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ON EQUIVALENT LATTICE NORMS WHICH ARE UNIFORMLY CONVEX
OR UNIFORMLY DIFFERENTIABLE IN EVERY DIRECTION IN
BANACH LATTICES WITH A WEAK UNIT

DONKA N. KUTZAROVA, STANIMIR L. TROYANSKI

An equivalent lattice norm which is uniformly convex in every direction is introduced
in Ly (S, T, ). As an application several results concerning the existence of eguivalent norms
which are uniformly convex (resp. uniformly differentiable) in every direction in Banach lattices
are obtained.

1. In [3] it is shown that a Banach space X, which is separable or conju-
gate to a separable space, admits an equivalent norm, uniformly convex in
every direction. From a result of Shmulyan [8] and the construction of
the norm in [3), it follows that cach separable space has an equivalent norm,
uniformly differentiable in every direction,

The paper [7] contains necessary and sufficient conditions for existence
of an cquivalent norm which is uniformly convex (resp. uniformly differenti-
able) in every direction. Later on an example is given in [5] of a reflexive
Banach space with an (uncountable) unconditional basis which fails to have
either an equivalent norm that is uniformly convex in every direction or an
equivalent norm that is uniformly differentiable in every direction.

In the present paper we obtain several results concerning the existence
of equivalent norms which are uniformly convex (resp. uniformly differentiable)
in every direction in Banach lattices.

2. Definitions and notations. The norm of a Banach space is said to be
uniformly convex in every direction if the conditions x,, ¥, z€¢X, I x,!—1,

VYoll =1, | x,+ ¥, —2 and x,—y,=h, 2 imply | x,~y,II—0.

The norm of a conjugate Banach space X™ is said to be w*-uniformly
convex if the conditions x7, y.¢X* I x|l — 11y, I—1, and |l x;+y, - 2imply
that x (x)—y; (x)— 0 for each x¢X.

The norm of a Banach space X is Gateaux differentiable if for any x, y¢.X
with | x =l yl=1, limoo v (Il x+tyl+1x—191—2)=0.

The norm of a Banach space X is uniformly differentiable in every direc-
tion2 if Bor any x, y€X with | ylI=1,limo =% supy =1 (| x+1y I+l x—1y
1—2)=0.

A partially ordered Banach space X over the reals is a Banach lattice
provided

(i) xsy implies x+z<y+z2, for every x, y, 2¢X.

(i) ax=0, for every x=0 in X and every non-negative real a.
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(ifi) for all x, y¢ X there exists a least upper bound x\/y and a greatest
lower bound xAy.

(iv) 1x <!y whenever |x|= ¥/, where the absolute value | x| of x¢X
is defined by x| =xV(—x).

A Banach lattice X is o-order complete if everv order bounded sequence
in X" has a least upper bound.

A Banach lattice X" has an order (c-order) continuous norm if for every
downward directed set (sequence) {xujuca in X with A xe=0, limg | xq=0.

afA

An element e =0 of a Banach lattice X is a weak unit of X if x¢.X,
eN x —0 imply x=0.

et (S, £, 1) be a measurable space. A Banach space X consisting of equi-
valence classes of p-measurable real valued functions on S is a Kothe function
space if X is a Banach lattice in the obvious order (f=0 if f(s)=0 almost
everywhere) and the following conditions hold :

(i) If f(s)|= g(s) almost cverywhere (a.e.) on S with f measurable
and g¢.X, then fey.

(i) If f€.X then f is locally integrable, i. e. for every A¢ZX with p(A)
< o there exists [, f(s)dn.

(iii) For every A¢X with p(A)< -~ the characteristic function X, of A
belongs to X.

3. Main results. Theorem 3.1. For every measuable -space (S, Z, p)
the space L, (S, Z,n) admits an equivalent lattice norm that is uniformly
convex in ewvery direction.

Corollary 32. Let X be a Banach lattice and there exists an ele-
ment e*¢ X with e*=0 so that e*( 1 x|)=0 for x¢X implies x=0. Then X
has an equivalent lattice norm which is uniformly convex in every direction.

Proof. Let |x ,=e*( x )and X be the completion of X in the norm

.. Since | -1, is additive on the positive cone, there exists a measurable
space (S, X, pu) and an operator 7 such that 7 is an order isometry from

X onto £, (S, £, ) (ci. eg, [6. p. 15]). By Theorem 3.1 there existsin L,
(S, T, p) an order equivalent norm /|y, uniformly convex in every direction.
Put [ x| =( x|2+]|7Tx/?"2 We shall show that || ||| is uniformly convex
inevery direction.Let | x, || — 1, || ¥, || =L || Xp+ Yl — 2 X Yu 2€ Xand x,—y,
=2, z_ It is no loss of generality to consider [ Tx,ly— a. By the uniform
convexity of the space /, and the triangle inequality, we get that || 7y,!, —a
and | T(x, +V¥,) s — 2a. Hence, we have that e*(|A,2|)-~ 0. Then, | A, 2
-0, which completes the proof.

