix, +0(x, x,)u=0 on S,

k=1
w(x, x0)=0 on S, u(x,0)=0 on o.

Let us formulate the results corresponding to the boundary conditions

(3) (4).
Theorem 1. Suppose (i)—(iv) hold. If c(x, 0)%0 for x ¢ ® and d(x,x,)<0

in G, then the boundary value problem (1), (3) has a unique classical solu-

tion u(x, x,) € C'(G).
Theorem 1. Under the assumptions of Theorem ', the boundary

value problem (1), (4) has a unique classical solution u(x, Xo) € CH(Q).

The same method could be used also in some cases, when the assumption
c(x,0)#0 on ® is not satisfied. Let us, for example, consider the domain
G=ox(—T, T). We suppose that the following conditions hold:

(i") > ail(x, xo)EE/ =n(x, x,)| £[2=0 in the domain G’ oG, & €R", a(x, xo) € CAT")
ij=1

o(x, X,)=0, p(x, xo)+c(x, x0)>0; c€CYG,) in G, =GN {x,>0},
(%, X0)=0, pu(x, xo)—¢(x, X0)>0; c€CYG") in G =G N{x,<0},
c(x,0)=0, x€o; d(x, x,)<0 in G.

Theorem 2. Suppose (i), (ii),(iii) kold. Then in the domain G=w X(—T,T)
the boundary wvalue problem

Biu=0 on do X(—T,T),
Byuu=0 on OwgxX(—T,T)

for the equation (1) has a unique classical solution u(x, Xo) € CYG).
The following Theorem 2’ is a version of Theorem 2.

(5)
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Theorem 2. Suppose (i"), (i), (iii) kold. Then in the domain G=w <X (—T,T)
the boundary value problem

Bu=0 on Odo,xX(—T,T),

(6)
u=0 on JdoyxX(—T,T),

for the equation (1) has a unique classical solution u(x, x,) ¢ C'(Q).

Let us now consider some special boundary value problems which describe
certain real processes. For convenience, we introduce the set Q,={x¢Q; c(x,0)
=0}. Let us formulate the following results:

Theorem 3. Suppose (i)—(iv) hold. The boundary wvalue operator

(7) Bu= I o*(x, xo)uc,+0(x, xu=0 on 0Qx(0,T),
k=1

u(x,0)=0 on QN Q,,

satisfies the assumptions of Theorem 1. We assume also that D, f(x, 0)=0
in some neighbourhood of Q, for |a|=L+ 1. If there exists a point P:¢P:
G {x,=1}, 0=t=T in which the operator L is strictly parabolic, then the
boundary wvalue problem (1),(7) has a unique classical solution u(x, x.) € C(Q).

We can formulate theorems similar to Theorems 1/, 1.

In conclusion it should be mentioned, that many real processes can be
described by means of the boundary value problems of the kind (1), (7) (see
[3]), which justifies our interest in them. For instance, the equation describing
the temperature distribution in case of steady laminar tube flow is

2 2
(8) Uy, 2) gc =2 (g£+g) )= const >0,
where ©(y,2) =0 and ©(y, 2)=0 only on the boundary of the tube. The se-
cond boundary value problem might be considered for the equation (8). The
equation describing the concentration distribution in case of pipe gas flow with
a steady velocity profile is analogous to the equation (8). The third boundary
value problem might be considered in this case.

M. Gevrey was the first to draw the attention to equations of the kind
(8) (see [8; 9]). Later on G. Fateeva [7] proved the existence of a unique
classical solution of the second boundary value problem for the equation (1),
when ¢(x, x,)- 1. She also treats the quasilinear case, where results are obtain-
ed, provided 0<x,<8 and & is small enough. In [10] P. Ippolito investi-
gates the Dirichlet problem for the equation (1) and proved the existence of a
unique classical solution.

Finally, let us state that our results are not contained in [7], where
c(x. xo)==1, e. g. the parabolic degeneracy is not considered at all. Unlike [10],
where the first boundary value problem is treated for equation (1), this paper
deals with Neuman’s problem for the same equation. Besides, in [10] the case
when ¢(x, x,) vanishes on the base of the cylinder is non considered.

