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ITERATIVE OPERATORY SPACES AND THE SYSTEM
OF SCOTT AND DE BAKKER

LUJBOMIR L. IVANOV

The notion of iterative operatory space (10S) is introduced in [5], where the foundations
of an intrinsic recursion theory on I0S are announced. Some simple examples of 10S are con-
sidered in [6] with applications to the ordinary recursion theory. A detailed exposition of
these results is given in [7). In the present paper a part of the [OS-theory is treated in details.
A connection with the formal system of Scott and de Bakker from [1, 2] is established, which
allows to reaffirm our results in the case of that system. The terminology and notations
from [5, 6] are used here mostly without reference.

1. Iterative Operatory Spaces. Let ¥ =(#, /, I, L, R) be an operatory
space (OS). If ':# —#, then p8.[(0) is written for the least solution of the
inequality T'(0)<0, provided it exists. Certainly, p0.I(0) is the least fixed
point of I' whenever I' is monotonous.

An iterative operatory spacc is an OS with some p-axiom satisfied, to
write 10S=0S+pA. We are going now to state four versions of such an
axiom, namely pA, pA;, pA, and pA; The axioms pA,, pA; are introduced in
[5, 7], respectively, while pA,, pA, are new ones.

Axiom pA, Two additional unary operations (), [, are supposed to
be given, such that the following conditions are satisfied forall ¢, v, y" and
Tin F:

(i) (oL, (MR)=(¢), Ry=wy'&(oLy, ty')<t=(p)y =1,
(i) (/, 9[o]=[0), (v, 91)=t=[0]y=T.

Taking v = /, y' = R, we get immediately that (¢) =p0.(¢L, 0R) and [@] = no.(Z, 90).

As a matter of fact (ii) is contained among the axioms of [4; 10]. The
algebraic system considered in [4] is OS+(ii) (without LR supposed), and
is in a certain sense equivalent to that in [10].

The concept of inductive mapping is introduced inductively as follows.

I. The mappings T =20, ...0,.0, 1<i<n,and T=20,...0,.y, ve{/, L, R},
are inductive.

2. 1f I, r": #F'—F are inductive, then so are I'=40,...0,.17(0,,.
0,)r"0,, ..., 0,) and T'=20,...0,.(I"(0,...,0,), "0, ...0,)).

3 1f I': FH1F is inductive and for all 0,,..., 0, the element p0.I"(0,,
..., 0, 0) exists, then F=26,...0,... n0.1'(0,,...,0,0) is inductive.

The monotonicity of the inductive mappings follows easily by the defi-
nition.

In order to state pA,, we assume that the eclement (¢)=p0.(¢L, OR)
exists for all ¢ and call simple initial segments the sets of the form {0/6y <t}
or {8/(0)< (Nt}.

.o
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Axiom pA,. For any n-+l-ary inductive mapping T and any0,,...0,
the inequality T(0,,...0,0)=0 has a solution, which is a member of any
simple initial segment closed under the mapping »6.T(0,, ... 0, 0)

The proofs of the Normal Formal Theorem and the First Recursion Theo-
rem given below imply that it is sufficient to allow in pA, the mapping
20,0.(0,L, 6R), 10,0.(, 6,0) and 1.6,0.LR[6,(/, (6))] only, where [¢]=u0. (7, 96)
by definition. Therefore the axiom scheme pA, is equivalent to a first order
axiom.

Axiom pA, For all ¢,y the inequality o(l,0y)=0 has a solution,
which is a member of any normal initial segment (®-initial segment in terms
of [5)), closed under the mapping 20.o(/, 6y).

It is sufficient for our purposes to take in pA, the mappings 20.(¢L, OR),
20.(/, ¢0) instead of A0.o(/, Oy).

Axiom pA. For any tnductive mapping T :F"*\-F and any 0, .. .0,
the inequality T(©,, ..., 0,, 0)=0 has a solution, which is a member of any
normal initial segment closed under the mapping 10.1T(0,,..., 0, 0).

It is obvious that pA,; implies pA..

In any concrete case the p-axiom used will be indicated by a correspond-
ing number of asterisks. For instance, the proof of Proposition 1.30* given
below makes use of pA,. '

Each of our p-axioms provides in particular that for any o there are ele-
ment (@) (translation of ¢). and [¢] (iteration of @), such that (@) =n6. (oL, 6R),
[@)=u0.(/, ¢0). For uA,, pA; that is implied by the following statement.

Proposition LI*1.1%¥*). Let 6, be the solution supposed in pA; (in
nA;). Then 6,=p8.T(6,,..., 6, 0).

Proof. We have I'(6,,...0,,0,)<86, Let T\0,,...,6,, 1)<t The set §={0,0
<71} is a simple initial segment (normal initial segment), and whenever 0¢&,
then I'0;,..., 0, 0)=I(O,....0, t)<=T1, hence 0,¢&. Therefore 6,~1, and we
conclude that 8,=p0.0(0,, ... 0, 6). Notice that 6, is the least fixed point of
A0.0(8,,... 0, 0), since the mon~tonicity of the mapping concerned.