Corollary 33 Let X be a Banach lattice with a weak unit.
Then, if the norm is order continuous, X admits an equivalent lattice norm,
uniformly convex in every direction.

In order to prove this, it suffices to observe that the assumptions of Co-
rollary 3.3 imply the existence of an element ¢*¢ X™* satisfying the assumption
of Corollary 3.2 (cf. eg. [6. p. 25]).

Corollary 3.4. Let (S, Z,pn) be a space with a o-finite measure. Then,
if X is a Kothe function space on (S,E, p), it has an equivalent lattice
norm, uniformly convex in every direction.

In order to prove this, it suffices to observe that there exists an clement
e* ¢ X* satisfying the assumption of Corollary 3.2.
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Theorem 3.5. Let (S, I, n) be a probability space and X be a Kothe
function space on (S, T, n) with o-order continuous norm. Then X has an
equivalent lattice norm, uniformly differentiable in every direction.

Corollary 3.6. Let X be a oc-order complete Banach lattice with a
weak unit. Then the following conditions are equivalent:

(i) X has an equivalent Gateaux differentiable nornt.

(ii) X has an equivalent lattice norm that is uniformly differentiable
in every direction.

(iiiy X has o-order continuous norm.

(iv) X does not contain a subspace isomorphic to ...

Proof. Let (iii) holds. Then, there exists a probability space (S8, £, p) and
a Kothe function space X on (S, I, p) that is order isometric to X (cf. eg.
[6. p. 25]). Hence, by Theorem 3.5, (ii) holds. The implication (ii) = (i) is tri-
vial. Since /.. does not admit an equivalent Gateaux differentiable norm [2],
(i) implies (iv). By the theorem of Lozanovskii (see c.g. [6. p. 7]), (iv) im-
plies (iii).

Corollary 3.7. Let (S, %, p) be a space with a o-finite measure and
X be a Kothe function space on (S, X, n). Then the following conditions are
equivalent :

(i) X has an equivalent Gateaux differentiable norm.

(ii) X has an equivalent lattice norm that is uniformly differentiable in
every direction.

(iliy X has oc-order continuous norm.

(iv) X does not contain a subspace isomorphic to l..

This assertion results immediately from Corollary 3.6 because X is o-order
complete lattice (cf. e.g. [6. p. 29]) with a weak unit.

4. Auxiliary results and proof of Theorem 3.1. Lemma 4.1. Let X be
a Banach space such that the conditions x,, Y, 2¢X,lx,1—1, ly,l—1,
X+ Yall =2 and x,—y,=zimply z=0. Then the norm is uniformly convex
in every direction.

l.emma 4.2. Ewery uncountable set H of real numbers has a point,
“approximable from the left and the right by points of H.

Lemma 4. 3. Let {f,}7_, be non-increasing left continuous functions on
(0, =) which are uniformly bounded in every interval (c, =), ¢>0. Then
there exists a subsequence {n} of indices so that for every t¢(0, «), lima.
f,(t)=f(t) and the [ollowing condition holds :

For any tinite interval (a,b), a, b>0, there exists h¢(a, b)
* and 2 €(a, b), i=1,2,..., with M\, <hy< ... <k <...,limiye A, =2,
such that for each 8>0 there is N so that n>N and i>N imply
_ FaO)—fn ()] <.

Proof. Since f, are non-increasing and uniformly bounded in (¢, <), ¢>0,
then, by a known theorem, there exists a subsequence f,(#) which is conver-
gent for any 7¢(l/k, -=). By the diagonal procedure, we choose a subsequence
{n} of indices, so that lim,.. f, (£)=f(f) for every £¢(0, ).

Let now O<a<b< ->. Since f, are Lebesgue measurable functions, by
the theorem of Egorov, we obtain that f, (¢) — f(f) almost uniformly in (a, b).
Then, there exists a set Hc—(a, b) with positive Lebesgue measure such that
{f.), converges uniformly on /. It follows from Lemma 4.2 that there is A ¢ (a, b),
approximable from the left by points of AH. Therefore, there exist A,¢(a,b),
i=1, 2,...with A, X and A€ H.



