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GENERALIZED MONOTONE MAPPINGS AND DIFFERENTIABILITY
OF VECTOR-VALUED CONVEX MAPPINGS

NIKOLAI K, KIROV

let F: X—-Y be a convex mapping defined in the Banach space X with values in the
Banach lattice Y. The question of differentiability of F almost everywhere in X (in the Baire
category sense) is studied. As the examples show the problem is not trivial even in the case
when X is the usual real line R. For X = Re it is shown that every convex mapping F: X=VY
is Frechet differentiable at the points of some dense Gg subset of X iff ¥ has weakly com-
pact intervals. This result as well as some others are obtained as corollaries of theorems con-
cerning generalized monotone mappings. Some examples are given which outline the theory.

0. Convex mapping with values in a vector lattice have been the subject
of much research in the last years. They were studied by many authors in
different directions (see [1; 7; 13; 14; 16; 19; 22; 24]). The generalized mo-
notone mappings also got attention (see [14]).

The main purpose of this article is to prove the results announced in [13]
and some new similar results, i.e. to give some conditions under which a
given convex mapping F: X-Y is Frechet (Gateaux) differentiable at the
points of a dense Gs subset of X. These differential properties of convex
mappings are studied with the help of generalized monotone mappings.

Let X be a Banach space, ¥ be a normed lattice with a positive cone
Y, (see [23,p. 192)) and L=L(X,Y) be the space of all bounded linear map-
pings from X into Y. Let us recall that the mapping F: X=V is said to be
convex if Flax,+(1—a)x,)< aFx;+(1—a)Fx, for all x;, x;¢X and 0<e<l.
We'll suppose that the effective domain of F is the whole space X. If this
is not so, all results are valid for the set int (dom F). The convex mapping F
is called order bounded at the point x¢X if there exist a neighbourbood V
of x and y¢VY such that Fz<y for every z¢ V. If F is order bounded at all
points of X, then F is called order bounded. Valadier [22] proved that
every such mapping is continuous. The convex mapping P: X-V is said to
be sublinear if it is positive homogeneous, ie. Pux)=aPx for every x¢y
and a¢R, a=>0. The subdifferential of the convex mapping F is the following
multivalued mapping :

0p: x—{A¢L(X,Y): Az—Ax<Fz—Fx for all z¢ X}.

Sometimes subdifferentials of F are called the images of dp The support set
of the sublinear mapping P is the set dp(0) and it is not difficult to show
that dp(x)=dp(0) for every x¢X.

Definition 0.1. We say that the multivalued mapping T: X~L(X,Y)
is a generalized monotone mapping (GMM) if (A,—Ay) (x,—x;) =0 whenever
X €X,A€¢Tx and i=1,2 (see also Kusraev [14]).
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In the special case when Y =R the definition coincides with the well
known definition of a monotone mapping or monotone operator (Browder [2],
Minty [17]). The subdifferential d of a convex mapping is a GMM. The
multivaled mapping 7: X—L is a GMM iff the multivalued mappings
(y*oT): X—=X* (y*<Tx={y*oA: A¢Tx}, are monotone for every
y*¢Y.. The graph of the GMM is the set GT —={(x, A)eX<L: A¢Tx}. T is
said to be maximal if its graph is not properly contained in the graph of any
other GMM. Kusraev [l4] proved that the subdifferential of a convex map-
ping is a maximal GMM. By means of Zorn’s lemma it is not difficult to see
that the graph of every GMM s contained iu the graph of some maximal
GMM.

In what follows we shall consider GMM for which 7x==@ for all x¢ X.

1. Continuity Properties of Generalized Monotone Mappings. Rock a-
fellar [21] proved that every monotone mapping 7: X—X* is locally
bounded. This result can be generalized.

Theorem 1.1. Suppose that X is a Banach space, Y is a normed lat-
tice and T: X—L(X,Y)is a GMM. Then T is locally bounded at every
point of X, i.e. for x,€X there exists a neighbourhood V of x, such that
the set T(V) - U{Tx: x¢V} is a bounded subset of L(X,Y).

Proof. We use the idea of Rockafellar’s proof. The following lemma is
the key point for the proof of the Theorem 1.1.

Lemma. /f there exist two bounded sets: a set S—X, int coS+Q
and a set U=L such that Tx(\U+Q for every x¢S, Then T is locally
bounded at every point of intcoS.

