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CONVOLUTIONS, MULTIPLIERS AND COMMUTANTS CONNECTED
WITH MULTIPLE DIRICHLET EXPANSIONS

NIKOLAI S. BOZINOV, IVAN H. DIMOVSKI

An explicit convolutional representation of a class of operators having certain invariant
subspaces and commuting with the partial differentiations d/0z,, ..., 0,0z, is found. An appli-
cation of these results to the multiple Dirichlet expansions of locally holomorphic function
is made.

0. Introduction. Lei D;, j=1,...,n be a finite convex domain in the

complex z;-plane, let D; be the closure of D; and let 0¢D; for all j. Let
D -D,x---xD, The elements of C" are denoted by letters without indices

as 2=(z,. ..,2,). By HD) it is denoted the space of all functions f(z) holo-
morphic on D, endowed with the usual inductive topology [I, 378 —381]. Let ®,,

J=1,..., n b2 an arbitrary non-z2ro continuous linear functional in H(D,).
It is known [1, 378 —381] that ®; can be represented in the form

(1 @, f= 21; [ f CAE)Nds, feHD,)

with a holomorphic function y{2;) on the complement of D, such that y[{ o)

0 and where I, is a contour lying in the domain of analyticity of f enclos-
ing Dj. In the whole paper the integration contours are considered with coun
terclockwise orientation. Conversely for every y/(z;) of such kind formula (1)
defines a continuous linear functional in H(D,). Let

() Ho={f€HD): ¥, [fiz,.. .2 2] =0 forall 2,€D, ki)

where the subscript z; in @, indicates that the functional ®, is applied on
the variable z;. We shall use frequently such kind subscripts without any dis-
cussion.

We aim to find a complete description of the all continuous linear ope-

rators M: H(D)— H(D) with invariant subspaces If@l, ce Hon and commuting
with d/dz; in He, for j=1,..., n. This is made in section 1. In section 2 a

connection of such kind operators with the coefficient multipliers of the multi-
ple complex Dirichlet expansions is found, where a convolutional approach to
the multiple Dirichlet expansions is developed. The results presented in the
paper are generalizations of analogous results for double Dirichlet expansions
established by the authors in [2] but now the more general case of multiple
zeros of the entire functions defining the expansion is considered while the
special case of simple zeros has been considered in [2].
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For brevity’s sake we use denotations as

z

g'f(r)drgcfl cf"f(rl. .., 1), . .. dt, for z, LEC.

1

1. A representation of the commutant of 0/dz,,..., 0/dz, relative to
the invariant subspaces o, ..., Ho . Let us introduce in H(D,) the opera-
tions

(zl-) $; _
(©)) f* &= !f(2j+Cf_Tj)g(ri)dtj} for f, g€ H(D,)
i

j=1,...,n It is shown [3] that (3) is a continuous, bilinear, commutative
and associative operation in H(D;). Let us introduce also the entire functions

def | Lx. .t .
EACN= 5 [ 1AW)E! Tdy=0;. {e’'} j=1,....n
1

Lemma 1. a) The resolvent R, of d/dz; relative to ®; defined in
— ]
H(D,) by the problem dy/dz;j—);y=f, ®{y)=0 can be represented in the form
) rz. @y _
1) R, f ={—eEM)} = f, feHD),
for each A; with E{};)+0 and
=) @)

(5) Ri(f+ &)=R(f+'¢

hold for all f, g¢ HD,), j=1,..., n. - -

b) By formula (4)- R{’_ make sense in H(D) too for each f¢H(D)and ar-
bitrary fixed z,¢H(D,), k+j. Formula (4) defines an operator R{_i mapping
H(D) onto HQI, and
(6) (owdz,-x,)R{l_ =1 ®,{R{i f}=0 for each f¢H(D).

The basic tool in our approach is a convolution for all resolvents R! ,...,
. "1
Ry in H(D).

n

Definition 1. ([4])). Let M: X— X be a linear operator in a linear
space X. A bilinear commutative and associative operation f+g in X is said
to be a convolution of M in X iff

(7 M(f+g)—~Mfxg=fsMg hold for all f, g¢X.

Every operator M: X — X satisfying (7) is said to be a multiplier of f=g.
A nonzero element f¢ X is said to be an annihilator of = iff f+g=0 for
all ge X.

Let 7(2)=y,(2) ¥a(zah T=T,X - XT, and let (&, 2)= 21+ -+ +a2,
for §, 2¢C". Then
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O = [ fMz =0, (Sl 2}

is a continuous linear functional in H(D). Let us introduce also the entire
function of the variables {,,...,(,:

E(C)_ l[Y(Z)é" D dz=® (e D} =E\(C) - Ex(L,)-

Theorem 1. The operation
(8) frg= Offfz+C-Dgd); [ g€ HD)

is a continuous convolution in H(D) for all resolvents R}, ..., R} when
1 n
A=(ky, ..., 1,)€C" is fixed with E(L)-=0, and

©) Rif SR Ry f={(—1Ye® 2| EQ}* f

holds for all f¢H(D). The function > is not divisor of zero of f»g
i. e. = is without annihilators in H(D). For j=1,...,n the equality

