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FOURIER OPERATIONAL CALCULUS
JURGEN PRESTIN, MANFRED TASCHE

With the help of the Fourier operational calculus, we give necessary and sufficient solva-
bility conditions and construct periodic solutions of linear differential equations as well as
solutions of special boundary value problems. Using functional analytical methods, we obtaina
simple representation of generalized inverses of polynomial operators p(d;dt). This simplifies
recent results of Grozdev [3] and Dimovski [2).

1. Introduction. Let Z denote the set of all integers. Let p be a monic
complex polvnomial of degree n=2

n ]
() p(h)=E apkt= T (=2
k=0 j=1

with pairwise different roots 2; and let
s

(2) o pM)TT=Z T o, (A=A
o X . J==1 r=l

be the decomposition of p(h)~! into vulgar fractions. Then let K={k, ..., Ry}
be the set of all k¢Z with 2rik=); for some j=1,..., r.

Let C, denote the Banach space of all (complex—valued) continuous 1-pe-
riodic functions f with norm || fllc =supsou | f(f)|. Further let L4, (1=p< o)
be the set of all classes of almost everywhere (a.e.) equal (complex-valued)
I-periodic functions f which are Lebesgue integrable to p-th power over [0,1],
with the norm | f1,=(/}|f(#)|?dt"?. In the following, X denotes one of the
spaces C, or Lf (1=p<<o) with the corresponding norm | .lx.

For any two functions f¢ X and g¢L} the periodic convolution fxg is
defined (a. e) through the absolutely convergent integral

(f*g)(t)=tff(t—f)g(f)df+;flf(l+t-—t)g(t)dt.

Then f+g¢ X and
(3) Ifeglys I flix!l gl

Since XL, the periodic convolution is defined on X andisa commutative

associative and distributive operation on X [1, p. 10]. The r-times convolution
feo-oonfof feL] with itself is denoted by f* (r=1,2,..), where f"=f.
Now we consider the boundary value problem
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310 J. PRESTIN, M. TASCHE

(4) p(dide) x()=f (£), x')(0)=x(/)(1), (j=0,..., n—1)

with a given function f¢€.x. For instance, a linear time-invariant feedback sys-
tem with l-periodic input and I-periodic output x can be described by (4.
Following result is well-known ([4, p. 216]; [2]):

Theorem. Let f¢X. If K= that means p(2rik)==0 for all k¢Z, then
(4) has a unique solution x(t)=(g = f)(t) with

5 nj ) 01—! PN g
o)=L ¥ —Z ( - ),

j=1 r=1(r=—1)! (.”.’.-l 1 —e* :).”}_I.

In this paper we generalize this result and give necessary and sufficient
solvability conditions of problem (4) in the case K+ Q.
2. Operators D and 7. Let C7(r=1,2,...) denote the set of all 1-perio-

dic (complex-valued) functions which are r-times continuously differentiable. AC'
(—ACY) is the set of all l-periodic absolutely continuous functions. Correspon”
dingly, AC{' (r—1,2,...) denotes the set of all functions f with /)¢ AC,
(j=0,..., r—1). For r=1,2,..., we set

Cr it X=C,.

1

{felz | f=9 a. e, 9 ACT 1, onelr} if X=Lf, (1=p<eo)
Then the r-th derivative D" f of f¢ W is defined by

(@) if X=C,,
o(n(f) a.e. if X=L, (1=p<=),

where ¢ ¢ AC;= with @ ¢ L% is such that f(f)=oe(f)=a. e. [1, p. 34). The den-
sely defined linear operator D" maps the domain Dom D’= Wy into X. Obvi-
ously, all ecigenvalues p,=2rik (k¢ 2Z) of D are simple and corresponding ci-

genfunctions are x,(f) =exp 2mikf.
The finite Fourier transform of f¢ X is defined by

Wi

(D’f)(t):{

f‘(k)=[lf(t) oM gt (ke ).