Proof of the Lemma. Let x¢intcoS. There is >0 such that B(x, 2¢)
—coS(B(x, e) denotes the closed ball with center x and radius e). We fix
arbitrary x € B(x,e), Ae¢Tx, u¢S and A ¢ TunU. We shall make use of the
monotonicity of 7. For every y*¢ YL, | y*I'<1 we have (A(u—x), y*) < (A (u—x)
v~ A/ .(lul+ x|).|y* <=C where the constant C depends only on the
sets & and U. Since the set M--{ue¢X: (Au—x), y*)=C} is closed and
convex and S~ M, then coS—M. It follows that for z¢X and | o/ <]
x+€/2v¢ B(x, £) - M, which is equivalent to [(Av, y*) =2C/e. Since Y is a lat-
tice then (Av, y*) —4C/e for all y*eY™* | y* |<1. The last inequality shows
that |A =4C/e. The Lemma is proved.

Let us now consider the sets S,={x¢X: | x| =n and Tx [ B0, n)+ @}

7 has nonempty images and hence X= (| ,=:S,. There exists 7, such that

intcoS, -+ @. We apply the Lemma for §: =S, and U : =B(0,n,) and ob-
tain that 7 is locally bounded at the points of intcoS,. Let us now take
x€X, we'll prove that 7 is locally bounded at x. For that purpose we choose
x€intcoS,, £>0, x, x+&(x—x) and A, ¢ Tx,. Let V be suchan open neigh-
bourhood of x that 7(V) is a bounded subset of L. We apply again the Lemma,
but now for S: =V J{x,} and U : "’T(V)U{Alll' Since x¢intcoS, 7 is lo-
cally bounded at the point x. The proof of the Theorem 1.1 is finished.

Corollary 1.2, Let X be a Banach space, Y be a normed lattice,
F: X—Y be a continuous convex mapping and 0g(x)+ @ for all points x
of some open set V—-U. Then the subdifferential of F is locally bounded
at the points of V.
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This result was obtained by Viladier [22] for order bounded convex
mappings. We remind that if ¥ is an order complete lattice (every order bo-
unded from below set in Y has an infinum), then every convex mapping
F: X+ Y has the subdifferential with nonempty image.

Further we’ll need some topologies in X, Y and L(X, Y). The norm topo-
logy in X, Y or L will be denoted by n. We denote by w(Y, Z) the weak
topology, generated by a total subset Z of Y* while w=w(Y, Y*). V is called
a conjugate (Banach) lattice if there exists a normed lattice E such that Y =E*
and Y. =£FE..In this case w*=w(Y, E).

When Y has a locally convex topology t, we can define in L=L(X,Y)
a topology s. in the following way: The sets Ulx, V)={A¢L: AxeV}ixeX
and V belongs to the local basis at 0¢ Y of the topology t, form a local sub-
basis at 0¢L. A net {A,}=L converges to A in s. iff tlim A.x=Ax for all
x¢X. In addition, if t=w(Y,Z) for some total subspace Z of Y* then the
topology s. coincides with the weak topology in L(X,Y), generated by
XRZ=L(X, Y)* ie. sc=w(L(X, V), XXZ), XXZ is the projective tensor pro-
duct of X and Z (see [5, p. 227)). .

The set Zc-Y* is called ordering, if y¢€Y . is equivalent to (y, 2) =0 for
all 2¢Z V.. Whenever Y is a normed lattice, Z is total. The linear sub-
space Z—VY* is said to be norming if for every y€ VY, v/ >1 there exists
z€Z, ||z|l=1 such that (y,2)>1.

Proposition 1.3 Let X be a Banach space, Y be a normed lattice,
Z be an ordering subset of Y and t=w(Y,X). Then the graph of every
maximal GMM T: X— L(X,Y) is a closed subset of (X, n)X(L, s:)-

Proof. Suppse that (x A.) is a convergent net in (X, n)X(L, s:) and
lim (xu, Ad)=(x,. Ao)- This means that ||xa—x,||—0 and (Aux, 2) —(Aox, 2)
for every x¢X and z¢Z Let (x,A)€¢GT, (A—Au) (x—xa)=Ax—Aux— Axa
+Auxe=0. It is obvious that | Axa—Ax,  —0 and t—Ilim A.x=Ayx. In addi-
tion, for every z¢ Z we have | (Aux—Ayx, 2) = (Aax—Auxg, 2) +|(Aaxo—Aoxo,
< Aall - xa—x0 1 [ 2]+ ] (Aaxo—AgXo 2)| — 0 because there exists a, such
that the set {A.: a>a,} is bounded (Theorem 1.1). Consequently t-lim (A —Aq)
(x—xo) =(A—A,)(x—x,)=0 as the cone Y. is t-closed. Due to the maxi-
mality of 7, it follows that (x,, A,)€GT. The Proposition 1.3 is proved.