The following two statements give that pA, implies pA,.

Proposition 1.2. The axiom pA, implies (i).

Proof Let Ry=wyy’ and (pLly, ty’)<=t. The set &={0/0y-_1} is a simple
initial segment. If 0¢&, then (oL, OR)y = (oLy, ORy)~(oLy, Oyy')<~(oLy, y")
<1, hence (¢)¢d&, and therefore (p)y=rt.

Proposition 1.3. The axiom pA, implies (ii).

Proof. Let (y, ¢t)==t. The set &-{0/0y<1} is a simple initial segment,
fn]d if 0¢&, then (/, 90)y=(vy, ¢0y)<<(y, o1)~7. Hence [p]€ &, and thereby
Ply=T.

Similarly pA, implies pA,. At lasts, puA, implies pA,. In fact if pAy is
given, we prove that (8)—(/)t iff yn(bn=nt), where n-—=LR" (using the normal
initial segment {0/yn(OR"=(/H)R"t} in the ‘if*-part, and the equality 7(0) - On in the
‘only if’-part), hence any simple initial segment is a normal initial segment
as well.

It is worth mentioning that each of pA,, pA;is essentially a second order
axiom, i. e. not epuivalent to an effectively given set of first order axioms.
That follows by the representabilty of the partial recursive functions (Propo-
sition 1 [5]), similarly to a corresponding result in [9].

Now we are goinF to revise a part of the abstract recursion theory deve-
loped in [7], Chapter I, being interested especially in some key results (Normal
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Form Theorem, First Recursion Theorem, Enumeration Theorem etc.). A number
of proofs in [7] depend on pA,, which is a second order axiom, and hence
not appropriate for applications to the system of Scott and de Bakker. Fortu-
nately, the weakest axiom pA, turns out to provide all the important state-
ments ot the theory but the First Recursion Theorem, which can be proved
by means of pA,.

Proposition 1.4, L(9)=0L, Re)=(o)R, L[9o]=1, and R[¢]=¢[e].

Follows by the equalities (¢)=(9L, (@)R), [¢]=(/. ¢[o]).

As a corollarly we get n(@)=o¢n for all n.

Proposition L5 [@ly=pb6.(y, ¢6).

Proof. We have (v, o[o]y)=(/, ¢o[o])v =[¢]v, and whenever (y, o1)=T,
then [o]y<=t by (ii). Hence [o]y=p8.(y, o

Notice that (ii) and 1.5 are equnvalent

Proposition 1.6. Re]lu=pub.o(y,0).

Proof. We have o(y. R[e]v)=o(/, o[¢])y=0o[o]y=R[o]v. If o(y, t)=T, then
(v, (v, 7)) =(w, 1), hence [@]ly=(vy, 1) by (ii), and therefore Rlo]ly=r.

Proposition 1.7. [o]y=R[c] with c=(yL, oR).

Proof. Making use of 1.5 and 1.6, we get [¢]ly=p0.(y, ¢0)=pnb.0(/, 0)
=R[o

P]roposntlon 1.8. ¢|y]=LR[o] with c=(oR% L, yR?).

Proof. Our usual convention is (@;, @y ..., <p,,) (91, (9g ..., 9,) for
n>2; here o= (R (L, yR?)).

We have

(/, wR[6]) = (L, wR?)[c] = Ro[s] = R[c], hence [v]<R?o].

Let t=(/, o[v], [w]). Then (/, ot)=(/, o[vy], (/, y[y]))=1, hence [c]=rT, and
therefore R?[o]<[v].

We get [y]=R2[c], hence o[y]=oR2[c]=Lo[c]=LR|a].

Proposition 1.9. [¢ly[x]=LR[c] with o=((yR?, oLR), L, xR?)

Proof. We have(/, xR%[c])=(L, xR?)[c]=Ro[o] =R?c], hence [x]\R"} l
Therefore, (y[x], 9LR[c])=(yR¥c], oLR[c]) = (yR% @LR)[c] = Lo[c] = LR
hence [o]y[x]=LR[c] by (ii).

Let t=(/ [olv[x], [x)) Then (I, or=(L(vx], elelvlx]. (Lx[xDI={
olow[x]. [x])=1. hence [o]=1, and LR[c]=[e]y[x]. Thereby the proof is
completed.

Proposition 1.10. [¢|y]]==LR[c] with c=((L, 9R?) LR, yR?®).