(10) e (feg)=yL wg holds for feHo, g¢H(D)
i ]

and the equality
(11) ®{f+g -0 holds for all f, ge HD),

i e.x: HD)<HD)— Heo - N Ho, .
Proof. Evidently (8)is a continuous bilinear operation in /(D). The proof

of the theorem follows from a corollary of the well-known Runge approxima-
tion theorem [5, 53] stating that the polynomials of n-variables are dense

in H(D). We use the fact that the operation (8) splits into a product of the
(z )

one-dimensional convolutions » (3) for functions of the form

(12) f(zl""' zn):.fl(zl)"'fn(zn)v

(z )
i.e fag-1l_, f(2) H g,(z)). Using this “splitting property” the commutativity,
the associativity, the convolutional properties R/ (f+g) =R, f+g f, ge¢ H(D)

then equalities (9)—(11) can be verified easnly’ for functions of the form
(12). From the bilinearity of f=g it follows that these properties hold for
polynomials. Then using a polynomial approximation these properties can be

proved for arbitrary functions of H(D).
It is clear that the operator R, is a right inverse of the operator D, - (9/0z,

—2)- (002, 1), i. e.

(13) D,R, f—=f holds for all f¢ H(D)
and for all fixed A ¢C” with £(A) +0.



CONVOLUTIONS, MULTIPLIERS, COMMUTANTS AND DIRICHLET EXPANSIONS 175

Lemma 2. For each r=(\y, ..., 1,)€C" with E()\)=0 the function
e 2 E(A) is a cyclic element in H(D) relative to the set of multipliers
{R!...., R}, i e. all linear combinations of the functions (R'll)kl"'(Ri' Yen

1 n _ n
{e ) EM}, k=0, 1, 2,...5 j=1,..., n are dense in H(D).

Proof. It is easy to see that the set of these linear combinations coin-

cides with the set of the functions e* #)p(z) where p(z) is an arbitrary poli-
nomial of the variables z,, ..., z,.

Lemma 3. Let k:(k,,..n.. 1,)€C" be fixed and let E(A)+0. Let j
with 1=j<n be fxed, too. Then an operator M: H(D)— H(D) has the pro-
perties M(H‘”i)c H¢,i and (0/0z))Mf=M(0/0z;)f for each f (Hoj iff MR/
=R[ M in H(D). ’

Proof. Let M(Ho )CH¢ and let (0/0z,)Mf= M(0/0z;) f for each fEHoI._
Let g¢H(D). Then R/ geH.» and hence (0/0z;—*;)MR, g=M(0/0z;— )Rf
=Mg. Since MR/ geHo we get R/ Mg R/ (d dzi— HMR] g MR'
-0, {MR] g} -MR] g Conversel), let RfM MR/ m H(D). i f( Hq. then
there exxst> a g¢ H(D) such that f= R‘ & Then Mf—R] Mge Ho , 1. e
M(Ho )= Ha. With the same f we get (9/0z—2)Mf= 1oz, \MR! g
=(0, dz,—).,)R/ Mg Mg=M(0/0z;—1;) f, hence (0/0z;)yMf= M(0/0z;) f.

Theorem 2. Let M: H(D)— H(D) be a linear operator in H(D) and

let h=(1y,..., L,)€C" be an arbitrary fixed complex vector which is not zero
of the entire function E(Q). Then the following assertions are equivalent:

a) M is a continuous operator in H(D) with invariant subspaces He, ..
Ho commuting with 0/0z; in ho for j=1,..., n.

b) M is a continuous linear operator in H(D) commating with all resol-
vents R‘ ..... R" in H(D).

) M is a m'dttplzer of the convolution fx*g.
d) M is an operator of the form

(14) Mf=Dy[my * ] with my = M[(—1)"e* 2/ E(L)] € H(D).
e) M is an operator of the form

7y

n RN
(1) Mf"Pofﬁ-k-\-:‘” <1\'.; {D,l _____ ik(Z,'l,...,Z,-k)} * {f(zy,.. . 2,)}

e ‘EH(Di‘?<---><b,-k).k-l,...,n. where

o | i del
f * 8= d)i,.:x * lk Ck{ f f'f(zl' sy le*‘c:‘l—"ilv

11 ‘k

R R TS AR I C A S SRR z)dG; ... ac,,
are auxiliary operations defined for f, g¢ H(D), 1 =i, <---<i,=n.
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Proof. a) <> b) follows from lemma 3. b) = c¢). For each multiindex
(B)=(kys ..., k,), k=0, 1, 2,... let us denote R‘A"’=(R‘M)*‘---(R2 )*n. Then
n

from the obvious identity Mr, = r,=r, « Mr, where r,(2) B (—1)"e* 2/E(X) and
from the commuting of M and R{¥ it follows that MRPr, « Ri9r, =RP'r, tR*;"”Mrk

for arbitrary multiindices (p) and (¢). Then

(15) Mfxg—f+Mg
holds for f, g which are linear combinations of R{¥r, with various (k), hence