Now we need the following definition. For a pair of elements y,, y, in
Y with y, =y, let [y, vo] -{V€Y: y,=y=y,}. The setsof the form [y,, v
are called intervals.

Proposition 1.4 Let X be a Banach space, Y be an order complete
normed lattice, Z be an ordering and norming subspace of Y, t be a lo-
cally convex topology in Y and w(Y,Z)=t=n. Then the following condi-
tions are equivaleut:

(i) Y has t-compact intervals.

(ii) Every maximal GMM T: X — L has s-compact images.

(iii) Every continuous sublinear mapping P: X —Y has s-compact sup-
port set.

Proof. We'll prove that (i) implies (ii). Let us take a maximal GMM
7: X—L and x, x¢X. The set {Ax: A¢ Tx,} is contained in the interval
[A,x, Ayx] for some A, € T(x,+ x) and some A€ T(x,—x). Since every in-
terval in Y is t-compact, then TII{[A,x, Ayx]: x€ X} is a compact subset of
(¥, ©)X with respect to the pointwise convergence topology #. This topology
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coincides m L(X, Y)=(Y, )X with the topology s:.. Since Z is norming and
w(Y,Z)—~t —n, it is not difficult to see that every bounded and s.-closed
subset of L(X. Y) is f-closed in (Y, ©)*X. Now 7x, is s.-closed by Proposition
1.3 and bounded by Theorem 1.1. Therefore 7x, is s.-compact.

It is obvious that (ii) implies (iii). It remains to show that (iii) implies (i).
It suffices to prove that for some y, the interval [—¥o» Vo] is t-compact. We
define P: X— Y by Px=| x|y, It is clear that {Ax,: A€d.(0) <[—Yo ¥l
for some x,€ X, x,/ =1. The mclusxon {Ax,: A€0p0)}[—v,, yoi is a con-
sequence of the Hahn-Banach extension theorem for order complete vector
lattice (see [1, p. 202]). The Proposition 1.4 is proved.

Every conjugate lattice Y has w*-compact intervals and hence every maxi-
mal GMM 7: X -~/[(X,Y) has sg«-compact images. The Banach lattice
with w-compact intervals possesses a number of equivalent properties, which,
are discribed in [3]. [offe and Levin [4] proved that the subdifferential of
every continuous convex mapping F: X—Y has s,-compact images iff ¥ has
w-compact intervals. We get thlS result as a corollary of Proposition 1.4.
The Banach lattices R”, ¢, [,(1-=p<<c) have n- compact intervals.

We shall recall that the multnvalued mapping 7 : (X, n)—(L, s) is said to
be upper semicontinuous — s-u. s. c. (resp. lower semicontinuous — s-l. s. ¢.) at
the point x,¢ X if for every s-open U=L, Tx,=U (resp. Tx,N U-+Q) there
exists >0 such that Tx—U (resp. Tx N U-+@) for all x¢B(x, d). Ken-
derov [7,8] proved that cvery maximal monotone mapping 7: X—X* is
upper semicontinuous from X to X* endowed with the weak* topology. A si-
milar result is also valid for GMM.

Proposition 1.5. Suppose that X is a Banach space, Y is a normed
lattice, T is a maximal GMM, Z is an ordering subset of Y and w(Y, Z)
<t<=n. If for some x,¢X there exists a neighbourhood V of x, such that
T(V) is relativity s.-compact, then T is s-u.s.c. at x,.

Proof. Let us suppose the contrary : there exist a s;-openset U=L, T'x,=U,
and a cmnergent net {x.}j =X, |xa—x, | =0, for which A€ Tx,/ U. When u
is large enough, x.€ V and there exists a convergent (in (L, s;)) subnet Ay@p —A,.
Since the graph of 7" is closed (Proposition 1.3), A, € Tx,. On the other hand,
the set L/U is s.-closed and hence A, ¢ L U. This contradiction proves the
Proposition 1.5.

Corollary 16. If X is a Banach space, Y is a conjugate lattice, then
every maximal GMM T: XL is Sy--u.s.c. at every point of X.

Proof. Since the closed unit ball in L(X, Y) is sgs-compact and 7T is
locally bounded, we can apply Proposition 1.5.

Corollary 1.7. Let X be a Banach space, Y be an order complete
normed lattice and P: X—Y be a continuous sublinear mapping. Then if Y
has w-compact (resp. n-compact) intervals, the subdifferential of P is
Seoll.S.C. (resp. s,-u.s.c.) at every point of X.