Proof. We have (LR[o], yR*c])=(LR, yR?[c]=R?oc], hence [w]LR\]
~R?[o] by (ii). Therefore, (/, 9[y]LR(c])=(/, oR?[c]) = (L, oR?)[c] = Lo[o]= LR|o]
implies [o[v]]=LR[o

Let (7 [o[v]]. [vlielv]]). Then (4 ot)= (/ (% olwle[v]), [o(wl]. wlv]
[‘P[W”) (. [olv]], \v[W])[le]l)—fv hence [o]=1, and therefore LR[c]=<[o[v]].

l'OpO\lthH Al Let oLy =yLt, Ry=wyvy’, and ty’' <Rt with a cer-
tain y'. Then (@)= (X)T

P roof. We have (oL, (x)ty')=(xLt, ()RT)= ()1, hence (p)y < ()t by (i).

Proposition 1.12. Let oLy=ylt, Ry=wyvy', and twy' =Rt with a cer-
tain v'. Then (@) =T

Follows by 1.11.

Proposition L13. (@) {v)=(oy).

Proof. The equahtles oL(w)=0yL, Ry)=(WR imply (¢@){y)=(py) by
112, taking t—=1, v =R.

Proposition L.14. R[(®)] = [(9)]e.
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Proof. Making use of 1.7, we get [(@]o=R[(oL, (@)R)]= R[(®)].

As a corollary we get n[(p)]=¢" for all n.

The binary operation primitive recursion is introduced by means of the
equality A(o, v) = (@)[(w)]-

Proposition 1.15. LA(g,y) =0, RA(¢, v)=A(¢, v)v.

Proof. We have

LA(e, w)=9oL[(W)]=0/=9,
RA(9, W) = (@R[(W)] = (@)[(W)]¥ = A(e. W)v-
Proposition 1.15 implies nA(p, w)=e¢y”* for all n.
Proposition 1.16. Let oy =Lt, yy=xv'. and wy' =Rt with a certain

v'. Then Ao, w)y = ()t (hence A, w)y =1 whenever t is of the form (t1,)1,).
Proof. The equalities

oL[(Wx=0x =Lt Rwlx=[Wwvx=[Wxv’', 1y =Rt

imply (@)[w)|x,=(Ht by 1.12.
Proposition 1.17. (¢)=A(¢L, R).
Follows by 1.16, with ' =R.
Proposition 118, A(p, v)=u0.(¢, Oy).
Proof We have

(0, (@[W]W) = (0, (OR[(W]) = (oL, (OIR)(W)] = (@)[{w)].

Let (9. ty) =t Then RKw]=[W]v, (eL{W)], Tw)=(v. Ty) =1 imply (®)[(y)]
~1 by (i), which completes the proof.

Proposition L19. (¢, )= C{o), (v)) with C=A((L* LR). (RL, R*))
Proof. We have

(L2, LRY(9), (w)) = (0. W)L =L, W), (RL, R*)(9), (W)
=((@) (MR, (9. VIR = R((¢, W),
hence C((@), () = (¢, w)) by L16.

It is worth mentioning that nC=(n L, nR) for all n.
Proposition 1.20. ([¢])=C[e)C).
Proof. We have

(L, o(L2, LR)(@)C)) = (L, oLCUOC) = (L, LR{(@)C]) = (L2 LR)(9)C].
hence [o|L (L% LR)(¢)XC]| by (ii). Also
(R, (@)C(RL, RH[(@)C]) = (R, ROC[(9)C])= (RL, R*)[(9)C].

hence [(@)C|R=(RL, R*)[(9)C] by (ii).
Taking t=(/. ¢[o]L, R[9)C|R), we get

(1, {<@)Ct) = (1, (oL, (@)R)CT) = (1, 9(L*, LR)1, (9)C(RL, R*)r)
(7, o(L, o[@]L), (@C(R, R(MCI|R))=(1, ¢[¢]L, (P)C[(®)CIR) =T,

hence [(9)C]=1, therefore (L2, LR)(9)C|=[o]L and (RL, R*)[(¢)C]|=[(¢)C|R.
Hence (L% _LR)\(@)C|=[¢|L and (RL, R*)[(®)C| =[(@)C|R, which gives
Clco)C)=([o]> by 1.16.
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Proposition 1.21. Let o=C(((W]L, (9)R?). Then 1[c]=pb.(/, ¢dy).
Proof. We have

(v, o(v, R[o])= (v, C(LW v, (@R*c]))=(v, C(R(W)]. R(@R?(c]))
=(y. Ro[o])= (v, R¥s]),
hence [o]ly<(y, R?[c]) by (ii). Therefore,
(1, o1[o]W)=(/, 92[c]) = (L, 92)[c]= Lo[c]=1[a].
Let (/, pty)<t. Taking into account that

(DW= (L, ADR)Y W] =1, <w)w)]) = (W],
we get

(1, o(1, A(t, W)= (L, C([{w)]. (@RD(W])=(I. C([{w]. (@) (D) (W[W]))
=(1, CKD, (@)W = (L1, e [w]= (1, (DKW =, Az, v)),

hence [o]<(/. A(t, ¥)), and therefore 1[o] <OA(t, y)=1, which completes the
proof.

