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APPROXIMATION OF DIFFERENTIABLE FUNCTIONS
BY MONOTONE POLYNOMIALS

K. B. SRIVASTAVA

In this paper, we have started the study of the monotone polynomials giving estimates
of Timan Type for the functions whose first derivatives are continuous on [—1, 1]. We also
announce a theorem on approximation of monotone functions which are » -0 (finite) times
continuously differentiable on [—1, 1]. Our simplest approach has been through trigonometric
polynomials.

1. Introduction. In the past few years, attention has been paid to deter-
mine the rate of convergence for continuous functions in case of monotone
approximation, i. e. approximation of monotone functions by monotone polyno-
mials. In this regard the results of Shisha [6] and Roulier [5] are worth
mentioning. Later, in their paper Zellerand Lorentz [4] elaborated that
even the sharpened form of estimates (e.g. Timan type) can be obtained for
continuous functions via trigonometric polynomials in this case.

Very recently Beaston [I] extended this result to the case when the
monotone function to be approximated belongs to C[—1/4, 1'4] and proved
Jackson’s theorem for differentiable functions.

Here, in this paper, our attempt is to show that if the function under
consideration is differentiable in [—1, 1] then we are able to define a mono-
tone polynomial which reproduces Timan’s theorem. The second part of this
paper will be devoted to the study of the case when f¢C[ -1, 1]. Our sim-
plest approach is through trigonometric polynomials. An interesting feature of
these polynomials is that they do not solely depend on the functions to be
approximated as in the case of Beatson [l]. Instead, they now have actual
structure.

Notation. Throughout his paper C,, C,, ..., denote positive constants
not depending upon x, n and f.

2. Before we prove our main result we require some auxiliary theorems
on trigonometric polynomials which are as follows:

Theorem 1. Let f(y)¢C|—n, =] be an even and decreasing function,
then we can find out a trigonometric polynomial L,( f.y) such that
(2.1)

L(f.y) is decreasing and

(2.2 LLYCf, 9) = O ) = Co1 ) (1),

where wy( - ) is the modulus of continuity of f'.
Proof. Let us modify the traditional convolution operator

(23) fodugy [ At
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by the following rule

1

(2.4) fran=+ [1 2 DU dudy -0,

where dp, is an even Borel measure positive on [—m, n]. If we take

sin nt/2 \2r+4
(2.5) dn(t)=(Com2 ) at,

then, for r=1, we obtain

' ( i r2( t /2
(26) Ll fo3)=—5— f O+ =D O gy )Vat,
where A,, is a normalizing constant given by
. T sinnt2 ° ™ sin n(t—y)2.°
(2.7) An= J" (2 ) dt= .,l:(—m) dt.

For r=0, (2.4) is the famous Jackson operator. Now to prove the second part
of the theorem for =0, we require the following useful equality

28) fay= £ SO o) =0 u - ol oK)

whose proof depends on the finite Taylor’s expansion of the function and
therefore can readily be verified.
Owing to (2.8) for r=1, we get from (2.6)

C F —y)2.8
29  ILu(fN-ANI= 5o [1t=ylorlt=y N Snigrs ) at

_ Gog(1in) " gy Sin nuj2 sin nu/2
= A [n ‘{ ll( sin 4/2 )du+ “I l( sin u/2 ) du]

It is easy to establish that

" i 2 6
(2.10) ,;4‘;1- I ) di=o(1/n2).
and
(2.11) [lal (S gy - o1 /m).

The proofs of these equalities are contained in [8] and are therefore omitted.
Combining (2.11) and (2.10) with (2.9), we at once have the proof of the
theorem for v=0.
To prove the theorem for v=1, we differentiate (2.6) and write the
identity
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(212)  —fN L= [ FO- O dt

1 T oo d  sinnt—y)2°
i (AN —fO) = (y=0FBO 5 Core—z dt =1+ 1
Here we have used
* od4 sinn(t—y)2 \°

(2.13) Gy dt=0.
We immediately get the required form of /, with the help of a theorem of
Jackson. To derive an estimation for /, in the desired form we use (2.8) for
r=1 and then obtain