Proof. This is imediate from Proposition 1.5 because dp(x)=0,(0) for
all x¢ X" and 0,(0) is s,-compact (resp. s,-compact) by Proposition 1.4.

2. Single-valuedness of Generalized Monotone Mappings. Recall that
the convex mapping F: X—V is called Gateaux differentiable at x,¢.X if

F(x(); h) inf{mz_)_ﬁ“!’; k>0}

exists for all #¢ X and F(x,; .) is a linear mapping. When Y is an order
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complete lattice, F is Gateaux differentiable at ., iff the subdifferential of F
is single-valued at x, (see (1, p. 212]).

Proposition 21. Suppose that X is a normed space, Y is a normed
lattice, Z is a total subset of Y* 1—w(Y,Z), T is a GMM and x,¢ X.

(@) T is single-valued at x, if and only if the monotone mappings
(2o T) are single-valued at x, for all z¢ Y:. A

(b) If T is s~l.s.c. at the point x,, then T is single-valued at this
point.

Proof. It is clear that (a) is true. Let T be s-lLs.c. at x, and
Ay, A€ Tx, A=A, Choose x€X,||x|<1 and z¢ZNY: such that (Ax,2)
<(Asx,2). The set U={A€L: (Ax 2)<(Ayx, 2)} is s-open and A,¢Tx, N U+=Q.
There exists 8>0 such that 7x'N U= whenever || x'—x, |<3. Let x'=x,
+82.x and by the monotonicity of TA'x=A,x for all A’¢ Tx’. But now
z¢Y. and (A'x, 2)=(A.x, 2), hence A’ ¢ U. This contradiction completes the
proof.

In the case Y =R, this result is contained in the paper of Kenderov [12].

Theorem 2.2. Let X be a Banach space, Y be such a normed lattice

that there exists Z—Y* for which ZNY. is weak*-separable and total.
If every monotone mapping 0: X— X* is single-valued at the points of some
dense Gs subset of X, then everv GMM T: X—IL(X,Y) is single-valued at
the points of a dense Gs set in X.

Proof. Let Z, be a countable and w*-dense subset of Z Y. For every
z¢Z, the monotone mapping (2o 7): X—X* is single-valued on the set G(z2)
which is a dense Gs subset of X. It follows that the set G= U{G(2): z€ Z,}
is also dense Gs. Since Z, is total the GMM T is single-valued on G. Theo-
rem 2.2 is proved.

A Banach space X is called an Asplund space) (weak Asplund space) if every
continuous convex real-valued function on an open convex subset of X is Frechet
(Gateaux) differentiable in a dense Gs subset of its domain (see [5,15, 18,20]). The
requirements of Theorem 2.2 are fulfilled if X is an Asplund space (see Theo-
rein 3.2). Kenderov [11] proved that if X has an equivalent strictly convex
norm (i. e. if x;, x€ X, [x; = | xg and x;%x, then | (x,+x9)/2/</|x,])
then every monotone mapping 0: X'— X* is single-valued on a dense G; set.
In particular, Theorem 2.2 holds for every separable space X because every
such space has an equivalent dual strictly convex norm. The above mentioned
theorem is valid if ¥ is separable or Y is a conjugate lattice, Y=FE* and E
is separable.

Theorem 23. Let X be a weak Asplung space, Y be such an order
complete normed lattice that there exists Z=Y?*, for which ZY. is weak
separable and total. Then every continuous convex mapping F: X—Y is
Gateaus differentiable at the points of a dense Gs set in X.

Proof. Take the proof of Theorem 2.2 and substitute 0 for 7.

We note that there is a continuous convex mapping F: R—Y which is not
Gateaux differentiable at any point of some open interval in R (Example 4.1)
and a continuous convex function f: X—R which is nowhere Gateaux diffe-
rentiable on X (Phelps [20]).

3. Single-valuedness and Norm-to-norm Upper Semicontinuity of Ge-
neralized Monotone Mappings. The si}gle-valued mapping F: X—Y is called
Frechet differentiable at the point x,¢ X with derivative A¢L(X,Y) if
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| F(xy+h)—Fxq—Ah || 0
Th' o

lim
h =0

Theorem 3.1. Let X be a normed space, Y be a normed lattice,
F: X—Y be a continuous convex mapping. x,¢ X and there is €,>0 such
that dp(x) (O whenever | x—x,| <g, Then F is Frechet differentiable at
xo if and only if the GMM 0 is single-valued and n-u.s.c. at x.