Proposition 1.22. Let ¢, =¢(yL, xR), 0,= pn8.(/, ,6p) and 6,=¢,8,
(8, exists by 1.21). Then 0, =ub. oy, x0p).
Proof. We have o(y, x0,p)=9,(/, ¢,8,p)=¢,0,=6,.

If o(y, xtp)=rt, then

(4, @:(4, tp)p) = (L, o(w, x1P)P)=(, TP).

hence 0,< (/, tp). Therefore 6,=<¢, (/ Tp)=t, and the proof is completed.
Proposition 1.23. Let D=A(L? (R)R). p=C(/]L, R) and T=20.D(8)p.
Then np|T(¢)]-=[ne] for all ¢ and n.
Proof. Let 6 =T'(p) and 1=T(R(p). We shall prove at first that Lp[oc]

=[Le]. Rp[o]=p[T]. .
It follows easily that o= (Lo, Ro), Lo=Le(L, LR), Ro=1(L, R?). We have

(1, Lo(L, LR)[c))=(/, Lo[s])=(L, LR)[s).
hence [Lo]=(L. LR)[c). Also
(/, oL, R*)[o])= (1. Ro[c])=(L, R¥)[s]
implies [t]=(L, R?)[c]. Then
(1, o(1, Lo[Le), t[x)))=(L, Lo(l, Lo[Le]). t(/, [t]))=(/, Lo[Le]. T[t])
gives [o]=(/, Lo[L¢], t[t]), hence
Lolo]=(L. LR)[o]= (Lo} Rp[o]=p(L, R)c]=p[t].

_ We have now Lp[[(e)]=[Le] and Rp[[(e)]=p[l(Re)] for all ¢, hence
np[T(¢)] = Lp[T(R"¢)]=|[ne] for all ¢, n. Thereby the proof is completed.
Proposition 1.24. Let p=A(L, R?), P=A(pR. p), A=(R, RL), c=A(L?, A)
and Q -p0.0(0R, L). Then (9)=Pe)Q for all ¢.
Comments. While the elements P, Q considered in [5; 7] correspond
to the Cantor’s pairing function, here P, Q correspond to the pairing function
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J=xrmn.(2m+1)2" (i.e. mnP=Jm, n), Jm, n) Q=mn for all m, n). The cle-
ment P is primitive recursive, and Q is recursive by 1.21, 1.22.
Proof. We have

Lo —=1? RPc=cA% LA*=RL,

hence po - (L by 1.16. Therefore, pRo=pocA=()LA=(HR. The equality,
Q —=o(QR, L) multiplied to the left by pR and p gives pRQ=(/)L and pQ = QR
respectively. Besides,

L(o) =L =0¢Lp=L{0)p RX)=(PR: (9)pR*=(0)Rp = R(¢)p.
and therefore p(p) =(¢)p by 1.16. We get

PRGN =(@I)PRQ = ()L = L)), pe)Q = (@)pQ=(PIQR, () R= R(®))

hence P(9)Q-—=((g)) by 1.16 and the proof is completed.

The statements 1.2.16, 1.2.17 [7] compose the Representation Theorem
(Proposition 1 [5]), concerning primitive recursiveness and recursiveness respec-
tively.- Though the proof of 1.2.17 (7] depends on pA;, the axiom pA, is
sufficient whenever a representability without the requirement f(s,.... s,)"*
=58y ...5,0--0 is considered. This fact implies (similarly to a corresponding
result in [9]), that the theory of IOS with a p-axiom pA, is essentially unde-
cidable.

An element ¢ is simple in a subset # of & iff ¢ can be constructed
from members of {L, R}U# by means of the operations multiplication, TI, ().

The following statement is called Normal Form Theorem for the elements
recursive in #.

Proposition 1.25. If ¢ is recursive in B, then ¢ -=1[o] with a certuin
o simple in #.

Proof. Using an induction on the construction of ¢, we shall prove at
first that ¢ —o’[c”] with o', ¢” simple in #. Taking the eclement A as initial,
the element /2 and the operation 1 could be omitted in the definition of
recursiveness, since R-=LA and (o, v)=A[eL?][yL] for all ¢, y (the latter
equality originates to [4]).

I @e{L, A} B, then ¢=R[el|.

let ¢ =o'[6”]), y—=1'[t"]. Then

oy —o'T[ (' R% oT), O, v'R?)]

by 1.9. We have (9)=(a")C[(c")C| by 1.13, 1.20. Substituting (L% LRM[(RL,
R2)] for C, and making use of 1.10, 1.9, we get (p)=o0\[o]] with certain o
o, simple in o', o”. At last,

0] = T[((D. o'R?), T. 0"RY)]
by L.10.
Now let ¢ —o’[0”] with o', ¢” simple in 4.
Then ¢ 1|(6’R%0, 0”R?)| by 1. 8, which completes the proof.
The following statement is called Normal Form Theorem for the unary
mappings recursive in 4.
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Proposition 1.26. If T is an unary. mapping recursive in B, then

I'=10.1[¢(/, (0))| with a certain ¢ simple in 3.