(15) holds in H(D) by lemma 2. According to (13) the complete multiplier re-
lation (7) follows by application of D, to the extremities of the chain of iden-
tities RAM( f» @)= 1% M( f + @) — M, x(f » @ = (Mr» f) x g=(ri.» Mf) » g=r;, »(Mf
#g)— Ry Mfxg). c) = d). Let M be a multiplier of f=g. Using (9) we obtain
that R, Mf=r,« Mf=Mr, =f and we get (14) with my, =Mr,. d) = e). (14) is
a developed form of (14) which can be obtained by immediate differentiation

(z‘-l. e 2‘-")

using (10). e) = b). Since the operations f ® g are continuous in H(D),
then (14’) defines a continuous linear operator in H(D). Each of the terms

in (14’) is an operator commuting with all the resolvents R“, ..., R? which
n
can be verified directly for functions of the form (12) since the *“splitting pro-
(Z, 4000 .:'. )

L

perty” holds for the operations f * g too. Then by polynomial approxi-
mation the multiplier relation (15) can be obtained in H(D). B
Now we shall describe all continuous convolutions in H(D) for the

resolvents R} ,..., R} .
1 n _

Theorem 3. Let = be a bilinear operation in H(D) and let X¢C"
be fixed with E(L)#+0. Then the following assertions are equivalent :

a) = is a continuous convolution for R}, ..., R} in H(D).

1 n

b) = is a continuous commutative and associative bilinear operation for

which the subspaces Hol ey H¢n are ideals in H(D) and

0, -~ of ~ -
(16) o;;(f:g);a;j; +g holds for f¢He . g€ H(D)

for each j=1,...,n.
¢) The “mixed generalized associativity relations”

(17) (frg)wh=f = (gxh)=f*(g*h) hold for f, g, h¢HD).
d) The operation « admits a representation of the form
(18) frg=Dim+frgl

with  my, — {e* D)E(L)} »{e* 2/ E(L)).
The operation » is without annihilators iff the element my is a non-di-
visor of zero of the primary convolution f=»g.
del ~
Proof. a) = c). The operator Tyf = f »g is a continuous linear operator
commuting with Ri.""'Rf and hence 7, is a multiplier of » by theorem 2,
n
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(f:u Q)=h f*(g*h) holds. The second equality in (17) follows easily from

thls ¢) = d). Using (17) we get RyRA(fxg@)=r = nsfsg=rs=n*fsg—=m+fxg
hence (18) holds. d) = a). It is not difficult to prove directly that the conti-

nuous operator Te fd;‘l D?[mj * f+g] commutes with all R{l, .o, R in H(D).
Indeed let A= (d 02y—Xy) - - - (0/0z,—1%,). Now TgRg_lf:DlA[mA,;f* g] and
R)‘_ngf: AD;[m; = f = g| —®{AD;[m; = f=g]} since R}Ll(d,’dz,—kl)fzf—tblf but
O {AD;[m = f= g} =®{AD, [ == f :g]}:AQ[R" R" ]2<l> (0/0z,— 1 MR} )2

(f+ & =R ( f*g)=0 hence TeR) f=R} Tef- Analogously rgRI =R Tg for
j=2,,..., n.a) = b). Let fqu» Then f=R h with & ¢ H(D) and d),(f* 2)
=0, R/ (h*g)_O i e Ho, is an 1deal of H(D) and 0/0z(f*g) = d/dz,R’ (h
aug):kh*g (0/0z;R] h) *g= (df/(dz,)tg The continuity of fxg follows from
the representation (18) since a) implies d). b) = a). Let 2= R/ (f:g) — (RS f)
*g for arbitrary fixed f, g¢ H(D). Then (0/0z,—h))h= f*g~[(d’dz, — ,)R’f]

*g=0and ®2=0 since He, is an ideal of H(D) relative to + hence we get

h—=0 because E;(X;)=+=0 and' A; is not an eigenvalue of the previous problem.

2. A convolutional approach to multiple complex Dirichlet expansions.
Now let E;%;), j=1,..., n be entire function of exponential type (i. e. of
order 1 and of normal type) with infinite sequence of different zeros {A/} ,

with multiplicities {m}} . Let y{(z2,) be the Borel transform of EA{;) and let
Dy, j=1,..., n be a finite convex domain in the complex z,-plane such that
D; contains all singularities of the Borel transform Y. Let us assume for sake

of convenience that 0¢D; forall j. Let D D X ---xD, and let
(19) @, f= 2‘; l[f ()¥Az)dz;,  f€HD))
i

be a continuous linear functional in H(D;) defined by means the Borel trans-
form vy, It is known [7, 24] that

(20) E/(C/)=¢/.:,{e:':i} : 2,,,1[‘1/(21)6’ idz

for an arbitrary contour I'; enclosing D,. The problem for expanding of a

function f¢ H(D) in a multiple Dirichlet series of the form ¢ 5, oy (Z)
R LR s
e Mt *o " where dy ..., »,(2) are polynomials have been studied by V.P.

Gromov [6] dnd by A. F. Leontiev [7], 8] In [2] the authors have applied
a convolutional approach for description. of their coefficient multlphers
in the ¢ case n -2 when E(§) and EyG,) have simple zeros only, i.e. when
m‘ =m, =1. Now we generalize these results for multiple zeros of E,(C,), .

