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CONTINUITY-LIKE PROPERTIES
OF SET-VALUED MAPPINGS*

PETAR S. KENDEROV

Theorems of the following type are proved: If F: X — Y is an upper semicontinuous
mapping then (under some conditions on X and Y) £ is lower semicontionuous at the points
of some dense Gg subset of X. The results are then applied to obtain new information and

new proofs of known results about points of continuity and single-valuedness of (multivalued)
monotone operators and (multivalued) metric projections. As corollaries we get also some re-
sults concerning differentiability of convex functions at the points of some dense Gy subsét

of their domains of continuity.

0. Introduction. Let X and Y be topological spaces and F:X—Y be a
multivalued mapping from X into Y (i. e. Fx, for every x¢ X, is a non-empty
subset of Y). The mapping F is said to be upper semicontinuous (usc) at the
point x,€ X, if for every closed set Z—VY with Fx,NZ=(, the set {x¢X:
Fx N Z=()} contains an open neighbourhood of x, F is said to be lower
semicontinuous (1sc) at x, ¢ X if, for every open UcY with Fx,N U=, the set
{x€¢ X:Fxn U@} contains an open neighbourhood of x, These two notions
are entirely independent from each other. Simple examples show that F: X—VY
may be usc at x, without being Isc at the same point. There are, of course,
mappings F which are Isc at some points of X but are not usc at the same
points of X. This is why it is rather surprising that, if F: X—Y is usc at
every point of X, then in many cases F must be Isc at the “majority” of po-
ints of X. Similarly, if F is Isc on X, then F must be usc at the points of
some “fat” subset of X. The first results of this kind seem to have been given
by Hill [15) and Kuratowski [21]. Subsequently the results of Hill and
Kuratowski were improved and generalized in different directions (see Polak
[27], Choquet [8], Fort [11], Weinstein [32]). A very nice example of
what one can expect in this area is the following general result (Fort [12]):

Let the multivalued mapping F:X - Y, acting from the topological
space X into the metrizable space Y, have compact images FxcY for
every x¢X. If Fis usc (Isc) at every point x¢X, then F is Isc (usc) at
the points of some residual* subset of X.

In 1955 Fort [13] proved also another result of the same type and gave
many interesting applications to some problems from Analysis and Topology
Our main concern here is with the phenomenon (we call it “continuity pheno

+) This work was done while the author was at the university of Frankfurt am Main
as a Research Fellow of the Alexander von Humboldt Foundation.

* The set Ac-X is called “residual” in X if its complement X\ A is a countable union
U {B;:i=12, ...} of sets B; whose closures B; in X have no interior points. In another
words, A is residual if X\ A is of the first Baire category in X. The residual set ACX may
be empty if X is of first Baire category.
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menon”) which stands behind the above mentioned results. In studying this
phenomenon we obtain results which are then shown to be the basis of many
known and some new facts concerning points of continuity and single-valued-
ness of (multivalued) metric projections (see for instance, 2.17,2.18) and of
(multivalued) monotone operators (see 1.7, 2.14). As corollaries we also obtain
some known results concerning (Fréchet or Gateaux) differentiability of a given
convex function at the points of some dense Gs-subset of its domain of con-
tinuity. Our main tool is a new notion called “lower almost continuity’” which
is close in spirit to the usual lower semicontinuity but is not so restrictive.

Though some results of 1 can be considered as particular cases of those
contained in 2, we decided to single them out in order to demonstrate, in a
situation free of technical details, what role the new notion “lower almost con-
tinuity” plays in the continuity phenomenon and its applications.

For a given F: X—Y we define D(F)={xe¢X: Fx+(}. Very often we
consider mappings (from now on “mappings”, “setvalued mappings”, “multiva-
lued mappings” and “multifunction” will be used as synonyms) for which
D(F)= X but sometimes X and D (F) may differ. For these cases the definition
of “usc” and “Isc” at a given point x, of A must be changed as follows: F is
said to be usc (Isc) at x € X if either Fxo,=@ or F:D(F)—Y is usc (Isc) at
x, in the sense of the definitions given in the beginning of the paper. For a
given WYy, U=X and F: X—Y we will denote by F!(W) the set {x¢X:
Fx W= @} and by F(U) the set U{Fx:xeU}.