Proof. We shall prove at first that T=2x0.y[x(/, (8)p)] with certain vy, ¥,
p recursive in 4, using an induction on the construction of I'. Again the
element A will be taken as initial instead of R, and the case of the opera-
tion IT will be omitted.

If T=20.y, we{l, A} U B, then T'(0)=R[wL]=R[vLX/ &)

If T=x0.0, then T(0)= R[OL]— R[LR(/, (8))).

Let I"=20.v'[x'(/, ®)p")], T"=20. v [x"(/, (8)p")].

If T=20.T7(0)T”(0), then 1.9 gives I'(6)=vy’l[c], where

o= ((W'R2 ' (1, 0)p")1). 0, x"(1, (0)p“)R2) = 11(1,(8)p1, (0)p2) = X1 (L, (OYLps, (O)LRps)
=1L, OONPs  1¢0)ps) = xall, ((ONP3)= %o 1, PBYQp3) = x(/. (B)p)

’ ’ n n "

with certain %,, Xa % P P P3P recursive in y', p’,
If T=x0.(I'"(0)). then 1.13, 1.20, 1.19 give I'8)= (\v )(,[c] \\here

o —(x'(/, (O)p ))C GNHCUD,  «(OXP)C =111, (O)p,) with certain x,, p, recur-
sive in y/, p’, and we continue as in the previous case.

If T -20.[I"(0)). then 1.10 gives I(8)=1[c], where
o =((0. v'R). T, 1'(. (®)p"R*) =x(L. (®)p)

with certain yx, p recursive in ', ', p.
Now let T=20.vy[x(/, (6)p)]. and v, y, p be recursive in #. Proposition

1.8 implies T'(g)=1[c], where
o= (YR 0, (7, (®p)R*) = x,(148)p)
with y,, p, recursive in #. We get o=yx,(L, O)R)[p.L]=1[o,] by 1.8, where
1= (2. OR?). 0, p,2)= 1o/, (OR?)

with y, recursive in #. The Normal Form Theorem 125 gives that there is
an element ¢, simple in %, such that %,= 1[¢,], hence

o1 = T[@,)(L MR)R'L] =1 T[0,]

’

by 1.9, where _ R
o= (((2, (OR?), 9,1), 0, R*2)=0,(/, (8))

with @, simple in #, making use of the equality (0)R = R(8). Then o= 11[oy
by 1.10, where

;= ((0, 13), T, 0(R2, (B)R®)) = 04/, (8))

with @, simple in #. Applying 1.10 once more, we get I'(8)= [qu(l (6))]
with ¢, simple in #. At last, 1.8 gives I'(8) = 1[o,), where

o, (13,0, (R (0)R?)=0(/, ()
with ¢ simple in #. Thereby the proof is completed.
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A concept of n-ary mapping over F recursive in # can be introduced
too, by taking as initial the mappings 20, ...0,. v, w¢{L, R} U #, and 20,...6,.0,
1 -i=n, instead of A0.y, 20.0.

The following Normal Form Theorem for n-ary mappings recursive in #
can be proved by modifying the proof of 1.26.

Proposition 1.27. If T is a n-ary mapping recursive in #,n=1, then
T 20,...0,. 1o/, (0,),...,(0,))] with a certain ¢ simple in B.

Another version with

r=20,...0,. 1o/ (6, .. .08,

can be obtained as an easy corollary to 1.26.

Proposition 1.28. The element p0.[y(l, 0y)] exists for all ¢, v, ¥,
and is recursive in ¢, y, . B

~ Proof Similarly to .10 the equality [o[(y, 0)]]=R*1[c] with o=((yp

R21,0,9p), xp) and p- (11,01, R?) can be established (by verifying that
[(w, 0IR* 1[s] =p[o], [o[(v, 0] -=R*1[s] and [o] =(L. (vi(v. 0] 1 D) x[(v. ODle
[(w. 01D N

let ¢, v, x €# and

o Al(x11,R21,0, w(1 1, R?2)), (0 1, R2)).

Making use of 1.7 and the equality stated above, we get

olw(l. oR21[o 1))~ olw(L, oR22)(xL, oR)|] =oR* T[(x1 T. R21,0, v (11, o R* 2))
(01, R?) = oR*[o].
Let o[w(/. 0,0)] =0, Writing p for [w(/, 0,x)] and t for (/. A((xp. p. P).

xp))» we have

1 1 R2E 0, w(T 1, @R2 2))t — (xp, po L. wip. @pxp) = (xp. p. 1. w(l. @py)P)
< (p. p. 1wl 0,0p)=(xp. p. p) - LRt (01, R¥)t=(xp. RTxp)
yp. Rtyp-—- Rt
which gives
(1 1, R21,0, w(1 1, oR22)DK(O 1, Rt R

by an easy application of 1.11, making use of 1.14. Therefore ot=Rrt, hence
(/. o)==t and we get [o]=1. At last,

PR3 [0] =R 1t —gp=0,.