Proof. Suppose that A,¢/L is the Frechet derivative of F at x, and
0O<e<eg, We'll find 6>0 such that if #¢X, 4 <3, then || A—A,| <e for
every A€ dg(x,+h). There exists such n>>0, that |y, Vv, |<€/3(y,, V€Y and
ViV Vs =sup{y, v.}) whenever | v | y,/l<n. Now there exists {>0 such
that for any 2¢ X, 2 < we have

| Fxg+2)—Fxyg— Az
z|

We choose & ~Z/8 and fix 2¢ X, £| <38 and A€ dg(x,+h). It suffices to show

hat | A—A,| <e. For that purpose we take g¢X,! g|=23. The following
nequalities hold :

<_.

F(x,+h)—Fx, = A4.h,
Axo+h+g)—F(xo+h)=Ag

Hence AU\F(x.,4—h+g)—F(xo+h)-l—Fxo—Fx,t Flx,+h+ g)—Fx,— Ak, so
(A—A)g=F(x,+h-+g —Fx,—A,(h+g). Let us denote the right-hand side of
the last inequality by ®(g). [f we replace g by —g, we obtain ®(—g)=(A4—A4,)(—9).

Thus
—B(—g)<(A—A,))g=P(g)

Since ®(g)=0 and ®(—g)=0, (A—A)g|=(g)VP(—g). Hence (A—A))g
=l d(g)VP(—g) . Now we have

P—g) _n (el 0 |gth_m &It A
| g—nh <3’ g—h | g+h | 'g~h!<3 |gh-xll|<
It follows that
(A—Ag|| 1L, P-g)  _ & (A=A)g || | (A=A | | g—h |
= L - hence = — < €.
|l g—nll ll{ Y Tema <7 hen gl gkl g I <e

This shows that || A—A4,| <e.

[Let now the subdifferential of F be single-valued and n-u.s.c. at the
point x,, i. e. dg(x,)—~{A,} and for any e<0 there exists 6>0 such that
'A—A,| <e whenever ||4|< &and A€0dp(x,+h).For every g¢ X we have
Flx,+h+g—F(x,+h) ~Ag and hence for &= —hF(xo)— F(,\0+h))—-A}z
Thus O0=F(x,+h)—Fxo—Ahr=(A—A)h and | F(x,+h)—Fx,—Ah| =] (A
— A | | A=A, .||k||. The last inequality shows that F is Frechet diffe-
rentiable at x,. The proof is finished.

As it was already mentioned, the Banach space X is called an Asplund
space if every continuous convex function f: X—R is Frechet differentiable
at the points of some dence Gs subset of its domain. Further we need the
following well known theorem.

Theorem 3.2. Any one of the following statements about Banach
space X implies all the others:



GENERALIZED MONOTONE MAPPINGS AND CONVEX MAPPINGS 269

(a) X is an Asplund space.

(b) Every monotone mapping T: X—X* is single-valued and norm-
to-norm upper semicontinuous at the points of a dense Gs subset of X.

(¢) Ewery separable subspace of X has a separable dual.

(d) X* has the Radon-Nikodym property (for the definition see [5]).

The proof of the part of this theorem (a)<>(c) may be found in [20].
Kenderov [10; 9] proved that (a)=-(b) and (c)=-(b). It is trivial that (b)=-(a).
The equivalence between (d) and (¢) may be found in [5].

Further we’ll give some conditions under which a given GMM 7: X—L(X, })
is single-valued and ~-us.c. on a dense G; subset of X. In the general case
this problem is very complicated. There is a convex mapping F: R—Y, which
is not Frechet differentiable at any point of an open interval (Example 4.2
(a)), thus the GMM 0d;: R—L(R, Y) is not n-us.c. at any point of this in-
terval (Theorem 3.1). Similarly there exists a sublinear mapping P, defined
in a Hilbert lattice ¥ with values in ¥, which is Frechet differentiable at no
point of Y (Example 4.3). First we shall solve the problem supposing A is a
finite dimensional space, and second we’ll find some requirements concerning
the spaces Y and L(X, Y) and (or) the GMM 7 under which 7 is single-va-
lued and ~n-us.c. on a dense Gs set in X. To do this we use the following
corollary of a Kenderov’s theorem [9, Theorem 2.1].