1. Countable systems. Proposition 1.1. Let F:X—Y be a mapping
from the topological space X into the set Y and let A be a subset of Y.
Then the set H(A)={x¢X: a) FxN A+ and b) for every open U, x¢U,
there exists an open, non-empty U’ U with F(U') A=} is nowhere dense
in X.

Proof. For every set X, X denote by ¢l X, the closure of X, and by
int X, the set of all interior points of X . I. e. int X, ={x¢.X|: there exists
an open set Uc X for which x¢ Uc X,}. The set X\ int (cl X)) is evidently
nowhere dense. It remains to mention that /(A)=F ' A~_int (cl F ' A).

We note here that this proposition is valid even in the case when some
(or all) sets Fx, x¢ X, are empty.

Definition 1.2. We say that F is A-lower almost continuous (A-lac)
at some point x, of X if x, does not belong to H(A). Equivalently, F is
A-lac at x, if either F(x,)\A=Q or there exists an open neighbourhood
U of x, such that Fx\ A+ @ for all x from some dense subset of U. The
same can be expressed also in the following way: F is A-lac at x, if from
F(x))NA+Q it follows that the closure in X of the set F '(A) is dense
in some open neigbourhood of x,.

Theorem 1.3. Let «—{A}; be a countable family of subsets of the
set Y. Then every mapping F:X—Y from the topological spuce X into Y is
A-lac (for every A from a) at the points of some residual subset of X.

Proof. lLet F: X— Y and A¢a. By 1.1 the set /(A) is nowhere dense.
Therefore the set |J {H (A): A¢a} is of the first Baire category. The mapping
F is A-lac (for every A¢a) at cvery point of the complement to U {//(A):
A¢a}. The theorem is proved.

We give immediately some applications. Let £ be a Banach space. We
will denote its norm topology by “n” and its weak topology by “w”. By FE*
we denote, as usual, the dual of £. . e. £* is the set of all continuous linear
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functionals on E. The value of x* ¢ B* at the point x¢ E is denoted by (x, x*).
For x,¢E and r>0, we also define B[x,, r]={x¢E:llx—x,=r} and B(x, r)
={x¢E: Ix—x,l<r}.

Theorem 1.4 (Namioka [25], see also Corollary 1-16). Let K be a
weakly compact subset of the separable Banach space E. Then the indentity
mapping id: (K, w) — (K, n) is continuous at the points of some dense Gs
subset of (K, w).

Proof. Let a={A;};~ be a countable family of closed convex subsets of
(E, n) such that their interiors provide a topological base for (£, n). Such a
family exists because (£, n) is separable. According to Theorem 1.3 the iden-
tity map id:(K. w)—(K, n) is A-lac for every A¢a at the points of some re-
sidual subset of (K, w). Since (K, w) is a compact space, the latter residual
set will contain some dense Gs-subset of (K, w). It remains to prove that the
identity id: (K, w)—(K, n) is continuous at every x,€(K, w) where it is A-lac
for every A from a. But this is almost trivial. For r>0 find A with x,¢Ac
B(xo, r). Since id is A-lac at x,, the w-closure in K of the set id=! (A)=KNA
will contain an open neighbourhood of x, in (K, w). On the other hand, the
set A, as any convex closed subset of (£, n), is also w-closed. This means
that AN K is already w-closed in (K, w) and the above w-open neighbourhood
of x, in (K, @) must be contained in ANK<B(x, r)N K. This completes
the proof.

For some very interesting corollaries of this result, the reader is referred
to the original paper of Namioka [25]. Later, Namioka [26] proved that Theo-
rem 1.4 is valid for arbitrary, not only separable, Banach spaces.

We turn to another application of Theorem 1.3.

Definition 1.5. The (multivalued) mapping T :E—E* is called mono-

-

tone if (x,—xq X, —x3 =0 whenever x;¢Tx;, i=1,2. T is called maximal
monotone if its graph is not properly contained in the graph of any other
monotone mapping.

By means of Zorn's lemma it is not difficult to see that the graph of any
monotone mapping is contained in the graph of some maximal monotone
mapping.

Information about the properties and applications of monotone mappings
can be found in Minty [23], Browder [6;7] and Brezis [5]. Examples of
monotone mappings will appear in the proofs of some theorems below.

Theorem 16 (Kenderov and Robert [20]). Let T:E—E* be a mo-
notone mapping. Then for all x from some residual subset of E either Tx
=@ orinf {1 yl:yeTx}=sup {Iyl:yeTx} Le. for “almost all” x¢E the
image Tx lies on the surface of some ball centered at 0.