2592 D. N. KUTZAROVA, S. L. TROYANSK!

Let 3>0. Since X ¢ £, there is M such that |f, (A)—f(})|<8 and |f, (%)
—f(x)!<8, i=1,2,.., whenever n=M. By the assumptlon f, are left conti-
nuous. It follows from A;t A that there is N=M so that |[f (A)—fy(X)I<d
for each /> N. Then, for each i/, n>/N we have

FOD— OV FRD) =L ) |+ faa o)) —Far (M) [+ far (R) = f (X)) <38,
whence

o)~ fa() = foO) fO) + fOD—F ) [+ f(R)—f. () [<58.
Lemma 44. Let x, v, ¢ L,(Q,Z, ), ix,, Vi, I(x,+¥)2— 1 and
the following conditions hold:
(#x) For each a, b, 0<a<b< oo,

WX, 1<a, v, =6) —0, u({ X, =0, |y,|<a})—0.

Then, {x,—y,};_, tends to zero in measure.
Proof. Fix 6>0. Denote

L:n"{ Xp|=— Vn >0 4' Xn =0 2} f.‘" { Vu — X,,'>e 4' !yn 29/2}

We shall prove that
() lim p(£,)=0.

n—oco

Let e>0. Choose K such that |x, <K, n=1, 2,... Put M=KJe. Since
Mp({ x, SM)= e sm ! X, | duslx, [, then
@) n({ x,[>Mp<e

Consider F,, { x| = M} Choose { j;}*_, so that0/2=j,</;< ... < J,=M and
Ji—Ji1 <08, i=1,2 ...,k We shall prove that

k
(3) U A X = | Y [<U—0/8} 2 E  (1{ | x, [ M)

=0

Let s belong to the right hand set. Then, there exists / such that j,< | x, (s)l
<Ji+1» whence VL)< x,(s) —0/4= ), —0/4<j,—6/8. Therefore, (3) holdsq

By the aasumptnons of Lemma 4.1 and (3), we get lim,nw p(E,N{|x,
\M})—O Hence, by (2), we obtain (1). Symmetrically, we have llm,._.i,p

I'et. An’ {!xu—'yni>0}' Pn=“5!xn!=>]yni' ‘xnl>9/’2}' Qn={iyn|2‘xn":yn
=02}, Obviously, A,=P,1)Q,. We shall prove that
(h lim p(P, 1 A,)=0.

n=—s=

(,learly P, =T, E, where T,={ Xn —.»y,,‘.'x,,,>92 | x, — v,|=0/4}. Let
T, ={|x,— ¥l A‘x,,i [y 30V T T =T\ T, Obviously, 7, <S8\ A4, Let

seT'"'. Then, since
| Xa ()4 Y () | =] x5 (8) [ = ¥a(8) [ 50/4<] x, ()| —0/4,
we get that
ot Yall= [ (lxal+1Yal)du+ f Xpt+ Yol dit

.S\T
n

x4 v, l—p(T))0/4.
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Hence, limao. u(7,)=0. Therefore, (4) holds. Similarly, we obtain
(5) lim p(Q,NA,=0.

It follows from (4) and (5) that lim,... p (A,)=0, which completes the proof
of Lemma 4.4.

Let (S, £, p) be a measurable space with a non-negative measure p and con-
sider L;(S, Z, p). Let £,=X consist of all p-measurable sets, free of atoms.
Define for any x¢L,(S, Z, p)

,;(t):: sup [ x(s)|dp, te [0, <)

ATuA)st A

This function is introduced in [1] for a probability measure p, free of
atoms.

Lemma 4.5. Let x¢L,(Q X, n) and ¢, ue(0, p(Q) with t=u<-o. Let B
be a measurable subset of Q such that B is free of atoms, pw(B)=u and

{g‘x(s) dp>x(u)—3, where 8>0. Then there exists Q=B with u(Q)—=t and
x(s)| dp>x(£)—38.

Proof. Without loss of generality we may assume that Q is free of atoms.
Then, there exists A=Q such that p (A)=¢ and l' x(s) dp>x(t)—s. Put C

=ANB, p(C)=v and D=A~C. Choose E\_B\C with p(£)=¢—v. We shall
prove that Ef lx(s)!dp > gl x(s)! dp—28. Suppose the contrary. Then, setting

F=B\(CUE) and G=A |JF, we have n(G)=u and

.:‘(u)>,f xidp=cf x dp+[|x du+ [ x dp
G D F

=[x dpn+[ x dpu+ [ x dpn+28
c E F
;A' X dp+28>x(u)+ 8.
The contradiction implies 5) X dp>[ x| dp—25. Put Q=CUE. Thus, p(Q)
D

—t and
o i ; . R ; | 7 ° | | 7 .25 " 9 i"
JIX p L! X H ’.!.l X “>.‘!" H -"

.{'sx dp—28> x(t)—38.

Lemma 46. For each x¢L,(Q, £, p) the function x is concave in [0 ).