. S - d  sinnu2 °
(2.14) (55 [ 1w or(u)] g (s 1du
w,(ljn) % d  sinnu2 \°
<L [ ()| g (o) | du

Anl -
x : ¢ [§)

) ) n_ a2 _(_i sin nu 2
o (Unfg - [ul g, () | du
e " lul | d ( sinnu/2 )h|dll}
+A,,l «1 " du sinu/2 :

Owing to the equalities (2.10) and (2.11) and Bernstein’s inequality for the
derivative of the polynomial, we now have

¥ d  sinnu/2 " x/2 d ,sinnu”
215 2 M Bkt b <IN\ 2) .2
(2.15) ,f, ut| Sl ) |du-—=2x<8 ”j @ Cong) | du

16lu( Sty 52 +32 [ uCl) du=<16. Mt +32.Cy.nt = Cynt
(

sinu sin u |
similarly, we can prove

. " d , sinnu/2 \"
(2.16) J;Iull &E(_STHTIQ—) Ida,\C‘n“.
On account of (2.16) and (2.15), we obtain |/,|=Cyo,(1/n). Here we have
used that
(2.17) —A,,=o(n¥*3), r=0,1,2 ..

which has been determined in [8]. To complete the proof of the theorem,
we establish either (2.10) or (2.11). To this end, we use the technique of [8]
and obtain

1 N sinnu/2 ", 16 man o sinnu © %3 sin nu "
A ,_J,: ”’('Tm‘ﬂ/'z'“) du = A, [ d’ Il’(—,-m—‘—‘—) du+ ,/'-r.,, uX sinu ) da).
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Because of the inequalities |sinnfl<n|sinf| and sinf{=2{/n, 0=t<=n/2,
we get,

¥

xfdu

n

1%, sinnu2 1016 [ . "2 s
An JKu( sinu/2 )d = 1lmnd ln Judl‘+§a_

n

_ 160w o
= s oas T 5a 21— 077

To prove the first part of the theorem, it is sufficient to consider the function
[t +(y—t) f(t), ti=y=t,+1,
(2.18) g fM={b(y) t,=knn,
&(y)., —n=y=0.
Then the function g is even and
g =)=y -t oy (y—t)=n/nosx/n),

Lg(f. )= FDI=I (0 =Ft) =0 (y—t) =0 (x/n).
Thercfore. we have

[LY( & V)= AN LS ) =D+ L 8 ) — L £ 9]
>(C5“n):,;,'(l/n)+ | €9 f )— A »)|=o[(1/n) e, (1/n)].

Here we have made use of Theorem 1(b) and (2.19). Now we have made use
of Theorem 1 (b) and (2.19).

Now we have to show that L, ( g y) is decreasing. Let d,, k=0,n—1, be
defined by b(y)=dy+ ... +du1, k=0,n—1 then, because of the definition
of b(y), we have d,=0, and

L 1 n‘:l d w(k+1)/n
nl(g'y)"-;fnT v a__.(.[“m uy—t)dt

N sin n( y—#)2."
e f. (stnu'—r_);z)dt'

If the operator L, (g y) has to be decreasing. then it is required to show
that the functions

sin n( y—¢)/2

o) = f Cinoan Yt~ f (Snnt gy

sin £/2

are decreasing on (0, x). But
¢'( )=_£in:!y+‘h)12 o sinfn( y—tg)/2
Y= i (vt s y—tn)2
= sin®n(y+6,)/2[1/sin%(y + £,)/2—1/sin®( y —£,)/2] <0,
since sin(a+p)= | (@a—PB)|.
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[y]
=
)

Thus the polynomial operator L, (g v) is decreasing and this furnishes
the proof of the theorem (a).

3. In this section we announce our main result and show how this de-
pends upon the theorem proved in the last section.

Theorem 2. If F(x) is an increasing function differentiable on [—1,1],
then there exists a sequence of polynomials P,(F, x) increasing on [—1,1]
such that
(3.1) | F¥(x) —PY(F, x) | =ClA(X)]' Y 0r(A,(X))

nl

v=0, 1, where C, is a constant not depending on x, n and
(3.2) A (x)=((V1 —=x2)/n+1/n?).