We conclude that @R? 1[c]— p0.e[w(/, 0y)]., which completes the proof.

Now the stronger axiom pA, is to be applied essentially.

Proposition 1.29* The element 0, - u0.o@[y(/, ()] is recursive in ¢, y.

Proof. Let ¢ (@)C, v \wC(CL, PR) and y'—=QC. The element 0" = no
C@'|w'(1, 0x’)] is recursive in @', y', ¥’ by 1.28, hence 0" is recursive in ¢, y.
Making use of 1.13, 1.20, 1.19 and 1.24, we get
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@[w(Z, (0N =(@CKWICK). (ON)C]=(@)C(W)C(C, PB)QC)]

=o' [w'(/. (O)")]
for all 6. In particular,
00 = (o[ w(l, 0D =o'[w'(/, (B)x"),
hence 0’ =(0,).

The set &=1{0(0)=0"}={0/(0)=<(/)0’} is a simple initial segment. If 0¢&,
then
(@lw(Z. (OND=¢'[W'(1, (O =0'[v'(L, 0'y")]=0",
hence (0,)=0" by pA,. Therefore (8,)=0" and hence 0,=L0°(/, /), which com-

pletes the proof.

The following statement is called First Recursion Theorem. It is an analog
to Theorem XXVI in [8], and to the First Recursion Theorem in [9].

Proposition 1.30*% [f T is an unary mapping recursive in 3, then
the element pub.T(0) is recursive in A.

Follows by 1.26, 1.29%

A parametrized version of 1.30* can be established as well, since the proof
of 1.29* is uniforin with respect to o, .

Proposition 1.31.* If T is a (n+1)-ary mapping recursive in 3, then
the mappingi0,...0,.u06.0(0,,...,6, 0)is recursive in #.

As a corollary we get that the class of all the inductive mappings meets
that of all the recursive (in () ones.

It is of interest whether the axioms pA, (more precisely, its part used
above) and pA, could be weakened, preserving the First Recursion Theorem.
The axiom pA, turns out to provide the following fixed point result: Any
unary mapping recursive in # has a fixed point recursive in Z.

The following Enumeration Theorem takes place.

Proposition 1.32* Let # be finite. Then there is an element  recur-
sive in B, such that whenever o isrecursive in 3, then ¢ =nc with a cer-
tain n.

Proof Let #—={y,....v,} and x =(A, ¥, ... W,). Then all the members
of F recursive in # can be constructed from L and y by means of the opera-
tions multiplication, translation and iteration.

Let H=A(L), (R)) and p—C([/]L, R). The mapping
F=20. QUL x. L) Q8)8, H(0), p[D(®)p], L)

is recursive in 4, hence the element o—p0.I(0) is recursive in # by 1.30%
Let / be the function considered in the comments to 1.24. Using the equa-
lity o —I'(o), we get

J(0.0)o —= J(0.0)I(6)=O(L, % L)=L,
and similarly J(1,0)o = x.
lLet ¢ ko, v =(o. Then
J(J(k, 1), o=k [(c)o=kol =0y,
J(k2)o EH(G} (Fo) - (@), since nH — (LY (R)"= (n) for all n. At last, Kk, 3)o -

kp|D(o)p| = (ko] = (0]
by making use of 1.23. Thereby the proof is completed.
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The universal element o is constructed uniformly with respect to %, and
that allows an Enumeration Theorem for mappings to be established as well.
We shall consider the case of unary mappings (The case of n-ary mappings can
be reduced to that of unary ones.)

Proposition 1.33* Let # be finite. Then there is an unary mapping
S recursive in A, such that whenever T is an unary mapping recursive in A4,
then T - 10.nX(0) with a certain n.

It is worth mentioning that the above Enumeration Theorems could be
proved by mnieans of the p-axiom pA, only. The proof needs some auxiliary
lemmas, so we shall restrict ourselves to an outline of its idea. An element is
constructed at first, which is recursive in 2 and universal for a special class
or elements simple in 4. After that Proposition 1.23 and an improved version
of the Normal Form Theorem 1.25 (1.26, respectively) are to be applied.

Analogs to some other standard statements, such as the Second Recur-
sion Theorem, Roger's Theorem, etc., are established in [7] too. However,
our excursion in the thcory of IOS has come to an end, due to the limited
size of the paper.

2. A formal system for I0S. Toward some applications to the system of
Scott and de Bakker we restate in a ceriain formal system the axioms of I0S
with a p-axiom pA,.

Constants /, L, R are considered. Letters 6, 6,, 0,,... stand for variab-
les. Terms are constructed by means of the operations @y, (¢, v) and (u0.o),
the third being a variable binding p-operator, and ¢, y standing for terms.
When possible u0.¢ is written for (u8.¢). Notations (), [¢] are used for
10 . (oL, OR) and pb.(/, ¢0) respectively, with a certain 6 not free in ¢. Atomic
formulas ®, W arc either equalities ¢ =y or inequalities o<y, and formulas

are conjunctions of atomic formulas (written as finite lists @, ¥). Theorems of
the system are of the form ®—P. .