Proof. Without affecting the generality we may assume that Q is free
of atoms. Suppose that the assertion of Lemma 4.6 is false, i. e. there exists
€>0 and ¢, 4, with 0= <f,=p(Q), f,< oo so that

(6) X((t+19)/2)=1/2 (x(t,)+x (&)~ €).
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Choose 8<e 10. Since Q is free of atoms, it follows that there exists C=Q
with p(C)=¢, and e’ X d;1>v(tq) ~-06. By Lemma 4.5 we get that there exists

B<C with p(B)=(f,+1t,)/2 and l! X dp>; ((t,-+—t2);"—38. Once again, by
Lemma 4.5, we find A—=B such that p(A4)—=¢ and l X du>x (¢,) — 98. De-
note D —C - B. Therefore, p (D)~ (t,—¢,)2 and u(A'!D) (¢, +¢,)/2. Next, we
have

[ x du=[ x| dn+[|x dn>x (t,) ~-96+£;x dp
AUD A D
and

[lx du=[ x di-[ x dp=x (t)— x ((ty+ 1)/ 2)—8.
D C

Thus, by (6),
;ﬁ‘ x| du>x (¢ +ta)/2)—x (t;)—d +¢.

Hence,
X((t+1)2)= [ x|dn> X((t+1t3)/2)+£—108,
AU

which 1s a umtradi(tlon
Therefore, x is concave in_[0, u ()] pr ovided p (Q2)< -<. Since x ()= x
(n(€2)) whenever ¢>p (Q)and X is increasing in [0, =0), it follows that xiscon-

cave in [0, =o).
Lemma 47, Let x¢L, (2, Z, n) with x =0 and Q be free of atoms. For
every »>0 de’fme D -{xB?\} Then for each d with 0=d ‘w(Dy), the in-

equality rd< r(u(D;)) ~X(u(Dy)—d) holds.
Proof. Let €>0. Since x(s)<X off the set D;, th(n lxdu X (p (D).

Since Q is free of atoms, by the same argument, we may “choose B so that
B=D,, p(B)y=n(D,)—dand [xdpn> x(n(D,)—d)—e. Also, we have that
B

[ xdp=rp (D) \B)=2d.
0, B

Thus,
x(w(Dy)= J xdp- /! xdp+ [ x dpn>x (n(D;)— d)y—¢e+Md.
D, D, B

Since & is chosen arbitrarily, this then yields x (p(D,)) ;(M(Dx)-—d)»rkd.
Lemma 48. Let x, yeL,(Q, Z,n) with x, v =0 and Q be free of atoms.
Let 0<\2y <a<P<r<-o. Put Dy ~{x=k}. E ~{y- A K= {e <A} Ma={y
<A} and t—pn(D,). Let 'x(t) y(t)[<y? X+y()--2x()|<y/2 and A be
such that p(A)=t and [(t+y) dn >x+y(t)=v/2. Then, p (ANK, H<a. If

moreover x(u) _y(u),<y/‘. where w=p(AN Ew—p), then p ANM, _p)<P.
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Proof. It follows from x+y(£)—2 x(£)|<y/2 and [(x+y) du> x+y(f)
A
— v/2 that Ix ()—v2< [ (x+y) du+7v/2. Thus,
A

2X () —-v< [(x+y) dus [ xdy +_\7(t)S‘!'xdu+; () +7/2-

Therefore,

(7) x (t)—27<{ x dy.

On the other hand, we have
[ xdn= A xdp+ [ xdn
A AND; _y ANK) _q

XMAND; )+ —a) p (AN K o)
=}(H (A)—n(ANK—)+r—a)p (AN K —a).
ie.
(8) 4}' xdp<sx((A) —p (AN K—))+(—a) p (AN K5 —0).

By (7) and (8), we obtain

(9) X=Xt -p(ANK—a)—=2Y<(A— o) p (AN K> _a).

Since 0=p(ANKi—a)=p(A)=Et=p(D,), by Lemma 4.7 withd=p (AN Ais—a) we
get that

M(AN Ky SX () — X (E=p (A1 Kiza)
Putting this together with (9), we deduce
AMANK—a)—2y<(A— ) R (AN K—a)-
Thsrefore. ap(ANK—)<2y, ie. p(ANKi_o)<2y/u<u. Next we have
2 x(t)—y<if (x+y) du_\’x(t)ﬁ-"fydu. Hence,
(10) [ydu>x (&)~
On the other hand, we get

lydu Et; ydpt }(;lydu <y () +(—B) u (A N Myyp).
—B —B

By combining this with (10), we obtain x(t) y<y @) + (A —B) u (AN Ms—p).