Theorem 3.3 (Kenderov). Let X be a Banach space, V be a normned
space and W be a norming subspace of V*. Suppose T: X—(V, w(V, W))
is an upper semicontinuous (multivalued) mapping with w(V, W)-compact
and convex images. If

(a) W=V or

(b) V is a conjugate space, i. e. V=E* and W=E, E is an Asplung
space
then there exists a dense Gs subset G in X at every point x of which the
following “continuity property” (c. p.) is fulfilled :

(©.p) for every €>0 there is >0 such that inf{|v'—v'"'|:
P {'o’e Tx', v €Tx"}=¢ whenever | x'—x| <8 and | x""—x||<3.

Proposition 34. Let X be a normed space, Y be a normed lattice
and T be a GMM. Then T has (c.p.) at the point x,¢X iff T is single
valued and n-u.s.c. at x,.

Proof. If 7 is single-valued and n-us.c. at x, then it is not difficult
to see that 7 has (c.p.) at x, Let now 7 has (c.p.) at the point x,¢X and
e>0. There exists >0 such that

inf{| A’—A"||: AeTx', A”€¢Tx'}<e/4
whenever x’, x"’ € B(x,, 8). We'll prove that diam T7(B(x, 8))<e and that’s
enough for single-valuedness and n-upper semicontinuity of 7 at x,.

Let x,, x,€B(xy8), A €Tx,, Ay¢Tx, e¢X and '|e||=1. For some £>0
we have x’—=x,+te€ B(x,, 8) and x"" = x,—fe¢ B(x,, 8)andlet A’ ¢ Tx', A" ¢ Tx"’,
| A”—A" | <g/2. Using the monotonicity of 7 we get (A’—A;)e=0 and
(A;—A’")e=0. Therefore (A;,—Ay)e=<(A’—A")e. If we take —e in the place
of e we obtain (A, —A;)e=(Ai— Az)e where A;¢ T(x,—te) and As € T(x,+te)
are such that | Ai—Ay ||<e/2. Hence for every y*¢Yi,| yv*|[<1 we have
[¢((A;—A)e, y*) |<e/2. Therefore |((A,—Ay)e, y*)|<e for all y*¢Y* | y*| <.
It follows that | (4,—Aj)e|<e and Proposition 3.4 is proved.
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[For usual monotone mappings this was proved in [9].

Besides the theorem of Kenderov we make use of a result of Losa-
nowski (see [3]), Proposition 3.4 and Example 4.2 to prove the following:

Theorem 3.5. If Y is an order complete Banach lattice, then the fol-
lowing assertions are equivalent,

(i) Y has w-compat intervals.

(ii)y Every GMM T : R—L(R,Y) is single-valued and n.-us.c. at the
points of some dense Gs subset of R.

(iii) Every convex mapping F: R—Y is Frechet differentiable at the
points of a dense Gs subset of R.

Proof. We note that the space L(R,Y) is isometric to Y. (i) implies (ii).
Let 7: R—Y be a GMM and 7: R—Y be a maximal GMM such that
TrTr for every reR. 1If we take r,€¢R, v, € Tr, i1, 2, the monotonicity of
T isAexpressed in y, =y, whenever r,==r,. Let r,¢€R, >0, V=(r,—38, r,+9),
Y €T(r,—39), vyt T(rp+8), then 7(V)<|[y,, Vs]. Proposition 1.5 shows that 7T
is w-us.c. at r, T has w-compact (Proposition 1.4) and convex images then
by Theorem 3.3 (a) and Proposition 3.4 7 is single-valued and #n-us.c. at
the points of some dense Gs subset of R. 7" has the same property because
Tr T r whenever 7r contains one point.

(ii) implies (iii). The convex mapping F: R—Y is continuous at every point of
R because it is order bounded (see Valadier [22]).Since Vis an order com-
plete lattice, d{x) = for every x¢.X, and we canapply Theorem 3.1.

(iii) implies (i). Losanowski proved that Y has w-compact intervals iff the
space m (of all bounded sequences) does not embed into ¥ (see [3]). There
is a convex mapping F: R—m which is not Frechet differentiable at any
point of the interval (0,1) =R (see Example (4.2). Thus the implication and
Theorem 3.5 are proved.

We mention that all sublinear mappings P: R—Y are Frechet differen-
tiable at every point of R/{0}, provided V¥ is a normed lattice. This is not
true even if R is replaced by R? (see Example (4.2).

Theorem 3.6. If Y is an order complete Banach lattice and p=2,
then the following assertions are equivalent :

(i) Y has w-compact intervals.

(ii) Every GMM T: RP—~L(R?,Y) is single-valued and n-u.s.c. at the
points of a dense Gs subset of R”. .

(iii) Every convex mapping F: R?—Y is Frechet differentiable at the
points of some dense Gs subset of R’.