In 2 the uniform boundedness of the solutions u*(x, x,) and their deriva-
tives up to the order /+ 1 of the regularized boundary value problems (10),
(2), (3), (4) is proved by means of Lemmas | —5. Theorems 1, 1’, 1" are prov-
ed by a limiting process & — 0.
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In 3 the case, when ¢(x,0)=0 on the base of the cylinder, is investigated.

The author wishes to express his grattitude to prof. T. Gencev for his
constant scientific guidance.

2. We will use the following inequalities and identities (see [2; 6]):

n
L(v,vy) = v, LUy +7yLlvy +2 X . at’ (T’l)xi (1'2)xi_d'z’1'z'2
1, )=

for any two functions o,, v, ¢ C¥QG);

[‘_J;-‘:‘ a’gm/P=|[ "-l."‘:;l ail EE] | ’_J;il aimin’]
for any &, n¢€R?,
¢ 7 n . 2
@ [i-}-:l a"'lr' uxiri]‘ngi.j.E:l O lape Uryr; s

when p=0,1,...,n, under the assumption that (i) in 1 hold. Here the con-
stant M depends on the maximum of the second derivatives of a. The proof
of (9) for p=0 follows with slight changes of Oleinik’s proof for p=1,2,...,n
(see [2, p. 71]). Further we will use the short notations u,=u.,, b;lzbikxl etc,,

and the summation convention is understood.
Of basic significance for the proof of Theorem 1 is the following regula-
rized equation

(10) Leu=Lu+¢e(Au—uy)=f, €>0.

Let u®(x, x,) be a solution of (10), (2), which together with its derivatives
DeD% of order jal+2B=2/+4 is Holder continuous with exponent A (see [1]).
By M, K; we denote the constants which depend on the coefficients of the
equation, the boundary value operator and the domain G, but not on e.

Lemma 1. Under the assumptions of Theorem I the following estima-
tes max, _ o|D% ud(x, x0)| =K, |a|=I+1 hkold.

Proof. The proof of Lemma 1 follows directly from the boundary value
operator (2), the equation (10) and its derivatives up to the order L

Without loss of generality, in order to prove Theorem 1, we assume that
G is a cylinder with a base Q, which is a ball, its centre and radius being
respectively 0 and R. Besides, the operator L is strictly parabolic on the axis
of the cylinder G. Let G, is a cylinder with base ®, and ®, is a concentric
to Q ball. The radius 7 of ®, is small enough, so that the operator L is stric-
tly parabolic in G, Let u=7vw, where w=exp (bx,) [2—exp(—a|x[*)]>0 in G,
and let us consider the operator (see [10])

Lo=(L@w)/w= )}:: RIEA él (b +(2 jéla‘/w, V@l —cve, +[(Lw) wlw = fw.
The inequality
Lw<{—[4a?a"x,x;—2aa" —2abix;+d)] exp (—a| x |[?)—Bc [2
—exp (—al| x?)]}exp (Bxy)= —[4a2u (x, xo) | x|2—O (a)+Bc]exp(—a| x|))<0
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holds in G, when a, B are sufficiently large. Analogously we consider the
boundary value operator

~ n n
Bv=(B(vw))w= X c*v., +[o+( X ofw, ) w|v=0,
k=1 k k=1 k
where

n n n
X ctw, =(2a X o%x,) exp (—aR2+Px,)=—20R I o*vF.exp(—uR?+Px)<0
k=1 k=1

k=1

on S. The operators L and B satisfy the conditions (i)—(iv) in 1. Consequently.
if we preserve the previous notations, without loss of generality we may
assume that d(x, x,)<0 in G and o(x, x,)<0 on S.

In the following Lemmas 2—5 our aim will be to prove the uniformly
boundedness of the derivatives up to the order /-+1 of the solutions u%(x, x)
of (12), (2) with constants independent of e.

Lemma 2. Under the assumptions of Theorem I the following estimates
MaX(v 6 |25 (x, xXo) | =Ky hold.

Proof. We consider the auxiliary function 2°%x, xo)=(us—N. The esti-
mates

(11) Lv° = 2aiuu+ 2us f—d (s —dN =auuy+1 in G,
Bv° =2usBus—o(us)®>—cN=1 on S, v°<0 on Q

hold, when N is sufficiently large. From the maximum principle it follows that
°(x, X,) can not attain a positive maximum in G. Consequently, | #*(x, x,)| == N'?
and Lemma 2 is proved.