E(&,) too.

12 Cn. Ceppmxa, xn. 2
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As in previous section we use the compact denotations

def def
Y(Z) = Yl(zl)' : 'Yn(zn)' r= rl>< o 'rn and
def 1 "
—_— (% 2) = v = 52
BO)E G [ @) 2 d2= i) EG) = e )

where

def

Of = oa [MD @z =Pusy o @ [}

1

ni)"

Let also x(,,)"i—’(x;l,...,xg) for each multiindex (B)=(ky,... k). k;=0, 1,
n

2,.... We shall use the denotation z“‘):zfl .. .z:" too.
Now let A=(k,...,A,)€C" be a non-zero of the entire function E(J),
i. e let &, =3/ forall j=1,...,n k;=0,1,2,... Let us consider the re-

! _ .
solvents R/ of d/dz; in H(D)) relative to ®;, extended in (D) by (4). It is

J
clear that {exk""};‘_’:O is the eigenfunctionsystem of the spectral problem dy/dz;

—ny, ®(y)=0 for y¢ H(D,) corresponding to the eigenvalue p=3%/. However
if A/ is a multiple zero of E,(g), i.e. if m/>1 then thereisa system of func-

Wz, m 132 Wz
. ] I . . . . k I
tions {zet',....z;# e/} associated with the eigenfunction e ¥/ and cor-
J J j J
. . Az Az mp —1 Az
i — I i ] i I S
responding to A/ Let S/={e* ', zje* /', ..., 2,7 ek } be the system of

all generalized eigenfunctions corresponding to A/ and let
(21) S(k)d:-e'{z(”d"(”)'”: 0<s;=m) —1, 1=<j=n}
]

be the system of tensorial products of the functions from ., i=1,..., n for

arbitrary fixed multiindex (k) =(k,, ..., &,) According to Tt{eorem 1 the ope-

rators R!,..., Ry have a convolution without annihilators f*g in H(D) re-
1 n

presenting Rl”Ril' ..R;‘n by (9).

For brevity’s sake in the next we use a multiindex denotations. The mul-
tiindices (p)=(py,....p,) are considered as n-dimensional vectors with usual
operations and the partial order relation: (p)=(q) iff p;~.q; for all j=1,...,n.
If (p)=<(¢) and (p) +(g) we use the denotation (p)<(g). We use also the
compact denotations (0)=(0,...,0), (D)=(1,..., 1), mp ':(m}(l. ...,m}) and

V(ﬁ)z(”’ll“l"“ ymp —1)=mgu —(1). In the next the symbol E:‘g - denotes

a summation over alln the multiindices (s) with (p)=(s)==(¢), i. e. over all (s)
with py=s,<qp j=1.....n i e :{;’,l_,,:sj{l- gy B, (B! k,!...!lf,,!
Definition 2. Formal Dirichlet expansion of a function fe¢ H(D) re-

lative to the system S-—|JSw of Dirichlet polynomials (21) is said to be the
correspondence *)
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(22) f*(f-) P f,
where the Gromov-Leontiev projection

Yk Vik)y—()

(23) Puf= X aw (f)ze e ® 7 s)
($)=(0
on the space Hy spanned on S is defined by

(23') P(*)f n f C{ff(g x)e\‘ x)dx} E(t) dr.

Here rm—c‘ X ><c" and ci is a contour enclosing only M of the zeros
l

of EAL)), j=1,...,n, i e. it does not enclose other zeros L5 wlth (&, 9)=(J, p)-
We note that for the sake of convemence by the next considerations the

indices of the coefficient functionals- a(k,(f) (0)=(s)<vw in formula (23") are
taken decreasing when the degrees of the corresponding Dirichlet polynomials
2™ ®?) increase.

Theorem 4. a) The projections Py, are multipliers of f=g and they
can be represented by

(24) Puf=f*ou for fe HD), where

def &t 2)
(25) or(2) = /

(2r l)n ) El(7)
is a function of the space Hy.
b) The function ¢u “splits”:

dt

n ) 1
(26) ouw(2) =1 of (z)) where o} (z)=5; ‘{ g(’ ,’> dv; and
A k)==(p),
(27) Py * @ —{ 0 for
wEhe ow for (R)=(p),

i. e. the projections Py form an orthogonal system.

c) The projection Py is the unique continuous projection mapping
H(D) onto Hy having m'vanant subspaces He , . .. » Ho and commuting with
0/02; in He, for j=1,.

Proof. It is cnough to prove (24) for functions of the form f(2)=f,(z,)
(r Al

-« fu(z,) only. Since now fxouw=II7_, f; up; and P f=17_, Pj f; where
I
PLLS L (I xe dx) f d
f 2,“1 I%; [l AS—Xy x;} Ejy 9
ki
it is clear that (24) is enough to be proved in the case 7= 1 only. But now (k)= &,
<t 2)=rtzand [% is the usual one-dimensional integral and we have
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t(2+{—0)

frow= 0 [ Loy § < pra di] fio)do)
4 t’k

1y Feorsti-oforgey 4T — L ¢
= 5 [jk d>;{}[e z+i-o)f do}l:‘(r)“ = cjk F(r, 2)dr,

where F(t, z):_Ei‘T d, {bf €79 f(o) da} ——ofe‘("“’)f(c)dc.