This reproduces a result of A. F. Timan [9] in our case of monotone
approximation.

Proof. The function F(cosy)=f(y) is even and decreasing on [ —m, n].
We define the algebraic polynomial P,,(F, x) as follows:

(33)  PulF. ) =Lu(fs )= | O+ (=0 OISR .

Then, for the function F(cosy), we established similar to Theorem 1:

(3.4) L) =LY ((fe D)= ClA 0] 0 (Ay(x), v=0. 1.
For v =0, the brief sketch of the proof is as follows:
(3.5) L) = Lu(f )]
. C 7 inn(t—y)2"
p :1,1,1 ) £ [cost—cosy|ws(lcost—cosy|) er: 7;_)’:}’2 ) dt
C 1 x o Sin n(t—y)/2.°
/T:[[A”ij —j; (COSt COS'\’)J(ZI;:"::_-‘;‘:)Q ) dt

H

S AU Y20 1] wp (A(x)).

n
+ £ |cost-—cosy KW

[t remains to show that

. b si t— )2 6
(36) - WAI(J [ (cost—cos y)’(%) dt = o(A,(x)
and

) 1 - sinn(t—y)2."

(3.7) A7 [ lcost—cosy | (W) dt=0(A,(x))

We see that

()

! ) dt

sin n(t—y)/2
AlllAIl(x)

n
[ (cos t—cos y)X sin (t— )2

(3.8)
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4 b . . . .
§m)— _{ [sin? y sin2(¢—y)/2+2siny sin®|£—y /2

s i t— 2
+sin(t— )22 yay

_4n T . sin n(t—y)2.°
= An —_’; siny. Slna(t—y)/Q(W) dt

4z T sin n{t—y)/2 °
+ 1, __l; sin{(t—y)/2 (——————~sin =2 ) dt

8n2siny T . g, sin n(t—y)/2.°
e _fn sin? | =y |/ 2= ) 9t

+4nsiny.l,+8n?siny. 1+ 4n2l,,

where
1 £ ainr o, sinn(t—y)/2.°
Similarly, we can find that
3 : 0 6 . B
@310 =T cost-cosy(%("t‘—‘;%}) dt =2siny.l+2l,
nl n >

Using the lemma that follows we at once get
| A(x) = Ppy(F, x) | = 0[A(x)0r(A(x))]-
Lemma. For ¢, y¢[—m, ], we have
(3.11) I,=o(l/n"), r=0, 4.
Proof. Let r=1, 3, then, we have

| 1 T osinn(t—y)2 o7
o) LSt I \mimesy!
n i 6—r—1
-Sll’:p I (%%?—) du (|sin ntlsﬂlsmtl)g%ﬂzou/n’)'

IHere we have made use of

(3.13) Anq=np=o(n*-"),

which has been established in [8].

To prove the theorem for v=1, we again use the method of Theorem 1,
techniques employed in [7]. We now have one factor sign in the denominator
of the intermediate estimates involved. For this, we use the method of change
of variable of the integral. Thus we have proved the Theorem 2.

In order to show that P, (F, x) is increasing, we take help of Theorem 1(a).
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4. In this section we describe the main theorem of this paper which is as
follows:

Theorem 3. Let F(x) be an increasing function differentiable r=0
times and F"(x)€C[—1,1], then there exists an increasing polynomial
P, (F, x) sich that

(4.1) | Flx)—Po(F, X)|<C, | A(x)] 0prXA(x)).

Proof. The proof of the theorem depends upon a lemma given in (8]
which is as follows

n

A 9 2r+4
| |cost—cosy|'ws(| cost—cosy ) :
—x

sinn(t—y) ) dt

sin (£—y)/2

=0[A,(x)] 0r(A,(x)),

where A,(x) is given by (3.2). The proof of the theorem is done by mathema-
tical induction on r. The theorem has already been proved to be true forr=1.
This completes the proof of the theorem.
Acknowledgement. The author is thankful to Dr. R. B. Saxena for his
help and guidance.
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