Lemma 3. Under the assumptions of Theorem I the estimates

(12) max | Do | <K,
(%,%)(G
for |a|=1 hold.

Proof. From Lemma 2 and the inner a priori estimates of Bernstein
(see [6]) we obtain the estimates (12) in G,. In order to prove (12) in Gy,
where G, =G G, we make a polar change of the x-variables, and for conve-
nience we preserve the previous notations considering that x,, x5, ..., x, _,are
angular variables and x, is a radial variable. In the new variables the assump-
tion about the vector field (o', o2, ..., c") denotes that ¢”"<0 on S. In our
further calculations, for convenience, we will omit the index e.

Let us introduce the auxiliary functions:

oY x, x0) = (1,24 %, Xo)+ 12 ) exp (— N Xo) +N,7(x, X,),
n—1
2(x, xo)=[m, X w2422+ u,Tu+m]exp((R—-x,)%)
A==l
llere Tu=4Zp) 0*(x, xo),+ 40(x, x,)u and 0% 0 are smooth extensions into G,
of the functions o*/c”", o/c" respectively, which are defined on S, so that their
derivatives in Gl.D';DE‘, of order |a|+2Bp--2/+3 are Holder continuous with
exponent A. The positive constant m, is chosen so that
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n—y n
m, T u?+2u?+u, Tu+m= X u?
lk*'l k n n 1 —1 k

n—1
2m, k}il Qi g+ 4at w u,+ at u,; (Tu);

n—1 n
=3m,/2) T aVuyuy+3aluu,;—M, L ui—M,,
k=1 k=1
m,=max (2, (4nH,)®), H,= max Z(0%))2

(x.%0)€G,

We will show that o!(x, x,) can not attain a positive maximum on S
A simple computation gives

Bu'={n,B2" + 2u,, (Bu), + B, 0/0x0] (1)) — 642 } exp (— 1)+ N, BT

From the boundary value condition (2) it follows that (Bu),,=0 on S. When
g, is sufficiently large the estimate Bz'=M,Z%  ul—M; holds (see [12]). Since
[B, 0/0x,] is an operator of the first order and does not depend on d/dx,,
when n,, N, are sufficiently large we have Bv'=1 on S. From the maximum
principle it follows that ©'(x, x,) can not attain a positive maximum on S.

We will show, that ©'(x, x,) can not attain a positive maximum in the
domain G, as well, when the constants n,, N, are sufficiently large. For Lo'
we have

Lo =n,(l,+1,) exp (R— x,)& — MiXo)+ I3+ 1,) exp (—n,Xo) + NoL 7,
where

n n—1
1,=(@"8 b8z  exp (x,—R)&)—2 T a"E,Cmy T uyiy

1
+Au,+u, (Tu)y+u,;Tu)+2my, T auyy+4auu,;+2a"u,;(Tu);
k=1
n—1
+2m, T ou,|—alu;—biu,—du+f)+(Tu+du,) [ —a¥ uy;—bu,—du+f,)

k=1
n—1 n—1

+u (L(Tu))—4u,( T O*c uy,+cOuy)—d[m, T ul+2ul+Tu.u,)
k=1 k=1

+dm,+n,c2' exp ((x,—R)E,)-
The estimate

n n n
[, =X aVupup+ne £ ul—M; T ui—M;
k=1 =1 k=1

can be proved in the same way as in 2 of [12].
For 1, [, [, it is clear that

n—1 1
ly=2m, L cpipiiy,+4c, i, +du,( T 0%, +c0uy)+cuTu
k=1 k=1



142 N. D. KUTEV

n
~Mscu? +M; T ui+M,,
v k=1

1y=2a" u;x, e, +m cU2
l,=2u.(—alu;— b N dej+fr)—du?

N n d A
- vM,‘kZl at wy w;— My, kZl uy— & u? —Mcul —M,,.