Hence (24) follows since [7e**~9 f(o)do is an entire function of t. The belong-
ing of @u to Hy follows from the identity D® {@ue "% 7} = 0 for all
) . R
($)>Vv, hence @ e “*r* is a polynomial of the form .‘_‘(‘;)"!‘w)am 24, Also
(z))
since @ *@p=117_, ¢, = cp;;l_ it is enough to calculate o) =@, in the case
n=1 and to establish b) in this case. Now let n=1 and let ¢, and c; be
contours enclosing only A, and A, of the zeros respectively and let r,,ﬂc;:Q_

It is possible A,=2, too. Using that £({) = ®_{e*} after elementary calculations
we obtain:

o

etz +5—0) &
E(o)

1 1
x> 0=l lyn | e~ 4% 5wt
P

dold)

1 . do
~ Ty | |, FoEer
V]

(l)i {f;e'(iﬁ’ﬁ’-;) gd:dc}

1 . 1 ¢y €E(r) —eE(o)
“ ey [ T O e e
P

1 . e . dt 1 e drt
T (2mip /, E(o) d",f -0  (2rip { E(7) d‘[ t—o °
‘p k k tp

Now let A,+21, and let ¢, does not enclose r; in its inside and conversely.
d "
Then fk 25 =0 for ogc, and [ %<0 for t¢c, hence g9, 0. If A=),
P

let us take ¢, enclosing ¢, in its inside. Then t}" tdoo -0 too butc{rd_td =2ni
k

for 1€c, hence ¢, *¢,=¢, and b) is established. Let now Q: H(D)—~Hu be a
continuous projection on /) with invariant subspaces Hg,, - -- » Ho commut-
ing with 0/dz, in He tor j=1,...,n. Then Q is a multiplier of f«g by
Theorem 2 hence Q commutes with Py and Q — P,.

Now we shall prove a uniquess theorem for the multiple complex Dirich-
let expansions.
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_ (z.)
Lemma 4. Let g(2) ¢ HD) and let {g(2)} * {0}(z)}=0 for all k=0, 1
for arbitrary fixed z,€D;, j+i and for all z;¢D;. Then g=0 in D.

Here *' denotes the operation (3) acting only on the wvariable z;.
)

Proof. From Theorem 3 in the case n—=1 it follows that f = {(p/(z,)} for
fe H(D)) defines the Gromov — Leontiev projection P/ in H(D,) relative to the

Moz Moz mi—1 Az
one-variable system {e "i ', ze *i',..., 2 L ’} in the case of the vari-
able z;. Now from Leontiev umqueness theorem [6, 255] for the one-dimension-
al case it follows that gz,,...,2,. z,)=0 holds for all z,€D, and arbit-

rary fixed z,¢ Dy, j+k.
Theorem 5 (Uniqueness theorem). Lef feH(D) and let Py f=f* 0w
=0 for all (k)=(0). Then f=0, i. e. the projections Py form a total multi-
plier projection system.
Proof. Using (26) we have

(z,) (z, 1) (2
frowm={I(f = o}) = L A A

for all (k)=(0) and applying successive Lemma 4 we get f=0. R s

It is clear that dim H= “ m"n for each (k). Let now D— r Rl

del 9 kit .tk

(i. e. D=D, for »=0). Let also D‘*’=~k—k—-
dz“---dz""
Now if )/ k;—0,1,2,..., j=1,...,n are simple zeros of the all entire

functions lz(g) j=1,...,n then dim Hu—1 for all (k), @uy=e"*® ?/DE(hw)
and Py can be reprcsented in the form

(28) me= am (frePwr®,
where
(29) (a:h)(f)— DE(X (D; {(( f(c t) e(l(k) t)dt}

are multiplicative linear functionals relative to f=g, precisely

© © O
(30) auf f*g)=DEAw)aw( fam(g)

holds for all f, g¢ H(D) and each (k)=(0).
In the general case for arbitrary multiplicities of the zeros of EAL)),

)
j=1,...,n the coefficient functionals aw (f) (see (23)) of the projection P,
can be expressed by

)“'(k)_(‘))
31) aw ()= (2,,,,» I o {gf(c—x)d' “d.x} B(,‘*’ 5
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where (s)! é ...8,! and (r—-km)‘”:(n—l},l‘-)- e (T = ", This follows

easily from Taylor formula for polynomials. Indeed as in Theorem 4 it can be
S ()

proved that qu,(2)=(Pu fle~"*r? is a polynomial and aw, (f), (0)<=(s)=vw

are its coefficients. Then

(5)
( —{
am (f)={D"®""gu(2)} 2=0
.v(k,qm (t—),(k). z)

= .__P,, S - (T, x [ ‘
= @y (j””d) {bff(g x) e dx} @) dt E
l2=0

'V(k) (5)) & Mky 2)

(r— ‘
x)ec 0 dxy ") 1
21:1)" (jk) {t;f(c ) ) E(r) Ii

z2=0

Analogously

‘ "(‘15) V(k)y—($) 5 Oy 2 \
(32) Q= = Uy 29 e R T(s)!