Since |x (u)—y(u) <v/2, it follows that X (£)—2y< X (u)+ (A —B) pu (AN Ms_p).
We have that w=£¢—p (A M,_p) and therefore,

(11) X () 2y<X (t—p (AN Mu_p))+(A—B) n (A1 My_y).
By Lemma 4.7 with d =n (AN M, _p), we get
(12) M(A (| M—p)= X (t)—x (E—pn (A My_p)).
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It follows from (11) and (12) that Ap (AN Mi_p)—2y<(A—B)u (AN M,—_p). Con-
ssquentl);. Bu (AN M, p)<2y, whence p (AN Mi_p)<2y/B<B, which completes
the proo

li)eflnltxon 4.9. (of an equivalent lattice norm in L, (S, £, p)). For each
X€L, (S, Z,p) put p (x)=([o X2(t) et dt)“- Obviously, p(x)=| x |. Denote
g(x)=supyz, [4]x(s) du. Put r(x) —sup():" L X2 (a) 2 (A))'2 a; EA,, wlzere
the supremum is taken over all finite systems of atoms {A}: ,, n=1,2,...,
with A=Ay if i+, Thus, r(x)= x|

We introduce a new norm in L, (S, X, n) by the formula

x| =(|x 2+p2(x)+q2(x)+r?(x)'"*

It is clear that this is a lattice norm, order equivalent to the ., (S, X, p)
norim -
Lemmd 4.10. Let x,, y,,eL (S, £, pn), n :.,—1, 2, ..., with sup, (| x, “‘
vy, )<<o. Let limpow p(x,)=1, liMuse. p(y,,) e and limu,. p(x,+y,)=2.
Then there exists a function 'u(t) t€[0, =) and a subsequence {n} of indices
so that lim,, . v,, ()=o), lim,yeo v, (O)=2(t), limyso x,+y, (£)=2v(¢) for
each t¢|0, ) and the convergence is uniform for te[&, n), wbere & n are
arbitrary posmz'e numbers.

Pr(mf. Using the triangle inequality, we see that [[¢ (X, )+, (LR e
AR lhcrefore, by the uniform convexity of L, ([0, ~)), we obtain tha
[ o (\’ (t) Va (£ e “dt]'"? — 0. Thus, there exists a <ub<equcmc {n} of_indices,
so that lim,.., (x,,(t)—y,, (¢)) =0 almost everywhere in [0, o). Since t are in-
creasmg and uniformly bounded, there exists a subsequence such that llm,...
X, (£) - ~v(t) for every t€[0, =), where v is an increasing function. By Lemma
4.6, x, are concave in [0, a) and therefore © is concave in [0, -2). Conseque-
ntly, @ is continuous in (0, <

As above, we may chomc once again a subsequence {n} of indeces so
that limy—.. ¥,(f) =@ (f) for each £¢[0, =), where w is increasing in [0, =o) and
continuous in (0, =o). It follows from lim,_ . (x (t)—v,,(t) -0 a.e. that o(¢)
=w(f) ae. in [0, =o). Since v, w are continuous in (0, =) and v (0)=0=w(0),
we get that v(¢)- w(t) for any £¢[0, ).

The functions x, are uniformly bounded and therefore,

(13) :lj v (t)e ' dt ~lim ! xf,(t) e ‘dt=1lim p?(x,)=1.
n—»oo

( n—sco

As above, there is a new subsequence so that lim,... x,- F Y, (8) ~u() for
cach ¢€[0, o) where « is increasing in [0, =) and continuous in (0, =). Simi-

larly,

(14) 4 @ (t) et dt=lim p?(x,+y,) -4
( n-— o

By the triangle inequality, we get 0<.x,+y,()<x, (£) +y, (B). LE[O, ),
whence 0--u(¢f)--2v(¢). Thus, by (13) and (14) we obtatin that u (¢)=2v(¢)
ae. in [0, ©). Since # and v are continuous in (0, <o) and « (0)=0. it follows
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that u (¢)=2o(¢) for every £¢[0, =) BT
In any interval [§, n] with 0<&<n< - the functions x,, v, x,+y, vare
increasing and continuous, whence, by a known theorem, lim,... x, (£) = v (),
lim,,. y,()=v(f) and limyye X,+¥, (()=27(¢) uniformly for £¢[&, n].
Lemma 4.11. Let x,, v,€L, (S, X, p) be such that p(x,)—p,p (¥,)—p,
d (xp+ ¥ )= 2P, q(x,) — q. q () — ¢, ¢ (x,+¥,) — 29 and
lim  sup{ ((( X, — ¥, )dp }=0.

WC)y=0 n

Denote by Q the non-atomic part of = (supp x, U suppy,). Then, there
exists a subsequence {n} of indices so that (x,—y,)xa —0 in measure as
n—co,

Proof. Let x be one of the functions x,, v, x,+y, n=1, 2,... Then,
we have that N

g(x)=[|x|dn x()= sup [ x| du
Q AcQ, p(A)=t A

Thus, without loss of generality we may assume that S=Q.