We choose the positive constant n,, so that n,=>My+1. Using (11) when n,,
N, are sufficiently large, we have

(13) Lv' = T ailu, u,)exp(—n,T)+1 in G,
k=0

Consequently o'(x, x,) does not attain a positive maximum in G, and on the
upper base of the cylinder G,. When N, N, are sufficiently large, it follows

from the proof of (12) in G,, that ! does not attain a positive maximum on
S,=0w,><(0, T) and from Lemma 1, it follows that o' does not attain a posi-

tive maximum on Q\ o, also. Consequently #'<0 in G, and the proof of
Lemma 3 is based on the choice of ©! and the relation between Cartesian and
polar coordinates.

Lemma 4. Under the assumptions of Theorem I the estimates

(14) max | Deut (x, x,) | =K,
(x,x0 G

|a|=2, hold.

Proof. In G, the proof of (14) is a consequence of Lemma 2 and the

inner a priori estimates of Bernstein. In order to prove (14) in G,, we make
a polar change of the variables, using the notations introduced in Lemma 3.
We consider the function

V2(x, Xo) = (ny2%( X, xp) + 1, Jexp (—nyx,)+ N2t (X, Xo),
where

n—1 n n
22x, xo)=(my L ul+2 L up + I Up,T i+ my)exp(Ga(R—x,))
R==0,1==1 k=0 =0
We define the operators T, £=0,1,...,n,

n—1
Tw=4( £ 0w, +06u), k=0,1,...,n-1,
=1

n—1 n—1 n—1 n—1
Tau=4— L A"%( X 0*u,+6bu),+ X AYu,;+ I B,
i=al Rl i, f=1 =1

n—1
—B"( £ 0*u,+0u)—Cu,,+ Du—F).
k=l

The functions 0% 0 are introduced in Lemma 3. The functions AY, B'C, D, F
are smooth extensions respectively of a//a™, bi/a™, c/a™, d/a™, fla"™" from §
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into G,, so that their derivatives DD of order |a|+2B=2/+3 are Holder
continuous with exponent A. The positive constant m, is chosen so that

n—1 n n n
mg X w+2% ul 4+ T u,Tutmy= X ul,
k=0,1=1 k=0 k=0 k=0,l1=1
n—1 . n o n . 3m., n—1 .
o2my, T aUpityt 4 T @ttt T @ (T =5 T aluy iy
£=0,1=1 k=0 k=0 £=0,1=1

n n
+3 k§o QU gl g j— M3 k~021~ 1 u?,— My, my=max (2, (4n*H,)*),

where H, is the maximum of the coefficients of the derivatives of the highest
order in T, £=0,1,...,n. B

We will prove that ¥%x, x,) can not attain a positive maximum in a,
when &, ng, NV, are sufficiently large. Indeed, on S we have the estimate

n n—1

B2 —n{—c"ey, L ul+2my I u,((Bu)y,+|[B, 0*/0x,0x](u)
k=0,l=1 k=0,l=1

n n

+ 4kz ' Uy, Bl + kzt) Buy, T i+ kzo (T o Bu)+ [ B, T,J(@)) +2my0} exp (—naxo)
—( — .
+ {20 ((Btt)xox, + [ B, 02/0x3|(u)—ou  } exp (—naxo) + N Bl

If we use the boundary condition (2) and the definition of the operators
Twk=0,1,...,n, we obtain that (Bu),=0 for k, 1=0,1,...,n—1 and
Tyt +4u,,=0 for k=0,1,...,n on S. It is clear that the commutators are
operators of second order, which do not depend on 0%/0x Therefore, when

Ey NV, are large enough we have
(15) Bv?2=1 on S.

From the maximum principle, it follows that ©%x, x,) can not attain a positive
maximum on S.