(5)=(0)
(V(py—(5))
) (s) 1 (t—2,) B
with Ury = (k;fm dt for (0)=(S)=V).

“27[1')" C(k)

(s)
We note that aw( f) are multiplicative for (s)=(0) too but they are non-
multiplicative for (s)+(0). Precisely
0) () )

(33) llm(f* &) =B aw( f) am(g),

e () 5 -0 @ (@=0 ]
(33") ag( f* g)= X Bir L( ) Ay (f)am (8) for (0)<(8)= v,

(@)= ()=

(5) ¢
where B = D' ™ E(hm)/((8)+mu) s (0)=(s)=vw are the coefficients of
the multiple power series representing the entire function £(§) = £,(C)). .. E(C,)

(s)
( Ik
= (G A) " E =0y Bu(§ — Aw)® around A,

(s)
For the proof the “splitting property” of aw(f) for functions of the form
f(2) =fi(2)) ... fz,) can be used to reduce the general case to the case n-=1.
To the last case a general approach [9; 10; 11] can be used.
We note that there is a basis in H, more convenient for studying of
the convolutional properties of the Dirichlet series relative to the convolution

f*g in contrast to the usual basis Sy, (21). Indeed let D" dr-d(d,’dzl~)»,)‘-.

(s) e
(0/0z, — 1) for L¢C" Then (p(,,,g D"® g with (0)<(s)=vu form a ba-
sis of H, which can be expressed from (25) by

() 1 (!—lu))(\'u’“(me(" . d
Pry~= —— 7 TR T
(2ri)" iy E(r)
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V(&) (s)
Obviously ¢ =o@. Namely, {¢x : (0)=(s)=<wv(s)} is the most convenient basis
to study the inner convolutional structure of FH, relative to f*g since P,
has the representation

Viky  V(g)—(® (s)

(34) Purf= Z Cuy () oy,

(5)=(0)

(s)
where the coefficient functionals C(f), (0)=<(s)=v(x) have the most simple
multiplicative behaviour relative to f= g namely

(0) (0) (0)
(35) Ciol £ +8)=Ciay (/) Ciny (@
(s) (s)—(
(35') Cutfea)= % € (NCui@) for O<()=vin

(s)
The new coefficient functionals C(f) are connected with the formulas:

(s) (s) (s)—() (/)
(36) an(N= T aw Cor (f) with ais, defined after (32),
()H=(0)
(s) (s) (s)—)) (/)
(36" Cu(f)= (..‘_‘w By aw (f) with BU,, defined after (33).
=(0)

From the “splitting property” of the projection Py, and the fact that <p(,,, is a

(functlon of the form (12) it follows easily that the new functionals
§)

Cu (1) satisfy the “splitting property” too, and the proof of (35) and
(36) can be reduced to the case n =1 too. EspeClally the proof of (35)
for n=1 follows from a genera[ approach developed in [9]. The connection (36)
between both systems of functionals when n=1 follows also from this
general approach which can be applied since when n=1, fxg is a convolution
for one operator with simple point spectrum (d/dz, considered in He or
equivalently its resolvent R{l) and the projections P, define its generalized

eigenfunction expansion. See also [10, 11].

Theorem 7. Let M be a linear operator in H(D) and let L»¢C" be
fixed such that E(L)+0. Then the followmg assertions are equivalent:

a) M commutes with 0/0z,, ..., 0/0z, in Hy, and with Pw, in H(D) for
each (k)=(0).

b) M is a multiplier of f=g.

¢) M is a continuous linear operator having invariant subspaces He ,

» Ho and commuting with 0/0z; in Ho for Jj=1,.

d) M commutes with all resolvents R .. R"

e) M admits a representation of the form (14) or (14') with m, ¢ H(D).
Proof. It follows from Theorem 2 that b)<>c)<>d)<>e) for the present
chu:ce of the functionals ®,,..., ®,.a) = b). Using (10) and the fact that

{‘Pm (0)=(s)= v} is a basis in Hy, from the obvious equality M[@wx,* @)
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= Moy = Moy * 9y we get M( f+g)=Mfxg for f, ge Hn=Ho 1 --- N He . Now
using that Py is a homomorphism, i. e. Py f* g =Pw/f*Prg we have
Pu[M(f+g)—Mf+g|=0 for each (k) and arbitrary fixed f, g¢ H(D). Hence
M(f#g)=Mfxg holds for f, g¢ H(D) by Theorem 6. b) = a). Let M be a
multiplier of f+g Then M commutes with Py, in H(D). Now since b) implies
¢) and since Huy—=Heo 1 --- He for each (k) we get that b) implies a).

Remark. We note that a) implies the continuity of M.

Now we shall characterize other convolutions of the Dirichlet expansions.

