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APPLICATIONS OF FIXED POINT THEOREMS
TO BEST APPROXIMATIONS

GEETHA S. RAO, S. A MARIADOSS

Let X be a real normed linear space and K any subset of X. An element g in K is
called a best K-approximant for an arbitrary element x in X, if || x—gy [l <[/ x—g| all g in K.
Let D be the set of all best K-approximants to x. If 7 is an operator on X with a fixed
point x, then by imposing some conditions on T or the set K, it is possible to find another
fixed point in the set D. Brosowski had obtained a result of this kind for a contractive
linear operator T and a compact, convex subset K. In this paper, the linearity condition on T
and the convexity of K are weakened to give rise to some generalizations.

1. Let X be a real normed linear space, K a subset of X, and x an ele-
ment of X, not in the closure of K. The set of best K-approximants to x
consists of those g,¢ K satisfying || x—g,|=inf{l x=gl: g€¢K} and it is deno-
ted as Py(x). Let T be a self-map on X. T s called a contraction, if | Ty
-Tzlsaly—2z| for 0ga<l, y, z¢X. Banach’s contraction principle states
that in a complete metric space a contraction map has a unique fixed point.
T is called contractive whenever | Ty—Tz(|<|y-2! for y, 2 in .\

A subset S of X is called star-shaped if there exists a point p called
star-centre in S such that Ap+(1—Ar)2¢S, for all zin § and O=A<1. It is
clear that every convex subset is star-shaped, but a star-shaped set need not
be convex. A more general class of sets containing the star-shaped sets is
called ‘contractive’. A set S in X is contractive if there exists a sequence
{f,} of contraction mappings of S into itself such that f,y — v, for each y in §.
Brosowski [1] proved the following

Theorem A. Let T be a contractive linear operator on a normed li-
near space X. Let K be a T-invariant subset X and x a T-invariant point.
If the set of best K-approximants to x is nonempty, convex and compact,
then it contains a T-invariant point.

Following the method of Brosowski, Singh [6] has obtained a ge-
neralization of Theorem A.

Theorem B. Let T be a contractive operator on a normed linear
space X. Let C be a T-invariant subset of X and x a T-invariant point.
If the set of best C-approximants to x is nonempty, compact and star-sha-
ped, then it contains a T-invariant point.

In this paper, some generalizations of Theorem A and Theorem B are
obtained.

2. Let T be a self-map on X such that for all y, z in X,

() ITy-Tzisaly—zI+B{Iy=Tyl+lz=TzI}+y{ly—=Tzli+12—=Ty!}.
where «, B, y are non-negative numbers satisfying a+2p+2y<1.
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Let M be a subset of X. A sequence {y,} in M is said to be minimizing
for x, if lim || y,— x| =d(x, M), where d(x, M) is the distance of x from the
set M. M is called approximatively compact, if for every x in X, each mini-
mizing sequence {y,} in M has a convergent subsequence, converging to an
element of M. It is well-known that M is approximatively compact implies
that the set of best M-approximants to x, namely P,(x), is compact.

The following result concerns the fixed point of a map T satisfying the
condition (1), instead of being a contractive (linear) map.

Theorem 1. Let T be a continuous self-map on a Banach space X
satisfying (1). Let C be an approximatively compact and T-invariant subset
of X. Let Tx=x for some x, not in the norm-closure of C. If the set of
best C-approximants to x is nonempty and star-shaped, then it has a T-in-
variant point.

Proof. Let D be the set of best C-approximants to x. Then
(2) D={2¢C: |z—x|=|y—x for all y in C}.

Let 2¢D. Then, by (2:1) and the hypothesis it is clear that
I x—Tzl=ITx—Tzl<allx—zl+Blz—=Tzli+y{lix—Tzl+lz—Txl},
where a+2p+2y=1.

Thatis, |x—Tzl=(a+7y) lx—2l+Blz—Tzl+ylx—Tzl=(a+7y)lx—2l

+Blz=xI+B+Y)Ix—Tzl, or (1—B—y)Ix—TzlI<(a+B+Vy)Ix—2I.
That is,

x—Tz<|x—z], since a+2p+2ys1<|x—y]| forallyin C by (2)

This means that 7z¢D. Therefore, T is a self-map on D.