We will show that #%x, x,) can not attain a positive maximum in the
domain G, as well, when ny, n,, N, are large enough. For Lv® we have

Lv2={ny(l,+1,) exp (§o(R— x N+ (s +1,)} exp (—nexo)+ N,Lo',
where

n n—1 n
1, =(a"E—b"E)z? exp (Ex(x,— R)—2 T aVy[2my T tpllyy+4 L Upllpnj
J=1 R=0,/=1 A=0

n—1

n n n
b I Up(Tot)+ E UpyTa)+2my  E auyllyy+4 L @ypillyn
k=0 k=0 A=0,1=1 k=0

n—1

-n
+2 *2 )a'/u,,,,(7,u),- {»‘2rn,‘t 3‘:1 lu,,,( —a¥ uyy— @y —al = b = b+ Cllix,
U ==

n—1 n
+Cpdh,—dplt,— d ity —dyl +fn/)+2’"-)* 1}:1 Cld jx, Uy + E‘o("”u*' Tu)—aiu,,
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— @ Wy — @ Uy — Ll — bl W+ Cplhnc, = e,y
n n
—dy—dyll+ frn)+ kz . Coll px (Al + T plt) + :-:0 Uy L(T )

n—1
4 % 0 U ne,—d22 eXP (Ea( X, — R)) + 2mad + Myc2? exp (§f X, — R).
=1

The estimate

n—1 n n
1, > T alugiii+ne Eoui—My Tooui—My
k=0,l=1 k=0,l=1 k=0,1=1

can be proved in the same way as in [12].
For 1,, 13 1, it is clear that
n—1

l,=2m, X

n—1
= Cllix Uy, + (Mpx,+ T olt) Cplcpx,+4 IEI 0%c ittt nx,

n
- ~y2 2
~Mycu? + My I w3+ M

Iy =201 ¢ e M jxoe, + n,cufmu,

I_‘ = Qu".u_‘.ﬂ( _ Q(IZ H,‘/-x,—v ai{,,\ﬂ, ll,-/' - Qb";uu,'_xo"— bi’,\'nu" + Qfx“uxu,\',,

n
- Cuntte, et — e+ fro) A, = — Moy T @Vttt

n
My k=02.:l=| U= Moy mi,xo_
We choose the positive constant ny so that n,=M,,+ 1. When n,, N, are
sufficiently large, from (13) we have

d
2
b) ux"/rn"“ MQQ

n
(16) Lv*=( X a'u,uy;)exp(—mneT)+1.
Il=0

From the proof of (14) in G,, it follows that ?2(x, x,) can not attain a
positive maximum on S, when A, is large enough.

We observe also that 7%(x, x,) does not attain a positive maximum on
Q" o, from Lemma 1. Like in Lemma 3, from (15), (16) it follows that
2%(x, x,) does not attain a positive maximum on S, in the domain and on the
upper base of the cylinder. Consequently, v2<0 in G,, and the proof of Lemma
4 is based on the choice of ©? and the relation between Cartesian and polar
coordinates.

Lemma 5 Under the assumptions of Theorem 1, the estimates

mQX(,r',u)(O!D“'u‘ 'gKuv la I =W, SS“SI+ l’

hold
Proof. Lemma 5 is inductively proved by means of functions of the kind

w(x, x,)=[ma(x, x,)+ (D% ] exp (—nuxo) + Nuo 2 '(x, Xo),
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2(x, x)=[m, T (Dewp+2 T (DLDBu)

al=p.aytp la+Bl=n,B4=0

+  E Tup(w).D=.DB u-tmy)exp (E(R—x,).

la+Bl=n,B-+0
where X' =(x, X, , ..., X,y), D¢, =D%D% .. Dn—. The operators 7
o % *p_1
= Tap(xy, X, U, UL, . ... ”-',,_1) are defined on S according to the conditiop
Tap(u)= —4D*.D" u. The derivatives D? u are substituted by their equivalent

1 n
>xpressions, which include only derivatives of the variables x, x,...,
X, by means of the boundary value operator B, the equation (10) and the
ierivatives of equation (10) up to the necessary order. In G, the coefficients
of T.p are smoothly extended, so that their derivatives D‘;Dgo of order |a|+2B
<2/+3 are Holder continuous with exponent A. The positive constant m, is
*hosen so that

2, xp) exp Gulx,— R)= T (Do u),
al=p,ao3H

2m, X a/(D%u), (D% u);+4 z a‘{(D*.D¥ u),(D%.D" u);
la+ B0 n n

lal =p,a07p Bl=mn,

z ai/(TuBu)l (D‘;.Dg u)jz e z a’ (Dz'u)i (D‘;'u)j
n 1

la+Bl=u,p+0 2 jal=mas
+3 p a’/(De,D? u), (D‘;Dg u);— My z (D& upP—M,»
la+ Bl=pn,B=4=0 n n lal=n,a%pn o
my=max (2, (4n+H,),),

where D¢ =D®D% ...D» and H, is the maximum of the coefficients of the

derivatives of the highest ‘order in T ap.