Theorem 8. Let = be a bilinear operation in H(D) and let A=(X,,

» ko) € C" be such that E(AM)£0. Then the followmg assertions are equivalent:

a) = is a convolition for all 0/0z,,...,0/0z, in Hy and for Py, in H(D)
or all (k)=(0).

b) The “generalized associativity relations” (17) hold for f, g h¢ H(D)-

¢) = admits a representation of the form (18) with my={e% 9/E(}L)}
= (e E(MY€ H(D) for arbitrary fixed »¢C" with E(M)40.

d) = is a continuous, commutative and associative operation for which
the subspaces He , , Ho are ideals of H(D) and 0/0z/ f*g) = (0f/0z)) =g
holds for fe H@, g(H(D) j—l

e) *isa tontmuous rorwolutton in H(D) for all resolvents R) ,...,R,’_'.

Proof. The equivalence relations b)<>c)<>d)<>e) hold from Theorem 3
for the present choice of the functionals ®, ..., ®,. Then b) implies a) since
both b) and d) implies a). a)=)Db). Since (17) is evident for f=g—=h =9, as in
previous theorem it can be proved that (17) holds for f, g, % ¢ Hy) for each (k)
and by the totality of {P4} we obtain that (17) holds in H(D).

Remark. We note that if the convolution # is without annihilators, i. e.
if the representing element 7, in (17) is a nondivizor of zero for = then =and
# have one of the same set of multipliers and the new convolution * can be
used for representation of multipliers instead of =

Definition 3. An operator M: H(D) —~ H(D) is said to be a coeffi-
cient multiplier of the formal Dirichlet expansion f~ XPw) f iff there is a
numerical multiple sequence \ such that for arbitrary (k)

(37) PuyMf =P (f) kolds for all f¢ H(D),

i. e. there is a sequence {pw} such that M mps the expansion f~ SuPw f

to the expansion Mf ~ _(k,umf’m
Remark. If £4C,), j~1,...,n have simple zeros only then M is a

coefficient multiplier iff 1t 9at|\fies the relation

(0 (0)
(38) Ay (M f) — nuyaw (f) forall fe H(D) and arbitrary fixed (k).

Now an operation = is said to be a coefficient conwvolution of the simple Di-

(l(k). z)

()
richlet expansion f~ Xy aw(f)e iff there is a number sequence {j)

such that
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© - © © -
(39) aw( f* &) =Rw aw( f)ax(g) holds for all f, g€ H(D)

and arbitrary fixed (k)=(0).

The next theorem gives a complete description of such kind coefficient
multipliers and coefficient convolutions.

Theorem 9. Let E{L)), j=1,...,n have simple zeros only and let
L€C" be fixed such that E(L)+0. Then:

a) An operator M: H(D) is a coefficient multiplier of the simple formal
Dirichlet expansion iff it is a multiplier of f=g or equivalently iff M can
be represented by (14) or by ~(14) with m,=M{(—1)"e* D/E(L)} € H(D).

b) A bilinear operation % : H(D)> H(D)—H(D) is a coefficient convo-
lution of the simple formal Dirichlet expansion iff = Zcan be represented by
(18) with

my, = {e* 2/ E(L)} :{eo.. 2 E(A)} € H(D).

©
Proof. a) Using (30) we obtain that au [M(f = g) — Mfxg] = 0 for
each (k). Hence by the totality we get M( fxg)=Mf=g Conversely if M is
a multiplier of f+g then M can be represented of the form Mf=D;[m; = f|

with my € H(D), and since Py, is a multiplier of f+g and m; = f¢ Heo N ---NHe,
then PxDy[my. + f]1= D) Pw|my + f] follows from Theorem 2a). Now by (28) we

© L
get aw(Mf)e®r ‘:P(,,,Mf P«k)Dx[’"A *fl D;‘P(,,,(m, #f)=Dh[Puwym. } * Pu f]
© ,
=D, [“m(”lx) e Dy a(k,( feer )= am ("lx) a(k) (j)DE(k(,,,)Dle“‘(*) .

)

)
*-Gm("lx)am(f)DE(Mk))(Mk)—’)(”ea“” “, hence a(,,,(Mf) Hx) am(f) with p

= a(k)(mA)DE(A(k)XA-(k) —A)h.
b) If = is a convolution for the simple Dirichlet exspansion then from (39)
it follows that the “mixed generalized associativity relations” (17) hold for =

and +. Indeed if p=(f*g)*h)—f = (g+h) it follows from (30) and (39) that

a(,,,(p) =0 for all (k)>(0) hence p==0. Conversely let = be an operation of the
form (18) i. e. f= g=Dj[myxf=+g]. Using that f+g¢He N---NHe, and (10)

. (W] ~ ~
we obtain fxg=Dy[m,* Dy(f*g) Now aw (f+g)e"® ¥ =Pu(f+g)
= Dy Piw|my, = Di( f * )] = Di[Piymi » Dy P f * @)

© ()
: DA{lam(”lx) g D;. [am (f+g)ew 2]}
a(.)(m;)DF(AU,,) am(f) a(,,, (g)D2[e*r ¥ 4 eHar )
= (l<k)(m1)DE(k(.,)’ am (f) am(g)DZ[e("(*)‘ )
(0) ”© © P & o
= au(m. )DE(A(,,,)” ()vm* M) aw( f)ap(g)e™ ™ . Hence au(f+*g) =nu am(f)

(0)

aw(g) with p(.,~a(.,(nu)DE(X(.,)’(l(,)-—-1)(2)
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In the case of arbitrary multiplicities of the zeros of the entire functions
EAL), j=1, 2,...,n a complete description of the coefficient multiplier gives
the next

Theorem 10. Let L¢C" be fixed such tiat E(A)+0. Then an opera-
tor M: H(D)—~H(D) is a coefficient multiplier of the formal Dirichlet expan-
sion (22) -(22") iff it admits a representation of the form (14) with
”I;_\-’.‘_:(k.}l(k,R;'(qu, (here RL:R;‘ . n see (11), i e. Mf:D;‘[m;“ *f] with

R,
m, € H(D) satisfying my ~ ZgmhxPr{(—1Ye%* 2/ E(L)}.