(iv) Every sublinear mapping P: R? —Y is Frechet differentiable at the
noints of a dense Gs subset of R’.

Proof. It is not difficult to show that 7(V) is order bounded for every
bounded set V—R”. As well as in the proof of Theorem 3.5 we get that (i)
implies (ii). It is obvious that (ii) implies (i) and (iii) implies (iv). Example
4,2 (b) enables us to get (iv) implies (i).

Thus, if X—R? we give the necessary and sufficient condition for a GMM
7: X—L(X,Y) to be single-valued and n-us.c. at the points of a dense Gs
set in X. An analogous theorem can be obtained from the known results for
Asplund spaces (see Theorem 3.2).

Theorem 3.7. Each of the following assertions abaut a Banach space X
implies all the others.



GENERALIZED MONOTONE MAPPINGS AND CONVEX MAPPINGS 271

(i) X is an Asplund space.

(ii)y Every GMM T: X—L(X,R?) is single-valued and n-u.s.c. at the
points of some dense Gs subset of X.

(iii) Every continuous convex mapping F: X— R’ is Frechet differen-
tiable at the points of a dense Gs set in X.

Proof. Let Fx=(fyx)falX)....fn(x)) and f;: X —R,i=1,2.. We
note that F is a convex mapping ifi all f, are convex functions. Moreover F
is Frechet differentiable at x¢.X iff f, is Frerhet differentiable at x for all 7.
Since L(X,R?)=(X*?, T=(T, Ty ..., T,), T,;: X—AX* and T, is the mono-
tone mapping for every i=1.2,...p. And the GMM T: X — L(X,RP) is
single-valued and n-us.c. at x if and only if the monotone mappings
T,i=1,2,...,p are single-valued and n#n-us.c. at x. In such a way this
theorem is a corollary of Theorem 3.2.

Now we give some results for infinite dimensional case.

Theorem 38. Let X be a Banach space, Y be a conjugate lattice and
L(X, Y)=K(X, YY*K(X,Y) is the space of all compact linear mappings
from X into Y). Then every GMM T: X—K(X,Y) is single-valued and
n-u.s.c. at the points of a dense Gs subset of X.

Proof. Suppose ¥ E* Since L(X, ¥)=(XXE) =KX, V)™ [5, p. 230],
the GMM 7: X —K(X.Y) is w(K(X, Y), XXE)us.c. at all points of X by
Corollary 1.6. According to the Theorem 3.3 and Proposition 3.4 we get that
the GMM T is single-valued and n-us.c. on a dense G; subset of X

Corollary 3.9. /If the conditions of Theorem 3.8 hold, then every con-
tinuous convex mapping F: X —Y with the property Op(x)=K(X.Y) for
all x¢ X is Frechet differentiable at the points of a dense Gs subset of X.

Proof. Apply Theorem 3.8. d, has nonempty images because every con-
jugate lattice is order complete (see [23, p. 278]).

Corollary 3.10. Suppose X is a Banach space, Y is a conjugate lat-
tice with n-compact intervals and L(X,Y)=K(X,Y)™. Then every order
bounded convex mapping F: X —Y is Frechet differentiable at the points
of a dense Gs subset of X.

Proof. Since Y has n-compact intervals and F is order bounded, then
Ox(x)= K(X, Y) and Corollary 3.9 can be applied.

W note that if X and Y are reflexive and X or Y has the approxima-
tion property (for the definition see [5, p. 238]), then L(X,Y)=K(X, Y)*
(Feder, Saphar [6]). In particular, Corollary 3.10 is valid for X=1[, Y=l
l<p<oo, 1<g< ». -

Theorem 3.11. Let X be a Banach space and Y be a conjugate lat-
tice such that L(X,Y) has the Radon-Nikodym property. Then every GMM
T: X—L(X,Y) is single-valued and n-u.s.c. at the points of a dense Gs
subset of X.

Proof. Since Y =E* L(X,Y)=(XXE)* and L(X,Y) has the Radon-Ni-
kodym property, then X@E is an Asplund space. Theorem 3.2 (b) and Pro-
position 3.4 show that 7' is single-valued and n-u.s.c. on a dense G; setin X.

Corollary 3.12. Suppose X is a Banach space, Y is a conjugate lat-
tice such that L(X,Y) has the Radon-Nikodym property. Then every conti-
nuous convex mapping F: X —Y is Frechet differentiable at the points
of a dense Gs subset of X.