Proof of Theorem 1. Let u,, u, be two classical solutions of (1), (2) and
u=u,—uy. Then u(x, x,) is a solution of the homogenious boundary value
problem

(17) Leu=0 in G,Bu=0 on S u(x,0)=0, x¢Q,

and according to the maximum principle it follows that if u(x, x,) attains a
positive maximum in a certain inner point P; of the domain G or upon the
upper base of the cylinder, then (Leu)P,)<0 which contradicts (17). If a(x, xo)
attains a positive maximum in a point P,¢S, then (Bu)P,)<0, which is impos-
sible because of (17). When x,=0, then u(x, 0)=0 for x¢Q according to (17).
In the same way we prove that —u(x, x,) can not attain a positive maximum
in G therefore, the classical solution of (1), (2) is unique.

By means of the a priori estimates proved in Lemmas 2,3, 4 and 5 we
have the result that the solutions uz%(x, x,) of (10), (2) and their derivatives
D%,, of order |a|=[/+1 are uniformly bounded by the constants which do not
depend on &. Using the Ascoli-Arzela theorem and a diagonalization argument,

we can find a subsequence which converges uniformly in G to the desired
solution.

When proving Theorems 17, 17, the techniques in Theorem 1 in this paper
is once again applicable, with certain modifications due to the boundary condi-
tions (3) and (4). Therefore we will omit the proofs of Theorems 1, 1.

10 Cn. Cepanka, kn. 2
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Corollary 1. Suppose (i)—(iv) in 1 hold and we also have

I at(x. x 88 =RIER w0 for (x.x)€ G EER".
i,j=

In this case it is not necessary for the conditions c¢(x,x,) =0 in (', c(x, x,)
€C'(@) to be fulfilled. It is enough for c(x, x,)=0 to be wvalid in G.

3. In this paragraph we consider some boundary value problems, which
describe real processes. The details are similar to those in Theorem 1 and are
not carried out here.

In order to prove Theorem 2 we make a polar change of the x-variables,
using the notations introduced in Lemma 3 in 2. In the new variables the
assumption about the vector fields (o', 0% ...,0"%), (v/,1%...,1") denotes
that o¢"<0 on §,,7">0 on S,. We suppose that the domain © is the
annulus_ r,<X,<r,. We consider, as_in 2, the operators Lv, B\v, Byv,
where Lv=(L(vw))/w, Bv=(B,(vw))/w, B,v=(By(vw))w and w=-exp(Px,)[exp
(2a(r,—r)—exp(e(r,—x,)(x,—7))]|>0 in G. From the inequalities Lw<O
in G, Byw<0 on §,, B,w<0 on §,, without loss of generality, we assume that
the operators L, B,, B, satisfy the conditions d(x, x,)<<0 in G, o(x, x,)<0 on
S1, 1(x, x,)<0 on S,.

Proof of Theorem 2. Let the solution of boundary value problem (1), (6)
be of the kind w%x)+u'(x, x,), where w’(x), u'(x, x,) are solutions respecti-
vely of the boundary value problems

T ai(x. 0y + £ bilx, 0w +d(x, 0)a = f(x, 0),
=1

i,j=1 4

I o*(x, Oyw)+o(x, 0)w’=0, x¢oQ,
P

=1
E ™(x, 0))+t(x, 0y =0, x €0y,
k=1

(18) Lu' = x, f'(x, xo), B! =0, Byu'=0.

Let the solution u#'(x, x,) of (18) be of the kind x,w'(x)+u*(x, x,), where
w'(x), u%(x, x,) are solutions of the boundary value problems

£ at(x, Oyl + £ bi(x, 0!+ (d(x, 0)— cox, 0)@! =/1(x, 0),
ij=1 i=0

E ok(x, Oyl +o(x, 0)w' =0, x€09Q,,
k=1

I t*(x, O)yw) +t(x, O)w'=0, x¢oQ,,
k=1
Lu? = x f(x, x,), Biu?=0, Byu*=0.