Proof. Let B* be the closed unit ball of £* and r>0 be an arbitrary
rational number. Put A,=rB* and a={A,},. By Theorem 1.3 T is A-lac for
every A¢a at the points of some residual subset of E. It remains to prove
that, for every point x from the above residual subset, the set 7x lies on the
surface of some ball. To do this we need the following very useful technical
lemma.

Lemma 1.7. Let E be a Banach space, T:E—E* be a monotone map-
ping and Ac E* be convex and weak* compact. Suppose, further, the set T !
(A)={x€E:TxNA+Q)} is dense in some open U= E. Then, for every x¢U,
the set TxcA. In particular, if T is A-lac at x, then Tx,=A,
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Proof of the lemma. Suppose the contrary: there cxists some x,¢U
for which 7x," A =. Take xj¢7Tx,\A. Since A is weak*® compact, the set
V:={ecE: (e, x)) >max {(e, x*): x*¢A}} is nonempty and open in (E,n).
For every number £>0 fV =V and, since x,¢U, the open set (x,+V)NU is
nonempty. Since 7' (A) is dense in U3 x,, we must have some x,¢(x,+V)
NnUNT ' (A). In particular 7Tx,NA-=@ and xy=x,+¢e for some e¢V. This
is already a contradiction because, by the monotonicity of 7 : £— E¥*, for every
x5€Tx,N A we have (e, x;)=>(e. x|) > max {(e, x*y: x*€ A} = (e, x;). Lemma 1.7
is proved.

We turn back to the proof of Theorem 1.6. Suppose 7 is A-lac for every
Ac¢a at x, and suppose that 7,: =inf {llyl:yeTx,j<<sup { Iy I:yeTx,}=:t,
Take some rational number r >0 from the open interval (¢, 4,), Evidently
Tx, rB* + . By the above lemma 7.x,=rB* This implies £,—~r which is a
contradiction.

Corollary 1.8 (Kenderov [16;17]). Suppose that the Banach space
E admits an equivalent norm whose dual is strictly convex. If T:E—E* is
a monotone mapping, then there is a dense Gs subset S of (E, n) such that,
for all x¢8, Tx contains at most one point.

Proof. Without loss of generality we can assume that 7 is a imaximal
monotone mapping. Then 7x is convex for every x¢F (otherwise 7 would
not be maximal). On the other hand, by the definition of strict convexity, the
only nonempty convex subsets of the surface of a strictly convex ball
are the singletons. Therefore, it follows from Theorem 1.6 that for all x
from some residual subset of (£, n) the set 7.x contains at most one point.

Corollary 19 (Asplund [3)). Let f:E—R be a real-valued continuous
convex function defined in the Banach space E. Suppose that E admits an
equivalent norm whose dual is strictly convex. Then f is Gateaux differen-
tiable at the points of some dense Gs subset of E.

Proof. It is ecasy to see that the subgradient d,: F—FE* assigning to
cach x,€£ the nonempty set d(x,)={x*€¢X*: f(x)—f(x,) = (x—x, x¥) for
every x¢€F£} is a monotone mapping. By 1.8 d:FE—FE* is single-valued at the
points of some dense (s subset of £. Since it is known (see for instance
Moreau [24]) that f: £ — R is Gateaux differentiable at some x,¢£ if and
only if the subgradient 0:F£—~E* is single-valued at x,, the proof is completed.

Remark 1.10. Using this approach we are also able to prove the result
of Asplund [3, Theorem 1] about Fréchet differentiability of a given convex
function f:£—~R at the points of some dense Gs subset of L.

Theorem 1.11 (Robert[28)). Let E* be separable relative to its norm
topology. Then every monotone mapping T :L—FE* is single-valued and norm-
to-norm upper semi continuous at the points of some dense Gs subset of
(int D(7), n), where int Z, for some Z<=E, means the norm interior of
the set Z.

Proof. Let {x,};-1 be a dense subset of (£% n*), where n* is the norm
topology of E£*. Let B* be the unit ball of the dual norm in £* and r>0 be
an arbitrary rational number. Define A (i, 7)=x+rB* and consider the coun-
table system a={A (@ r): i=1,2,3,...; r>0 and rational}. By Theorem 1.3
7T is A-lac for every A¢ a at the points of some dense Gs subset of (int D
(T), n). Having in mind Lemma 1.7 and the fact that a forms a topological
base for (£*, n*) we come to the conclusion that 7 is single-valued and norm-
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to-norm upper semi-continuous at the points of the above dense G;s subset of
(int D(T), n).