Applying Lemma 4.10, we choose a subsequence {n} of indices with the
following property :

() lim .;,, (H)=v(¢), lim )7,,({) “o(£),Wm x,+y,(6)=2v(f)
uniformly for £¢[& n] whenever 0<E<n< .
For any A >0 put ) :
Du. i.:{ Xp ?_;. }\ Kn.i.':{ x,,i<k},

Ena={|¥n| =2} Mus={ vy, <A}

Let f, be the distribution function of x, n=1, 2,..., ie. f,(R)
=p (Dny), O<A<=c. We have that f, are non-increasing and left

continuous. Since {r[,x,,‘ du}>_, is convergent, the functions f, are uniformly

bounded in (¢, <) for each ¢>0. Thus, by Lemma 4.3, we may choose a sub-
sequence which is convergent for any A ¢(0, -o) and satisfies condition (%) of
Lemma 4.3.

In order to prove that {x,—y,}=  tends to zero in measure, by Lemma
4.4, it suffices to show that lim,.n({ x,|=b, v,|<a}) -0 for every 0<a
<b< oo, o — ~

It follows from x— x for any x¢L, (S, I, p) (++) and x,+y,= X,
+| ¥, that limpaw x,|+ ¥, (£) = 2o(t) uniformly in every finite interval
which does not contain zero. Moreover, the condition (+x) of Lemma 4.4 involves
only the absolute values |x, and |y,| and therefore, without affecting
the generality we may assume in the sequel that x,, v,>0 ae, n=1,2....

Fix 0<a<b< . Applying condition () of Lemma 4.3 to f, and (a, b),
we obtain some A and A, i=1,2, ...and denote B,=A—A, Consequently, B,

V0 and x-Be(a, n), i=1,2,.... In particular, B,<A. Since A<b and A—B,
>a, then it suffices to show that
(15) lim p(Dus N M p, )=0.

n—so00

17 Cn. Cepauxa, kw. J



258 D. N. KUTZAROVA, S. L. TROYANSKI

Let e<0. Since B, 0, choose B; < & and put B=p,. Denote

(16) 8 —min (Be/4A, \Be, B).
By the assumption, there is £<38 so that
(17) | [ x, du—bfy,, dp | <Be, n=1,2,... whenever p(C)<E.
c

Choose and fix such & Put
(18) n=sup f, (A

By condition (x) of Lemma 4.3, select NV, so that #>N; and />N, imply |f,
(A=B,)—f.(2) <38/2. Since B, 0, choose i;>N, such that B, < 3/2. Put u=B,,.
Thus,

(19) 0<u<d 2.

Moreover, | f, (A—a)—f, (r) <8/2 whenever n>>N,. Putting this together with
W(Dnp—a N Knp)=fp (A—a)—f, (1), we get

(20) H (Dn,),—u N Kﬂ.),)< 52 if n>N|-
Fix
(21) O<y<a? 2.

Applying (#xx) to the interval [, n], § n chosen above. select V>N, so that
for each n>N the following inequalities hold :

(22) Xa ()= ()| <v/8, | V()= (t) <y8 and
X, +Va(£)=20(t) <y/4 whenever £¢[E, n).
Fix n>N. 1t follows from (22) that
(23) X =V ()<Y/2 - | X+ 3, (£) = 2%, (t) | <y/2 for each t¢[E,n]:

In order to prove (15), it suffices to show that
W(Dny. N M,y —p)<2e. Suppose the contrary. Then,

(24) W(Dnp)=fr () =2¢.
Choose A with p(A)=f,(*) so that
(25) Af (xatYn) dn>x,+ Y, (f(A) —7/2.

By (16), (18) and (24), we obtain d<p(A)=n. But £<3, hence E=p(4)=n.
Therefore, by (23) and (25), the assumptions of Lemma 4.8 are satisfied, whence
(AN Kpp—a)<a. Thus, (19) implies that
(26) (AN Knp—a)<8/2.
The following representation holds:
A = (A ﬂ Dn_x) U (A ﬂ Kn.k ﬂ Dn.).-—u) U (A ﬂ Kn.k—u )

By (20), we get that p (A N Kua ) Drp—a)<8/2. The above formula, the equality
p(A)=p(Dn,y), (26) and the representation of A imply

(27) H (A n Eu.l)>“ (Dn,k)—&
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Consider now the set C=A N E,;_p. We shall prove that &<p (C). Assume
the contrary, i.e. p(C)<&. Then, by (17). we get

(28) ley,. du<.L(x,. du -+ Be.
By (23) and (25), we obtain 2%, (n(A)—7< [ (x,+V¥,) dn, whence
A
2%, (0 (AN =7 <X, (n (A + [Ypdut [ Vudh.