By induction we define the functions wx), w'(x),...,w'"'(x) as being
solutions of the boundary value problems
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E ailx, 0w+ T bi(x, Oy +(d(x, 0)—cxx, O™ = f(x, 0),
ij=1 =1
£ ok(x, 0w +o(x, 0" =0, x¢€0Q,,
k=1
g ™(x, 0y@? +1(x, 0)w™ =0, x¢€0Q,.
k=1

Let the solution of (1), (6) be of the kind w(x, xo)+ XL xmw™(x), where
w(x, x,) is a solution of the boundary value problem

(19) Lw=x"2f1*2(x, ), Byw=0, Byw=0.
Let wt(x, x,) are solutions of the boundary value problems
(20) Lwt=x2fY(x, x,) in G,
Byw+=0 on Sf Bywt=0 on SF,

where GT=GN{x,>0}, G—=GN {x,<0}
Sr=81 {x,>0}, S7=8:n {x,<0}, i=1,2

For that purpose we consider the regularized boundary value problems
20 Lowt = Lwr +e (AwE—(9/0x)ywi) = x5 2% x,),
Bywr =0, Bywt=0, w¥(x,0)=0, xcQ.

The boundary value problems (21) satisfy the compatibility conditions of the
data up to the order /+1 (see 1) and from the boundary value operators, the
equations (21) and the derivatives of equations (21) up to the order / we ob-
tain the result D¢ Wi(x,0)=0 for x¢Q,la|=l+1. In the same way as in 2,

wi(x, x,) might be proved to be uniformly bounded by constants independent

of & altogether with their derivatives up to the order /+1 in G+. Therefore,
using Ascoli-Arzela theorem and a diagonalization argument, we can find that

the boundary value problems (20) have solutions @w*(x, xo) of class C{(G*), so
that D¢ wi(x, 0)=0 for x¢Q, |a|=L Hence the function w@(x, x,), w(x, xo)
—w*(x, x,) in G*, w(x, x,)=w(x, x,) in G~ and w(x, 0)=0 for x,=0 is a
solution of the boundary value problem (19) of class C{(G).

Let u,, u, be two classical solutions of (1), (6) and u=u,—u, be a solu-
tion of the homogenious boundary value problem Lu=0 in G, Bu=0 on S,
By -0 on S,. It can be proved that u(x, x,) can not attain a positive maxi-
mum for x,+0, as in Theorem 1. When x,=0, since the operator L is strictly
elliptic, from the maximum principle of the elliptic equations it follows that
u(x, x,) again can not attain a positive maximum. Analogously considering —
u(x, x,) we can prove the uniqueness of the classical solution of the boundary
value problem (1), (6). Theorem 2 is proved in the same way as Theorem 2.

Proof of Theorem 3. We consider the regularized boundary value
problem
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Leue = Lus+¢ (Aus—0/0x.us)=f, €>0,
Bue=0 on §,ui(x,0)=0 for x¢Q.

Since | D¢ u%(x, x,)||v,—0= My, like in Theorem 1 it can be proved that for ue

Lemmas 2—5 hold. Hence, there exists a classical solution u(x, x,) € C/G) of the
boundary value problem (1), (7).

If u,, uy are two classical solutions of (1), (7) then u=u,—u, is a classi-
cal solution of the homogenious boundary value problem. As in Theorem 1 it
can be proved that u(x, x;) can not attain a positive maximum on S, Q\ Q,,
in the domain and on the upper base of the cylinder G. If u(x, x,) attains a
positive maximum in a point P¢Q, then P¢Q0Q,, hence P¢dQdQ, or P
is an inner point for ©, and this contradicts the maximum principle for elli-
ptic equations.

Corollary 2. Let the operator L satisfy the assumptions of Theorem 3
and in addition

Z " al(x, x &8/ =€}, n>0 for (x,x,)€G.

iLj=

In this case, as in Corollary 1, it is not necessary for the condition c(x, x,)
=0 in @, c(x, x,)€CAQ'), to be fulfilled. It is enough for c(x, x,)=0 to be
valid in Q.
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