The nonlogical axioms and rules of the systems include in the first place
the axioms of a partially ordered semigroup with an unit. Secondly those of
OS are supposed :

0,0, 0;=0,—-(0,, 05)=(8y 0,)

—(0,, 0,)0;==(6,0, 050,)

~L(0y, 0,) 0, RO, 0,) =0,
Corresponding to pA, are given at last the axiom

—o(n0.9/0)—pb. o
and the rule

D, W—-¥(0/0)
(1) AR A A) i
O (uod . ¢/0)

with ¥ being either Ox-~t or (0)<-(/)t and 0 not free in @, %, T

Any theorem of this system is a theorem of the theory of 10S with a
p-axiom pA,. Amongst the statements of IOS those considered above are dedu-
cible in the system anyway.
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3. Applications to the System of Scott and de Bakker. The notations
used below are those from [1], except that 0, 0,, 6,,... denoted function vari-
ables, 7, O, = and (n0.¢) are written for £, Q, <, u0.[p] respectively, and;
is always omitted. The set of all the free variables in ¢ is denoted by Fr(¢).

Consider the system of Scott and de Bakker with additional constants 7,
R, K and a predicate constant p,, such that

—L(po—Ke;, K0y)=0,, R(p,—~Kk0;, Kby)=06,

(An interpretation of L, R, K as f, fi f3 and p, as a predicate true on M,,
false on M, and undefined otherwise, is given in [6], example 1). The assump-
tion just stated is an algebraic analog to that of B6hm and Jacopini
from [3], and can be replaced by the stronger one from [1, p. 46]. We write
now (o, y) for (p,—Ke, Ky), and p for (p—L, R).

In order to conclude that all the axioms and rules of our formal system
for 10S are deducible now, we have to verify only that the rule (pn) is a spe-
cial case of the Scott’s p-induction rule. It is sufficient for that purpose to
show that —W¥(0O 0) is dedulible for all ¥ allowed in (u). If ¥ is 6x<=7t, then
—0yx=0, O=t gives —Oyx=t. If ¥ is ()=(N)1, we get —(0)=(/)O by the
Scott’s rule, and therefore —(O)<(/)t, since —(/)O=(/)t is deducible.

It should he mentioned however that the rule (p) is essentially weaker
than the Scott’s rule. Allowing constants in the language of our system for
IOS, we have that the condition (*) [5] provides the -validity of (u), but not
that of the Scott’s rule. The condition (**) provides the validity of the Scott’s
rule, and so does the condition (**) [7]. Roughly speaking, while the Scott’s
rule requires the continuity of the operations, the rule (p) requires their mono-
tonicity only. To the point, (*) [5] with the assumptions Le=sup L# and
Ro =sup R# omitted still provides the validity of pA, and (n). Similarly the
more general condition (*) [7] can be weakened. Let us mention too, that
vo(O<¢)implies LO=/L(0O, O)=0,and similarly RO =0, hence the requirement
LO=RO =0 in the conditions (**) [5] and (**) [7] may be omitted (noticed
by N. Georgieva). Besides that, both yo(O=¢) and yo(O¢-=0) could be rep-
laced by OL<=R.

Let us return to the system of Scott and de Bakker. A term is said to
be an 10S-term if /, L, R, function variables, and operations oy, (¢, y) and
p-operator only are used when constructing. All the results of our system for
IOS hold now at once, provided [OS-terms are considered. Certainly, not all
terms are [OS-terms. This difficulty can be avoided in a way similar to that
in [3]. At first, an auxiliary statement can be proved by making use of
=(P—e, v)=plo, ¥)

Proposition 3.1. For any term ¢ with predicate variables p,, ...p,
there is an [0S-term v and function variables 9,, ..., 0,.,, such that

—Q=W(Prs e P K/O1ye e Byy)

Using 3.1, the results from section 1 can be reestablished for the system
of Scott and de Bakker enriched with the additional assumption stated above.
In a different way, the proofs of those results could be repeated directly in
the present system.

A term ¢ is called simple iff / is not used when constructing ¢, and the
p-operator is applied only as (). A term ¢ is canonical iff the p-operator is
applied only as () and [ ] when constructing.
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Correspondingly to 1.27 we get a Normal Form Theorem.
Proposition 3.2. For any canonical term ¢ and any p,,... p,.,
0,...,0, there is a simple term v, such that

FrZFr@)/{pys -+ s P 01+ 0.}
and

—@ =Wy PV + oy (Pds O (0]

(We may have m-—=0 or n -0, meaning —¢ - 1[y] whenever m—n=0.)

The First Recursion Theorem states now as follows.

Proposition 3.3. For any canonical ¢ and any 0 there is u canonical
v, such that Fr(y)=Fr(9)/{0} and —pb.pb.¢@=—y.

As an immediate corollary we get the following statement.