Proof. Let M be a coefficient multiplier of the formal Dirichlet expan-
sion. Then it is clear that Pu[M(f*g)—Mf=g]=0 for all (k)=(0) by (37),
hence M is a multiplier of f=g and it can be represented as Mf = D;[m; = f]
with mk:Mf)" fk:«'(‘" 1)"8()“2),"5().). Then P(k) m; = W) P(k) o= Ky * Qr)
= Mo R k- B

Conversely let Mf=D;[m; =f)] with m, ¢ H(D) satisfying n, ~ X0 Rk
Then Puym,=pepRi0w and since musfe¢Heo M-+ Ho we have PyMf

- Py Dr [y, = f| = Do Piyms, * f] = D[ Ra® ) * fl1= By DrRi @0 * 1= R P f-

It is clear that Theorem 9 a) is a special caseof Theorem 1

[t remains to consider the problem for finding of the coefficient convo-
lutions of the general Dirichlet expansion (22) when E(()), j=1,..., n have
multiple zeros.

(5)
Let By {Ww: (0)=(s)=vw} be a basis in Hy which is a tensorial
m/ —1
product of the basises B —{v, _ } ki (chosen such that deg {w] J
i NIy i

/*;U )
)_2 " ?; . ).i z; mi —1 k: 7
.e “i "}=s;)of the subspace H/ spanned on {e */ *,...,z "/ e "/} le. the
I

() ) e )
“splitting property” w(s(2) =11"_, v} , s{z;) holds. Let also P f= .‘_‘(s,‘i’(n,h‘k)(f)w(k,
/

(s)
be the representation of P, relative to B It can be proved that Zw(f):
(s) (s)

(0)<=(s)= v satisfy the “splitting property’ as aw)( f) or Cx(f) too for func-
tions of the form (12). B

Definition 4. A bilinear operation = in H(D) is said to be a coeffi-
cient convolution of the formal Dirichlet expansion (22) relative to the ba-

(s)

sis B iff there exists a multiple sequence pp : (0)<(s)=v), (k)=(0) such
that

o~ @ -0 @@= )
(40) ha(f*g)= Z ww = ko (NHhn(Q
(P)=(0) N=(0)

holds for f, g¢ H(D) and each (k)=(0).
()

As in 9 it can be proved that for arbitrary (k) there are numbers {8y,

(s) . O (O . ($)—=(N (N
Er) - (0)5(3)';V(h)} with 8(.) Ex) :l. d:;))z'(“) b(h) s(.,--O for (O) ’.(.\')‘,:V(‘) and
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(s) (-{1 O—€H 0 (9 () -0 )
Y= X Bwm Qwy km(f)= I ewm Cuw())
N=0) D=0

@ @-0 0 @ © =) ()
Om= X  Ex VYur Cu(f)= I B hw(f) for (0)=(s)=vw
(N=(0) N=(0)

(compare (32), (36)). It can be proved by these equalities that the notion of

coefficient convolution does not depend on the choice of such kind basis By
(s) V(k)—(s)

So it is enough to use the dual basises {(p®), Cwx )}, or {(ze*wr i

V(k)—(s)
agy b (0)=(s)=vw. For example

(s) (s)—(p) (») (py—()) )

¢ o~
(40") Cu(f*8= = nr I  Cu (HCw(®
P

(2)=(0) (/))=10)

holds for f, g¢ H(D) and each (k)=(0).

Theorem 11. An operation x in H(D) is a coefficient convolution of
the formal Dirichlet expansion iff P satzsfzes at least one of the equwalent
assertions a) — e) in Theorem 8, i. e. iff = can be represented by f= sg=D;

s)
[my, = f = g] with ml(H(D) The coefficients pu, in (40') are the coefficients
v (&)—(5) (5)
in cpmupu,,— L(:))(o\ Wi P . The operation = is without annihilators in

H(D) iff p(k, +0 for all (k)=(0). Every coefficient convolution is a continuous
operation in H(D).

()

Proof. We note that a) in Theorem 8 implies (40’). Indeed ¢

_ e i
= D"~ g . implies Q) * Ok :D;'(:ﬁ” ) (’”cp,, and (40') can be proved

Ak)
in F and hence in H(D) using the totality and C(‘,)(f) C(k,(P(,,,f) Converse-

ly (40" implies b) in Theorem 8. Indeed (40") implies that C(.)[(f.g)th f
«(g+h)] =0 for all (0)=(s)= v (k)=(0) hence (f+g)sh=F=(gh).
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