We return to the general study of the continuity phenomenon. In order
to explain what role “upper semicontinuity (usc)” and “lower semicontinuity
(Isc)” play in this phenomenon, we need a definition.

Definition. 1.12. Let A be a subset of the set Y and F:X-Y be a
mapping from the topological space X into Y. We say that F is A-lower
semicontinuous (A-upper semicontinuous) at the point x,¢ X if either Fxo=Q
or (when Fx,+=@) from Fx,NA+=Q@ (Fx,NA=(Q) it follows that the set
{x€X:FxNA+Q} ({(x¢X:FxNA=Q)}) contains an open neighbourhood of
Xo in X. For brevity we will write A-usc and A-lsc instead of “A-upper se-
micontinuity” and “A-lower semicontinuity”.

It is clear that, when Y is a topological space, the mapping F:X—Y is
Isc (in the usual sense) at x, if and only if F is A-lsc for every open AcY.
Analogously, F is usc at some x, if and only if F is A-usc for every closed
AcY. It is also clear that A-lower semicontinuity is a stronger property than
the introduced in Definition 1.2 A-lower almost continuity. Nevertheless,
we have

Proposition 1.13. Let AcY and F: X—Y be A-usc at every point x
of the topological space X. If Fis A-lac at some x,¢ X, then it is A-lsc at x,.

Proof. If Fx,N A=, there is nothing to prove. Suppose Fx, 1 A==.
Since F is A-lac at x,, the set F~!(A) is dense in some open U, U3 x, We
prove that U= F~!'(A). Indeed, if this is not the case, there would exist some
x, €U with Fx; N A=(. Since F is A-usc at x, we find some open U,, x, €U,
— U, such that Fx N A= for every x¢U,. But this is a contradiction because
F 1 (A)={x¢X:FxN A==} is dense in U,cU.

Definition 1.14 (Arhangel'skii [2]). The family a={A} of subsets
of the topological space Y is called a net if for every y,¢Y and every open
UcY, U3y, there exists some At¢a with y,e AcU.

Theorem L15. Let the space Y have two topologies t, and t, and let
(Y, ty) have a countable net a={A}i= consisting of t,-closed sets.If F: X—Y
is t-usc at every x¢X, then F:X—Y is tylsc at the points of some residual
subset of the topological space X.

Proof. From Theorem 1.3 we deduce that F is A-lac for every A¢a at
the points of some residual subset ot X. By Proposition 1.13 F will be also
A-lsc for every A¢a at the same points. Since a={4};=1 is a net for (V, %)
we obtain that F is fy-Isc at the points of this residual set.

Corollary 1.16 (Alexiewicz and Orlicz [1)]). Suppose E is a se-
parable normed space and f: X—(E, w) is a continuous single-valued mapping.
Then f:X—(E,n) is continuous at the points of some residual subset of X.

Proof. Let {x;}i=1 be dense in (£,n) and r>0 be a rational number.
Consider the set A(i,r)=x,+rB where B is the (closed) unit ball of £. The
countable family a={A(i, r):i=1,2,3,...; r positive and rational} is evidently
a net for the norm topology in E. This net consists of weak-closed sets and
we can apply Theorem 1.15 for ¢, =w and £{,=n.

Remark 1.17. Theorem 1.15 contains in essence the main result of
Fort from [13). In the paper of Fort the mapping F is supposed to be single-
valued.

We would also like to note the connection between our Theorem 1.3 and
the famous “interior mapping principle” of Banach: /f T:E—G is a continuous
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linear map from the Banach space E ontothe Banache space G, then the image
TU of any open U=E is an open subset of G. Usually (see Dunford and
Schwartz [10, 55-—57]) the proot of this fact consists of two important steps
and the first one is to show that the closure 7B of the set 7B (B being the
closed unit ball of £) contains 0¢G in its interior. This follows from Theorem
1.3 if we put X: =G, Y:=E, F:=T"'and ua={nB:n=1,2,3,...}, where B
is the closed unit ball of E.