For any f. g¢.X and all k¢ 2 we have ([1, p. 168))

(5) f() = e2mire =f(k) Ry
and by the convolution theorem
(6) [f = g) (k) =f(k) g(A).

Note that the periodic convolution has divisors of zero. For any &k, me¢Z we
obtain by (5) ek wenimt 5, e where 8,, denotes the Kronecker

symbol.
The linear operator 7 :X — X defined by

(TFYB) (5 —1) = f(t) :jf(r) dr—j;(t—r + ) f(@) dn (e [0.)
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is bounded by (3) and fulfils
(7 T(f*8)=(Tf)*g=f=*(Tg)

for any f, g¢ X by the properties of the periodic convolution. Furthermore,
71=0 and (Tf) (0)=1=(Tf)=(T1)=f=0 by (5) and (7). If B,(r=1,2,...)
denotes the r-th Bernoulli polynomial, then

®) T7(5—0)=T(—=B, ()= — 57 Byaalt) (£€[0.1)
that means
9) (—By() "= ——+ BJt) (t€[0.1]).

By (6) this implies

. R 0 for k=0,
(0) (=5 B (k) = { (2rik)y~" for k€2, k0,
Using (7) and (8) we obtain.

(1 (T7F) ()= (—+ (BA) = f(#) (¢€[0,1))

for all f¢ X. By (6) and (10) it follows that
12 T7 Y (k) = { for £=0.
(12) (T7fY(B) = \ (2nik)~"F (k) for ke2Z, k=0.

Note that 77 f¢ Dom D for all f¢X. By a theorem [I, p. 173] the statement
T7 f¢Dom D’ is equivalent to 77 f¢ W[X; (2rnik)’], where W [X; (2mriR)] is the
set of all functions 2¢ X for which there exists g¢X such that (2rik) lf(k)
—p (k) for all k¢ 2. By (12) we have (2nik)’(T’f)"(k)=E(k) for every k¢ Z
with g= f— f(0)¢X. Furthermore

(D'T"f)()=f(#)—f(0) for all feX,
(T"D’ f)(t)=f(t)—f(0) for all f¢ Dom D’
Then it follows that

(13)

T'D'T’f=T'f for all feX,
D'T'D’f=D’f for all f¢ Dom D".

Hence 7~ is a bounded generalized inverse of D’. If X=L}, then 7" is the
orthogonal generalized inverse of D’. Let / denote the identity. Since /—T77D"
is a projector of Dom D’ onto the kernel Ker D’, we obtain Ker D"=Lin g’}
by (11). Since D’T" is a projector of X onto the closure of the image Im D",
iLt follows by (11) that Im D" =Im 0D’ and that the cokernel Coker D’ is
in {1}.
‘f}f( Dom D’ and g¢L}, then by (5), (7) and (11)
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(14) [ g=(T"D’f+£(0)) = g = £(0)g(0)+ T"(D’f » g)¢ Dom D’
and by (6), (11) and (D’f)"(0)=0
(15) D'(f+8)=D"T(D'f x 8)=(D’f g —(D’f » g) (0)

=(Df = §)—(D"f)(0)g0)=(Df) = g.
LLemma 1. Let [ be a r-times continuously differentiable function. Then
for tel0, 1]
O =)= T (fO(1)—F B (0) i) By \(£)€ Dom D,
A0 (k+1)!

Proof. Obviously, £ is r-times continuously difierentiable. Using B, ,(f)
=(kR+1)Byt), B, (1)=8B,.,(0) (k=1,2,...), we obtain

HOO=F DO E (fDO)~f DO iy B ()

and thus
AD (1)~ h(0)=0 for j=0,1,..., r.

3. Operators (D--2). For any complex number X the exponential ele-
ment e; is defined by

e}.!