Proof. This follows immediate from Theorem 3.11.
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Diestel and Morrison [4] proved that if X and Y are separable Ba-
nach spaces with the Radon-Nikodym property and L(JX, V)-=K(JX, V), then
L(X,Y) has the Radon-Nikodymn property. In particular, the requirement of
Theorem 3.11 and Corollary 3.12 are fulfilled if X'—1/,, V=L, 2<g<p< > or
X=L, Y=, 1-2¢g<2=p< > (see [8]).

4. Examples. Example 4.1. (a) Let Y -=m [0, 1] be the space of all
bounded functions, defined in the interval [0,1]=R. Y is an order complete
Banach lattice with respect to the norm ||y |=sup{ y(¢) :£¢€[0, 1|} and the
positive cone ¥V, ={yeY: y(t) =0 for every £¢[0, 1]}. We define F: R— VY
in the following way: (Fr)(¢)= r—t for every re¢R and f€¢ [0,1]. Fis a
convex mapping. It is not difficult to see that for every r,¢(0,1) the subdif-
ferential of F has the form: 0p(r)—{yu: a€[—1, 1]}, where

) 1 for te[0,r,)
V)= a for t=r,
—1 for t¢€(ry 1)

It follows that F is nowhere Gateaux differentiable at any point of (0,1).

(b) Let now Y=L.[0,1]). V' is again an order complete Banach lattice
with respect to the wusual norm and order. The same mapping F is convex
and the form of the subdifferentials, given in (a), shows that F is Gateaux
differentiable at all points of R. We'll show that F is not Frechet differen-
tiable at any point of the interval (0,1). Indeed, when r,€(0,1), >0, r,+8/2
<1, h=98/2 and df(r(,)_{y} we have || F(r,+h)—Fro—hy || =esssup{ r,+h—t
—ro—t —hy(t) : te]0, 1)}=esssup {|r,+h—t — ro—t —hy(t) : t€(ry, 7,
+38 4)}'—e\ssup{2(r0-1—h—t) LE(ry, ro+0/4)} =hA.

(¢) Let us note that we can consider F as a mapping from R into the
space of all continuous functions C[0,1]. Relative to the usual norm and order
C|0,1] is a Banach lattice, but it is not order complete. In this situation F
has empty subdifferentials at every point of (0,1)(see also loffe and Levin [7]).

Example 4.2. (a) Let m be a space of all bounded sequences with real
terms. In the wusual norm and order, m is an order complete Banach lattice.
Suppose that Q ~{¢,. g2 ..., ¢ ...} is the set of all rational numbers in
(0, )¢ R. The mapping F: R— m is defined by

Fr—(r—q,|, |r—qs,.-., r—qpl... )

As in Example 4.1 we can prove that F is not Gatcaux differentiable at the
points of Q and F is not Frechet differentiable at any point of (0,1).
(b) Let us define P: R? —m in a such way:

P(r,s)=(r—sq,|.\r—sqy, ,.., r—5q, ,...).

P is a sublinear mappmg and it is not Frechet differentiable at any point of
the open nonempty set G {(r. s)(R" 12<rs<] and 1<s<?2

Example 4.3, Let 1,,(1 >) (resp. ¢,) be the space of all sequences
v-=(x,, Xg . - Xy ... ) Of real numbem for which | x|, = (S| x, [P)P<
(resp. x,—0 and x| —sup,|x,|). With respect to thm norm and the usual
order [, and ¢, are order complete Banach lattices. We'll denote by X either
the space ¢, or some of the spaces /,. The mapping P: X — X, defined by
Px - x|, where 'x|=(lx;, x, .....Ix, ,...). is a continuous sublinear
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mapping. It is not difficult to show that the set A¢ L(X, X): A={a,} a;¢[—1,
1], a,; =0 whenever i+ is the supportset of P. Here {a;,} is an infinite ma-
trix, defined by the linear mapping A¢L(.X, X). P is Gateaux differentiable
at the points of the set G={x¢€ X: x,=0 for every &} which is a dense Gs
subset of X and if x¢G then dp(x)={A}, 0,(0)¢ A={a}, a,=sgn(x,), i=1,

2,....P is nowhere Frechet differentiable because if 4,—=(0,0,... —2x,,

» Vs .

0,...)€.X, then 'lA,'— 0 but

i P(x+-hp)— Px— Ahy || 1
B =1
k

It is interesting to note that dp is s,-u.s.c. at all points of X (Corollary 1.7
but dp is not n-u.s.c. at any point of X (Theorem 3.1).

The author would like to thank P. S. Kenderov for his encourage-
ment and valuable discussions on the subject of this paper.
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