Since y,<»—p on A C, the last inequality and (28) imply
(29) X ((A) =y < [ x, di+Bet (=B (AC)-

It follows from (27) that
R (A1 Dpp)NC) = 1 (AN D) = (O)>p (A) =8 = E>p (A) - 28.
In particular, p(ANC)<=p(A)<p (A Dns)+25. Putting these together with
(29), we obtain
X, (0 (A) = v<_c¢'x,. dp+Be+ A (AN Dy C)+28h =B (n(A 1N Dy~ C)+28)

“[x.dpt+ [ x,dp+Pe+ 28k Pu(A)
C AND, , \C

< [ Xy dp+Be+28% - B (A)<x, (1 (A))+Pe - 2% —Pu (A).

Hence, v+ 8e-+28A —Bu(A)>0. Therefore, by (16), (19), (21) and (24),
0<y+Pe 28k — 2Be < 82/4 + Pe + 2APe /4h — 2P < 0.

The contradiction implies p(C)=E. Since the inequality p(C)=n is also valid,
(23) holds for ¢=p(C). Thus, by (16), (19) and (21), the assumptions of Lemma
4.8 are satisfied, whence

(\30) n (A N Mn.}.—ll)< p.
It follows from (27) that p(D,, \A)<3s. Hence, by (30), we obtain
K (Dn.l. ﬁ M,,_),-B)<8+B<2€.

This completes the proof of Lemma 4.11.

4.12. Proof of Theorem 3.1. Let x,, y,€L,(S, Z,p), n=1,2,... with
I x, 0 1, ||yl =1 and || x,+,|| — 2. According to Lemma 4.1, let x,—y,
=2z, n=1, 2,....

Put Q,= U2, (supp x,Usupp y,). Since Q, is o-finite, it can be repre-
sented by Q,=(U,A) UQ, where A, are atoms and Q is free of atoms.

Since the sequences {|lx,| }=.. {p ()}, {9(x) ) {r(x))., and
the corresponding sequences to {y,}=, and {x,+y,};, are bounded, without
loss of generality (if necessary passing to a subsequence) we may assume that
they are convergent. By the triangle inequality, we get
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Il et Yol IS X |+ Yal P+ (2 (D) + P (V)P + (9 (%) + 9 (Va)?
+(r () +r (Y2 xp [+ Ve |-
Thus, it follows from || x,+¥,||—2 and || x, ||+ y,| —2 that
([ |+ Vel P+ )+ (9P (G () +q (V)P +(r () +7(92)?] 72— 2.

The uniform convexity of [, gives ||x,||—|y,| —0, p(x,)=p(y,) —0, ¢(x,)
—q(y,) —0and r(x,)—r(y, — 0. Putlim,,. | x, |=u, lim,s p (x,)=p, lim,,
g (x,) =g, lim,,.. r(x,)=r. Next, by the triangle inequality,

HXptYnl = Xat+ 90 PP () + P (Y2 (g (x)+ (V) +(r () +7(¥,)?)2
= xa i+l yalll-

Letting n —<o, we get that (limuse | X,+ Y, [2+4p2+4¢°+4r*)2=2. Since
(42 +4p® +4¢2 +4r2)'2=2, then limae || X, + ¥, || =2u. Similarly, lim,_,.. p (x,+¥,)
=2p, limysew ¢ (x,+y,)=2¢ and lim,,.. 7 (x;+y,)=2r.

We have that for each x¢L, (S, Z, p) with supp x=Q,

r(x)=( ; x2(a,)pn? (A)"V°, where, a, € A,
i=1

Since 7 (x,)—r, r(y,) —r and r(x,+y,) — 2r, the uniform convexity of /, im-
plies lim e (X, (@)—Y,(a))=0, i=1, 2,.... On the other hand, x,-y,=z2,
n=1,2, ... Hence,

(31) zx,g‘:O, i=1,2,...

Next, since x,—y,=2, n=1,2,...implies
lim sup {| [(|x,|—[y, )dn|}=0,
we)=0 n c

the assumptions of Lemma 4.11 are satisfied. Hence, there exists a subsequence
so that (x,—y,) xa tends to zero in measure. Then, we deduce that zyq =0.
Putting this together with (31), we conclude that z=0, which completes the
proof of Theorem 3.1.