Since D is nonempty and star-shaped, there exists a star-centre p in D
such that Ap+(1—2) z¢D, for all z in D, 0<A<1. Now taking a sequence
k, of non-negative real numbers (0<k,<1) converging to 1, one can define
T,: D—D, for n=1,2, ..., as follows: T,2=k,Tz+(1—k,)p, 2€¢D. Since T
is a self-map on D, so is T, for each n. Also, for all y, z in D,

W T,y—Tzll=k, | Ty—Tz|
<k aly—zl+kB{Iy=Tyl+1z2—Tz|}+ky{Ily=Tzli+12=Tyl}

where ak,+2k,B+2k,y<1.

Therefore, by a theorem of Hardy and Rogers [3], 7, has a unique
fixed point in D, for each n. Let T,z,=2z,.

Now the approximative compactness of C implies that D is compact.
Therefore, there is a subsequence {z, } of {z,} such that z, — 2, in D. Again,

Zn= Tn‘zn, = kn‘- TZ,,[-{-(l _kn,-)p’

Considering the assumption that 7 is continuous and the fact that &, —1 as
i — o, it follows that z,= Tz, Thus z, isa T-invariant point in D. This com-
pletes the proof.

+.. Remark. For the case when B=y=0, the map 7 in Theorem 1, beco-
mes nonexpansive and hence contractive. In this case the result reduces to

Theorem ,B. If 7 is linear, it reduces to Theorem A of Brosowski stated in
the Introduction.
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Kannan [4] studied the fixed points of the map 7T satisfying |Ty— Tz
“{ily—Tyl+12—Tz|}/2. [This is the case when a=B=0in (1)]. If a =B =0,1)
becomes | 7y—Tz | ={lly—Tzl+12—Tyl}/2. Such maps were analysed by
Yadav [7]. Thercfore the conclusion of Theorem 1 not orly generalizes Bro-
sowski’s result, but also extends it to the maps investigated by Kannan and
Yadav.

The following results are given in the context of a metric space. These
are almost direct consequences of Lemma 1 of E. Chandler and G. Faul-
kner [2], who exploited the properties of a contractive set.

Theorem 2. Let E be a metric space with metric d. Let C be an
approximatively compact subset of E. Let T be a nonexpansive self-map
on Cand Tx=x. [f the set of best C-approximants to x is nonempty and
contractive, then it contains another fixed point of E.

Proof. Let D={yeC: d(x, y)=d(x, z) for all z in C}. Since C is appro-
ximatively compact, D is nonempty. Let y¢D. Then d(x, Ty)=d(Tx, Ty)
~d(x, y)=d(x, z) for all z in C, so that TyeD. Therefore, 7{D)=D. Since D
is contractive, there exists a sequence {f,} of contractions on D such that
f.z2— 2z, for every z in D.

Clearly f,7 is a contraction on the compact set D. Thus D is a complete
metric space and Banach’s contraction principle ensures the existence of a
unique fixed point, say z, of f,7, for each n. Now {z,} in D has a conver-
gent subsequence {z,} such that 2, — 2, in D. The following argument proves
that z, is a fixed point of 7.

Let £>0 be given. Then there exists a positive integer m such that

d(z,,, 2,)=¢/2 and d(f, Tz, Tz,)<e/2.
Again
d( [Tz, fmT20)sd(2,,. 2,)<c/2.

Hence

d( [, T2 T2))=d( [Tz fmT20)+d( fnT20 T2)<e/2+¢€/2=¢. Thus there
exists a subsequence {z,,‘} of {z,} such that f,,‘.Tz,,i—»Tzo. But Sn, T2n =2, — 20
and therefore 7Tz, =2z,.

Remark. This theorem gencralizes Theorem A as well as Theorem B
to contractive compact sets. Every star-shaped set is contractive but there
exist contractive sets which are not star-shaped.