2.10eneral case. We need here a generalization of the notions introduc-
ed in 1.

Definition 2.1. Let F:X—Y be a (multivalued) mapping from the
toppological space X into the set Y and let »={A} be a collection of sub-
sets of Y. We say that F is \-lac (h-lower almost continuous) at some xq€ X
if there exists an open U, U3 x, such that whenever Fx, A-=Q for some
A¢ch the set F~'(A) (the closure in X of F~' (A)) contains U.

In the case when A consists of only one A, A-lower almost continuity at
x, coincides with A-lower almost continuity at x,. As the next example shows
the assertion “F is A-lac at x,” is in general stronger than “F is A-lac at x,
for every A¢)L”. Suppose X=Y=F is a Banach space and F:X-Y is the
identity map. Put A equal to the collection of all open U3x, Uc=Y. Then F
is obviously U-lac at x, for every U¢h, but it is not A-lac at x,.

Let us also mention that, according to our definition, F is Z-lac at some
x, ¢ X if Fx,NA=@ for every A¢ . In particular, this is so when Fx,=@.

The set of points in X where F:X—Y is not A-lac will be denoted by
H (k). Therefore H(X)—{x¢X:for every open U= X, U)x, there exist an A¢x
and a nonempty open U’ U such that FxN A+ @ but F(U)N A=)

Clearly H(X)>H(A) for every A¢ir. However, as the example above
shows, H(A) can be bigger than |J {H(A): A¢r}.

We give here sufficient condititions for the set /7(X) to be nowhere dense.
It is convenient for us to describe first one general construction which can be
repeated infinitely many times if the set F/(X) is dense in some open subset
of X. The sufficient conditions we have in mind are of such a nature
that they, in fact, forbid the unlimited step by step iteration of this basic con-
struction. Thus the simultaneous fulfillment of both the sufficient conditions
and the assumption H (X)) is somewhere dense is impossible and leads to a
contradiction.

Let us now be more precise and consider a mapping F: X —} from the
topological space X into the set ¥, and a collection A={A} of subsets of V.
Define as above the set A (L) and put H:=H(}).

Basic construction 2.2. If H is dense in some nonempty open U,
— X, then there exist sequences of open sets{U,}i-oin X, of elements {x}i -0
of X and of members {A{-o of the collection h={A} such that for every
nonnegative integer i:

LU = U;,
x eU;,

. Fx,NA; + @,

. F(U,+|)ﬂ Al=®'

Remark 2.3. It is clear from 2, 3 and 4 that x, +x;, whehever i+ j. The
conditions 1, 2, 3 and 4 imply also that U, is a proper subset of U, (x,¢U
but x,¢ U,,). It is easy also to see that A,-+A, for i+ j.

—

INJREN
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Proof of 2.2. We proceed by induction with respect to the index i. Let
H be dense in the nonempty and open set U,=X. Take x,¢U,N . By the
definition of A there will exist an A,¢A and an open nonempty U’'<U, with
F.,N+A,2 and F(U')N Ay=@. Thus we have defined x,, A, and U,. Put U,:
=U'. Clearly 1, 2, 3 and 4 are fulfilled for i=0. Suppose now that {x;:j=0,
1,...,n} {A;:j=0,1,...,n}, {U;j:j=0,1,...,n+1} have already been con-
structed so that 1, 2, 3 and 4 are satisfied for 0=i=n. Since / is dense in
U,., we choose x,,, € H N U, By the definition of /7, there will exist A4,,, € 2 and
U =U,;,, U’ openand nonempty, such that Fx,., N A, =@ but F(U)N A,
=@. We put now U,.,: =U" and see that the requirements 1—4 are satisfied
with 0<<i~n+1. This completes the proof.

Lemma 24 If H()) is densein U, then F(Uy)N A=+ @ for infinitely
many different A€

Proof. Trivial from 2.2 and 2.3.

Lemma 2.5. If F (U), where U is an open subset of X, intersects only
finitely many members of .={A}, then H(}) cannot be dense in U.

Proof. Trivial from 2.2.

As a corollary we get the following assertion containing 1.1 as a parti-
cular case.

Corollary 26. If collection h={A} is finite, then H()\) is nowhere
dense.

More generally, we have

Proposition 2.7. Let F:X—Y be a mapping from the topological
space X into the set Y and let \={A} be a system of subsets of Y. Suppose,
further, the set {x¢X:there exists an open U)x with F(U)N A== for only
a finite number of members A¢L} is dense in X. Then H (1) is nowhere
dense in X.