5. In this section we present the proof of Theorem 3.5.

5.1. Let (S, Z, p) be a probability space and X be a Kothe function space
on (S, I, u) with a c-order continuous norm. Since p is funite, S can be re-

presented by S=( U A) U Q where A4, i=1,2,... are atoms and Q is free of atoms.
i=1

There exists (_cf. [6, p. 29]) an order isometry 7 : X*— Y, where VY is a
Kothe function space on (S, £, p) consisting of all measurable functions g on
(S, I, n) such that fgelL, (S, Z,p) for every f€X, moreover x*(f):-sl'fg dp,

where g—= Tx*.
Let x¥¢ X* Txx=g, Put

E(t)=8 sup - [1g(s) dn, t€[0, 1]

cQ.u(8)at
l~
l;g1f|=(0fg’ (t) dt)'”.
Since E(t):,“flgi dp=|x*|(Xa)=| x*||- || xa |, then | g| = x*| - | xa |
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We introduce in X* an equivalent lattice norm by the formula:
Lo [ = 2 T 2" (ea) 12, 130
=

Lemma 5.2. The norm | -|| is w*lower semi-continuous.

Proof. Let {x!}=X* x](x)—x*(x)for each x ¢ X.Put ga=Tx(, g=Tx"
Let B¢ZX, then fp=7ypsign g¢ X. Thus, we obtain that
(32) J18l dn=[fpgdn=x*(fp)=lim x (fo)=lim inf [|g|dp.

Let #€[0, 1] and n>0. Select B=Q such that p(B)=£and g )=/l 8l
du+n. It follows from (32) that [,z |g| du<Ilim inf g, (f). Therefore, infa g, (£)+n.
Since n is chosen arbitrarily, then

2(H)<lim inf go (£)+m.

Since n is chosen arbitrarily, then (33) g(f)=lim inf éa(t).

Let €>0. Since g is concave and bounded, then & is Riemann integrable.
Hence, there exists n such that

1 n—1
[g(t)ydt= I g (jn)n+e.
0 J=0

By (33), there is «, such that a>ua, implies

2a(jin) =g (jim)y—e, j=0,1,2,..,, n—1.
Therefore, we obtain for a>a,

jga t) dtg':g_; 2 (Jjin)/n+2e.

n—1

Since g. are increasing, then £/ §§ (jim)n = [o 22 (f) dt.Hence, for each a > a,
1 1
[&® dtgbfgz (¢) dt+ 2.

Thus, we get that || g||,<limq inf || g ||,
Lemma 5.3. The dual space X*, equipted with the norm ||| -, is w*-
uniformly convex.

Proof. Let x, yieX* n=1,2,...with || x, ||| =1, [[[¥, | =1Ll x4+,
-+2. Let T be the order isometry between X and the Kothe function space on
(S. Z, p), defined in 5.1. Let T'x},=f, Ty:=g, In order to prove that

Liinwj;(f,.—g,.) hdu=0
holds for every #¢ X, it suffices to obtain it for a dense set in X. Hence (cf.

e.g. [4. p. 142]), it remains to show that lim,._.,,sf(j,-g,,)x,‘dp=0 for

each A¢ L.
As in 4.12, we may select a subsequence {n} of indices so that lim,,e
| fa(@a)| =u, lima. | g, (@) |=u, liMpse|f, (a;)+&, (a@)|=2u, where a,¢A,
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i=1,2,..., and limy—. | f, ]l =0, limuaw | g, =0, lim,e! f,+g,,=2u.
Evidently,
(34) lim (f,(a)—g,(a)=0,i=1,2 ...

By the same argument as in Lemma 4.10, we get that there is a subse.
quence so that f, (¢) ~v(¢), g, (t) —v(t), fo+g, (£) —2v(t) for t¢[0, 1]. Put-
ting £,=u (), we deduce that [q  f, du—v(¢), ‘4 g, du—v(f,) and d}
fat+ g, du—2v(t,). For each A¢X we have

!( fn ~ &n )dui-;afrfn—gn Xa d“~\2' Xa

Since the norm is o-order continuous, it follows that

lim sup f(:fn;'" 8n )g}l:O

w(Ay=0 n A
Therefore, it is clear that the assumptions of Lemma 4,11 are satisfied, whence
there is a subsequence {n} of indices so that(f,— g,) xa — 0 in measure. Thus, by
the theorem of Riesz, we may choose a subsequence such that

(fn—gn)xﬂ—’o a.e.
Putting this together with (34), we conclude that

(35) fo—8, 0 ae.

Next, we have as above that for every A¢ZX

(36) }j‘r)n( sup {(f,.- &) dn=0.
M - n K

By (35), (36) and Vitali’s theorem, we obtain that
lim [|f,—g,|du=0.
S

5. 4. Proof of Theorem 3.5. It follows from Lemma 5.2 that the new
lattice norm | - in X™ is induced by an equivalent lattice norm |-|| in X.

By Lemma 5.3 and [8), we obtain that the norm |- in X is uniformly dif-
ferentiable in every direction.
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