Theorem 3. Let E be a complete metric space. Let T be a continuous
self-map on an approximatively compact subset C of E such that for all
v, zin C,

d(Ty, Tz)<ad(y, 2)+B{(d(y, Ty)+d(z, T2)}+y{d(y, Tz)+d(z, Ty)}

where «, B, y are non-negutive real numbers satisfying a+2p+2y<1. Let x
be not in C such that Tx=x. If the set of best C-approximants to x is
nonempty and contractive, then it contains another fixed point of T.

Proof. Let D be the set of best C-approximants to x. The map 7 is
the same as in Theorem 1. Clearly 7 is a self-map on D. Since C is appro-
ximatively compact, D is compact. Since D is a contractive set, there exists
a sequence f, of contraction maps such that f(7(D))=D. For all y, > in T(D),
since is a contraction for each n,

n
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d(fuTy, faT2)=a,d(Ty, T2), 0=a,<l
Za,ud(y, 2)+apl{dy, Ty)+diz T2)}+ay{dy, T2)+dz Ty)}h

where a,a+2a,p+2a,y<lI.
Now, if 7 has a fixed point, say 2/, then f,7 also has 2’ as its fixed
point. For,

d( f, Tz, 2') =d(t,Tz', Tz")+d(T2, 2)=d(f, T2, Tz')=d(f, Tz, 2)

and d(f,Tz', 2’)— 0, since for every 2 in C, fpz—z.

Now by Hardy and Roger’s theorem, the map 7 has a unique fixed point
in D. Therefore, for every n, f,T has a unique fixed point, say z,. Now the
sequence {z,} obtained from {z,} converges to z, in D, by the compactness
of D. Proceeding as in Theorem 2, one easily proves that 72z,=z,.

Definition. For each bounded subset D of a metric space E, the
measure of non-compactness of A, a[A] is defined as

a[A]=inf{e>0: A is covered by a finite number of closed balls cen-
tred at points of X of radius <e}.

Definition. A mapping T: D—D is called condensing if for bounded
sets D=E with o[D]>0, a[T(D)]|<a[D], where o[D] is the measure of non-
compactness of D.

Theorem 4. Let E be a complete, contractive metric space with con-
tractions f,. Let C be a closed bounded subset of E. If T is a nonexpansive
and condensing self-map on E such that Tx=x, for some x¢E and the set
of best C-approximants to x is nonempty, then it has a T-invariant point.

Proof. Let D be the set of best C-approximants of x. Then D is a
closed and bounded subset of C and T(D)c=D. A direct application of Theo-
rele of Chandler and Faulkner [2], will now give a T-invariant point
in D.

Theorem 5. Let E be a complete metric space, M an approximatively
compact subset of E and x¢E/M. Let T be a self-map on X with Tx=x
and for some positive integer m, let T™ satisfy the condition

d(T"y, T"2)=ao{d(y, T"y)+d(z, T"2)}, 0<u<l1/2, v, z in M.
If the set of best M-approximants fo x is nonempty, then it has a unique
fixed point of T.

Proof. Let D=D,(x)={y,¢M: d(x, y,)=d(x, y) for all y in M}. Now,
Tx=x implies that 7"x=x for the same integer m prescribed in the hypo-
thesis. Let v ¢ D. Then, for 0<a<1/2,

d(x, T™yo)=d(T"x, T"y)=a{d(x, T"x)+d(y,T"¥o)}=ad(Yo, T"¥o)

s ad(ye x)+ad(x, T™y,).

That is, d(x, T™yo)= i(}fud(—VO' X)= ® _d(x. y), for all y in M. Therefore

l—a
T™y,€ D which implies that 7™(D)cD. Since 7™ satisfies the conditions of
Kannan map, 7™ has a unique fixed point in D. This means that there is an
X, in D such that 7™x,=x, Now, T™Tx,)=T(T™x,)=Tx, implies that 7Tx,
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is a fixed point of 7™ But the fixed point of 7™ is unique and equals x,.
Therefore 7x,—-.x, and hence x, is a unique fixed point of 7 in D.

Remark. This theorem extends Brosowski's result to a generalized form
of Kannan map. It is interesting to note that this theorem gives a unique fixed
point in the set D of best M-approximants to x.
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