Proof. By hypothesis and 2.5, every open U,— X contains an open sub-
set U/ in which H is not dense. This observation completes the proof.

We want to show now how 2.7 “works” in concrete situations.

Definition 2.8. The mapping F: X—Y, where X and Y are topologic-
al spaces, is said to be lower almost continuous (lac) at X € Xif F is W-lac
at x, for every open WcY.

Theorem 29. Let X be a topological, Y be a metrizable space and
F:X—Y be a mapping. If the set L={x¢X:Fx is a nonempty compact sub-
set of Y and F is upper semicontinuous at x} is dense in X, then F is lac
at the points of some residual subset of X.

Proof. According to a theorem of A. Stone [30] the metrizable space
Y is paracompact and has a topological base a={\};= consisting of locally
finite coverings A, of open subsets of Y. It is enough to prove that the set
U{H():i=1,2,...} is of the first Baire category. Therefore the next lemma
completes the proof.

Lemma 2.10. The set H(X\,) is nowhere dense in X.

Proof. By 2.5 and the hypothesis of the theorem it suffices to show
that for every x,¢L there exists some open U= X, U)x,, with F(U)N A+
for not more that finitely many A¢X,. Consider the collection A;={A} ofclo-
sures in Y of the sets from A, A, is again a locally finite collection and there-
fore the set G=U{A:Fx,N A=} is closed in Y. Since F is usc at x,
¢ L, there exists some open set U=.X, U)x, such that FxNG=(Q for every
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x¢U. This means that, whenever x¢ U, Fx intersects only those A¢X; for which
Fx,1 A =. Since %, is locally finite and Fx, is compact, there exist only a
finite nummber of sets A¢ A, with Fx,N A-=@. It remains to apply Proposition
2.7. The lemma is proved.

As a particular case we get the following result

Theorem 211 (Fort[12)). If F:X—Y is an upper semicontinuons map-
ping with compact and nonempty images from the topological space X into
the metrizable space Y, then F is lower semicontinuons at the points of some
residual subset of X.

Proof. This follows immediately from 2.9 (with L= X) and the next ge-
neral fact which shows the roles played by “semicontinuity” and “almost semi-
continuity” in the continuity phenomenon.

Lemma 2.12. /f F:X—Y is usc at every point of X and if F is lac at
x,€X, then F is lIsc at x,.

Indeed, take some open V<=V with Fx,\ V-=@. By lower almost conti-
nuity of F at x, the closure in X of the set {x¢X:FxNV -} will contain
some open U3Jx,. It is enough to show that U=F~'(V). Suppose this is not

so and take x, ¢U with Fx, NV =2. Since F is usc at x,, we have Fxn V
=) for all x from some open U,)x,, U,c-U. This is a contradiction because
the set F (V) is dense in UDU, and for some x¢U/;, we must have Fx
‘J ‘/ Z

We will now use 2.9 to provide new proofs of known results as well as
to get new results which, it seems to us, can not be obtained directly from
the theorem of Fort 2.10. We start with

Proposition 2.13 (Asplund [3]). /f the continuous convex function
f:E—R. defined on the Banach space E, is Frichet differentiable at the
points of some dense subset of E, then [ is Fréchet differentiable at the
points of some dense Gs subset of E.

Proof: Consider the subgradient 0: E—E* of the convex function f (the
definition of J is given here in the proof of 1.9). It is a mapping which is
norm-to-norm usc and single-valued at every point where f is Fréchet differen-
tiable (the latter can be taken as an equivalent definition of Frechet differen-
tiabilility at some point x,¢/ ;see Asplund and Rockafellar [4]). We
apply 2.9 to d: E—FE* and get that 0 is norm-to-norm lac at the points of
some dense (s subset of (£, 7). The rest of the proof is contained in the fol-
lowing lemma because every subgradient d is a monotone mapping.

Lemma 2.14 [f the monotone mapping T:E—E* is norm-to-norm lac
at some x,¢FE, then T is single-valued and norm-to-norm usc at x,.