Proposition 3.4. For any term ¢ there is a canonical term v, such
that Fr—Fr(e) and —o¢ —wv.

In Computer Science terms, the proofs of the Normal Form Theorem and
the First Recursion Theorem give an algorithm, which transforms equivalently
recursive program schemes into program schemes of a certain standard type,
with no recursion allowed.

Correspondingly to 1.33* we have an Enumeration Theorem.

Proposition 3.5. For any py,....p, 0,,...,0, there is a cavonical
term o, such that Fr(o)={p,..- . P 0,,...0,}), and whenever ¢ is a cano-
nical term and Fr(Q)={p,, .. Py 0y ... 0,}, then —o¢=ko with a certain k-

Taking into consideration 3.4, we see that the term ¢ in propositions 3.2,
3.5 needs not be a canonical one.

It is worth mentionning that the regular terms studied in [1] can be
characterized now by means of terms with the p-operator used as [ | only, to
call them prime canonical terms. It is immediate that all the prime canonical
terms are regular.

Proposition 3.6. Let ¢ be regular in 0,...,0, and ¢ be regular. Then
there is a prime canonical term v, such that Fr(y)=Fr(¢)~ {0,,...,0,} and
—@=wy(/, 0,,...,0,). In particular, whenever ¢ is regular, then —¢ =y with
a certain prime canonical .

(Analog to a well-known result from [3], generalized in [I, 10, 4].)

The proof uses an induction on the construction of ¢. We shall outline
the most interesting step. Namely, let —¢@=wy(/, 0,,...,0,), and ¢, - po,.¢. If

n>1, we take x -w(OL,...,n—2L, R" 'L, R)and get —ox((/, 0,,...,0,,)0),
which gives —o, = R[x|(/, 0,, ... 6,_,) according to 1.6. If n 1, then —¢, = R[vy]
according to 1.6 again.

Proposition 3.6 allows a Normal Form Theorem for regular termns to be
obtained, corresponding to an improved version of the normal form result
established in [4].

Proposition 3.7. For any regular term ¢, any 0 and n not less than
the number of the free occurrkences of 0 in ¢, there is a term y with no 1
and p-operator used when constructing, such that Fr(y]=Fr(p)\ {0} and

—@=1[w(/, 04, ..., 0n+3)]

In particular we have — ¢ = 1|y| whenever 0¢ Fr(g).
The proof follows a part of the proof oy 1.26, and makes use of a certain
analog to 3.1.
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A version of 3.7 for a greater number of variables could be given
as well.

The equalities p0 - R[(p—0R, L)] and [6] = (Tp, . (K8)K = L(p, « (K(R, 0L)))K
are casily deducible, so the important role of iteration is well known. The
operation translation seems to be new one. Though introduced by the p-ope-
rator, it is of an elementary nature. In the case of function-like interpretations
the operation could be realized by making use of an additional counting regi-
ster. In particular, our canonical terms may be interpreted as unary structured
program schemes with two counting registers, and therefore Propositions 3.2
(combined with 3.7). 3.4, 3.5 establish some properties of such program
schemes.

The present version of the system of Scott and de Bakker may be enriched
further on. For instance, predicate terms may be allowed instead of predicate
variables, taking n=P, n="ln!, n=(n, &ny), n—(L—v); more complicated ope-
rators from Dynamic Logic may be used as well. New axioms may be added
to the system. Properly reformulated, the results established above will still
take place (by modifying 3.1), provided the p-operator p6.¢ is applied only
if ® occurs free in no predicate subterm of ¢.

The system of Scott and de Bakker was proposed as a framework for
studying programs. Iterative operatory spaces were introduced to provide an
unified axiomatical setting for Recursion Theory. And they happened to be
closely connected!

The axiomatical system ot 10S has no standard model; on the contrary,
one of its mots remarkable features ii its abundance in classes of models. The
members of # may be interpreted as partial functions of various kinds (inclu-
ding sequence functions, stack functions, multiple valued functions, probabi-
listic functions, functions with finite type arguments, set functions, etc.), as
well as functionals and operators of higher order, etc. Therefore the system of
Scott and de Bakker can be considered a specific extension of 10S, orientated
towards the partial single valued functions and predicates. Other extensions
may be of interest too, having other concrete interpretations in mind. For
instance, partial multiple valued functions (i. e. relations) and partial multiple
valued predicates can be treated by a certain modification of the system
considered in this section. That system allows interpretations by means of
multiple valued functions. Notice that only a few of the axioms from [1] were
used in our considerations. In particular, the second axiom for conditionals was
not used. However, that is the axiom which fails when interpreting predicate
variables as miltiple valued predicates p: M — —{0, 1, {0, 1}} (for a detailed study
of the McCarthy’s equivalences see [9]. So that axiom could be weakened by
substituting = for =, preserving the results established above. Some specific
axiomme could be added too, e. g. a constant U may be supposed, such that U
is sup {L, R}.
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