Proof. Let V be an open ball in £* with 7x,NV +@. By the hypo-
thesis, the set 7' (V) is dense in some open U x,. Since the closure V in
E* is a weak*-compact subset of £* we can apply 1.7 to get that 7 (U)=V.
In particular 7x,— V. Since V is an arbitrary closed ball in £* 7., is a sin-
gleton and 7 :E—E* is norm-to-norm usc at x,. The proof of 2.14 and of 2.13
is finished.

We discuss now another application of 2.9. Let £ be a normed space and
M E. The so-called “metric projection generated by M” is a multivalued
mapping P, :E—~+M assigning to each x¢ £ the (possibly empty) set P, (x)
={yeM:Ix—yl=inf {Ilx—2zI:2¢M}}. In [29] Stechkin has proved that, in
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several cases, the multivalued metric projection P, :E—M has empty or one-
point images for the points of some dense Gs subset of (£, n). We will prove
now something more. Namely, the metric projections involved in the case of
Stechkin are not only (not more than) single-valued at the points of some
dense (s subsets of (£, n), but also usc at these points.

Definition 2.15. The Banach space E is called locally uniformly
convex if for every sequence {x}.-o in E with |x;l=1, i=0,1,2,..., and
lim; .. IX,+x,=2, it follows that lim, . X;= X

We need also a result of Zhivkov [33] (see also Deutsch and Lam-
bert [9. Theorem 2.6]):

Lemma 2.16. Let M be a subset of the locally uniformly convex norm-
ed space E and let y, belongs to Pp(xo)={x¢M: |x—x, =inf {ilxo—2zil :
2¢M}). Then at every point of the set {x=(1—t)x,+1y,:0<t=1} the met-
ric projection Py:E—M is both single-valued and norm-to-normn usc.

Theorm 2.17. Let M be a subset of the locally uniformly convex Ban-
ach space E and P :E —M be the metric projection generated by M. Then
P is (not more that) single-valued and norm-to-norm usc at all points of
some dense Gs subset of (E, n).

Proof. Note first that the set L of points of the type x=(1—£) x,+£ye
where 0<f¢~1 and y, € Px,, is norm dense in D(P)={x¢E:Px+=}. Lemma
2.16 shows that we can apply Theorem 2.9 to the mapping P:(D (P), n)—(M,n).
Thus the map P:D(P)— M is norm-to-norm lac at the points of some resi-
dual subset of (D (P), n). Since, by definition, the metric projection P: £ —M
is usc at every point outside D(P), the remainder of the proof is contained
n the following lemma.

Lemma 2.18. Let E, M and P be as above. If P:D(P)— M is norm-
to-norm lac at some x,€D(P), theu it is single-valued and norm-to-norm
usc at x,.

Proof. Let V be some open ball in £ with Px,t V+@. Since P is lac
at x,, the set P~'(V) is dense in some open Uc(D(F), n), x,€U. It suffices
to prove that, for every x¢U, the set Px lies in the closure V of Vin(E, n)
Suppose this is not so and take x¢U, y¢ Px with y¢ V. Take the number
¢>0 so small that x,=([—f)x+ £y still belongs to the open set U. It is not
difficult to see that Px,=y. By 2.16 P:D(P)— M is norm-to-norm usc at x,

and therefore, for some open U,c=U, U,) x,, there follows P(U,) V=.How-
ever, this is a contradiction because P~1(V) is dense in UDU, and, for at
least one z¢U,, we will have @+PzNVcP(U,))NV=_. This completes
the proof of 2.18 and 2.17.

Up to now most of the results in 2 depended in one or another way on
the fact that the corresponding collections A, i=1,2,..., were locally finite
and formed a base a={A};-, for the topological space Y. Roughly speaking,
this is the case only when Y is metrizable. We find this situation rather rest-
rictive and want to show one possible way to gain more freedom in the choice
ot the space Y. The price one must pay for more freedom in the choice of
Y is less freedom in the choice of X. However, we feel that the price we are
going to pay is not too high. The restrictions on X we have in mind are not
severe and are quite natural. Under this mild restriction on X we will be able
to get rid of the unpleasant hypothesis, appearing in a number of our results,
that the images of F:.X'— Y must be compact on a dense subset of X.
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Let y={W} be an open covering of the topological space X. The set S X is
said to be y-small if its closure S is contained in some W, W¢y.

Definition 219 (Frolik [14]). The space X is called strongly count-
ably complete if it has a countable system {y}i--1 of open coverings vy; sa-
tisfying the requirement:every decreasing seguence of nonempty closed sets{S}i=1,
where S, is y~small, i=1,2,..., has nonempty intersection.

The class of strongly countably complete spaces is very large. It contains
all complete metric spaces as well as all (locally) countably compact spaces.
Every residual subset of a strongly countably complete space contains a (non-,
empty) dense U; subset.

Definition 2.20. The collection »={A} of subsets of the topological
space Y is called countably conservative if J{A:AeM}=U{A: A ¢ M} for
every countable subcollection L'<.

Prorosition 221. Let F:X—Y be an usc set-valued mapping from
the strongly countably complete space X into the space Y and let L={A} be
a countably conservative collection of subsets of Y. Then the set (see 2.2)
H(X), where L={A} consists of the closures of A in Y, is nowhere dense
in X.

Proof. Let {y};~1 be a sequence of open coverings of X with respect
to which X is strongly countably complete and suppose that H(X) is dense in
some open U,—=X, U,+@. In a manner similar to that used in 2.2, we con-
struct three sequences {U,};=o= X. {A,;}i=0=A and {x;};=0= X so that for every
integer i=0:

1. U = Uy,

2. x, €U,

3. Fx,NA,+3Q;

4. F(Us) Ai=Q;

5. Ujiis vy —small.

We observe now, by 1, 2 and 5, that the “tails” S,={x;}i-n, n=1, 2, 3,
..., form a decreasing sequence of y,—small closed subsets of X. Since X is
countably, strongly complete, the set N {S,:n>=1}+@. Let z,¢ N{S,:n=1}.
From 2 and 1 we see that z,¢U;,i=1. By 4 Fz, N A;=@ for every i1
Since A is countably conservative, the set A: ={A;:i>=1} is closed and
we have Fz,NA=(. As F is usc at x, we find an open V, z,¢V, such that
F(V)n A=(). This is a contradiction because, as a neighbourhood of 2, the
open set V' must contain some x; and by 3 we would have & Fx, A
—F(V)NA=®.

Theorem 222. Let t, and t, be two topologies in the space Y and let
r={A}, i=1.2,3,..., be t,-countably conservative collections of t,-closed sets
in Y. Suppose that a={\};- forms a net in Y (see Definition 1.14) for the
topology t,. Then every t,-usc mapping F: X —Y from the strongly countably
complete space X into Y must be t,-Isc at the points of some dense Us
subset of X.

Proof. From the previous proposition, the set //:={H (r,):i -1} is of
the first Baire category in X. We prove now that F is #,-Isc at every x¢/.
Take an arbitrary open V< (Y, £,) with Fx?ﬂ V(@ and let A¢a be such that
AV and Fx, A+@. Since x,¢ H, F~'(A) will be dense in some open
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Uc=X, Ujx,. It is enough to prove that Fx A== for every x¢U. Suppose
the contrary: Fx, | A= for some x, ¢ U. Since the set A is f,-closed and
since F is f,-usc at x,, there will exist an open U,cU, U,3x,, with F(U),)
N A=(. But this is a contradiction because F~!(A) is dense in the open
set UDU,.

Corollary. 2.23. Let X be a strongly countably complete space, Y be
a space admitting a net a={k}i, of countably conservative collections
Ay i=1,2,..., and F:X—Y be an usc (multivalued) mapping. Then F is
Isc at the points of some dense Gs subset of X.

Proof. Put £,=¢, in 2.22.

Remark 2.24. 2) For the particular case when Y is a metrizable space
corollary 2.23, together with an application to the theory of metric projections,
can be found in Kenderov [18, 19].

b) The class of spaces Y admitting “c-countably conservative net” (as in
Corollary 2.23) is very large. Since the image under continuous and closed
(single-valued) mappings of any conservative collection is again a conservative
collection, the closed and continuous image Y of any metrizable space Z
admits “o-conservative net” and belongs to this class. Among the latter spaces
Y there are such (see LaSnev [22], Stricklen [31]) no point of which has
a countable base of neighbourhoods.

¢) In this paper we studied only one part of the continuity phenomenon.
Generally speaking, we gave sufficient conditions, based on the notion “lower
almost continuity”, in order that the usc mapping F: X — Y be lIsc at some
points of X. It is also possible to introduce the notion “upper almost conti-
nuity” and to use it in analogous way in order to prove that, under some
conditions, every Isc mapping has points of upper semicontinuity.
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