: if A=2rik for all k¢Z,
=

(16) exty={ '~
(—;— t) e’k if A =2nik for some k¢ Z,

for every £¢[0,1]. This element e, has the characteristic property
~ (2rik—n1)  if A42mik,
(7 exk) = {0 if = 2nik

for all k¢ 2. It is easy ‘to prove that for r=2, 3,...

7—1 e
T(55) i ak2mk for all k2,
. —e

(18) el (t)=
~ L B(t)eriat it h=2nik for some k¢

for £¢[0,1]. By (6) and (17) it follows that

. - ik —A)~" if M 2nik,
(19 &) (k)= {0 if A= 2nik

for all k¢ 2. Note that (9) and (10) are special cases of (18) and (19). Espe-
cially we obtain e (¢)=1/2 -¢ for £€¢[0,1]. Furthermore we remark that e,¢
Dom D.

The densely defined linear operator (D—AX)" maps the domain Dom D’
nto X. Obviously, we have
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Lin {e¥* } if A=2nik for some k¢ Z.
Ker (D)) =

{0} otherwise.
The linear operator 75 : X — X defined by
(20) Tof=e.=f for all feX

is bounded by (3) and fulfils To(f * @) =(Taf) = 5=/ =(Thg) for all f. geX.
Note that 7,- 7. Furthermore we obtain by (5), (6), (17) and (20)

(21) TQn A ekt — ()
and (Tominf) (k)=0 for any feX and all k¢ 2. Using (18) and (20) we get
(22) 7‘;{f:e;_'*f for all feX and r=1,2,..,

with 7} =Ts By (20), T5 commutes with 7, for all complex numbers %, p.
Theorem 2. Let % be a complex number and r—=1,2,..... Then
T7fe Dom D" for every feX. In the case )==2nik for all k¢ Z, the opera-
tor T7 is a bounded inverse of (D—\Y. In the case )=2nik for some k¢ Z-
the operator T} is a bounded generalized inverse of (D—MY.
Proof. We show that 77f¢Dom D,

7 if A-=2nik for all k¢ 2,
@) (D-T O = {_f(t)—f(k) emine if ) =2nik, k¢ Z
or all f¢.X and
. £(® if A==2nik for all ke 2,
29 (TIDO-NHO :{f(t)_—f(k) P if A= 2mik, k¢

for all f¢ Dom D’. Hence by (21) if follows that 7/(D—2)YT]f= T/ f for all
feX and (D—A)YT/(D—1Y f=(D-—-2Y f for all f¢Dom Dr.

It is only necessary to prove (23) and (24) for r=1. By Lemma 1, it fol-
lows that h(t):c;.(t)+B.(t)+% By(t)¢ Dom D (t¢€0,1]). Hence

(T f) () =k » [)(O)—(Bi+ 5 B) » ) (1)
= = f)O+(TfHO)+MT2f) (£)¢ Dom D
by (14) for arbitrary f¢ X. Further it follows by (13) and (15)
(DT.f) (&) =((Dh) * ) () +(DTF)()+MDT * f) (#)
=((DR) * ) (O)+f ()= F ©)+MTF) (®).
By (16) we have :
re(t)+ 1+ AB,(¢) if A==2nik for all k¢ Z,
(Dh) (1) = {Xel(t)+l+}»B,(t)——e'-”‘“" if A —2rik, ke 2.

Then we obtain for A-==2rik for all k¢ Z
(DT f)(O)=MTrf)(&)+f(®)
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by (5), (11) and (20). In the case A=2nik, k¢Z we get

(DTs.f) (&)= NTrf) () + ()~ ] (k) &%
by (5), (11) and (20). Hence we obtain (23) for r=1 in both cases. For any
f€Dom D we have by (15), (20)
Ti(D—N)f=er s« (D=1 f=(D—=N)(er=f)=(D—-MT.y

and by (23) if follows (24) for r—=1.

Note that 77 is the orthogonal generalized inverse of (D—X)" in the case
X=L].

Since (D—X)’T/ is a projector of X onto the closure of Im (D—ny, it
follows by (23) that
X if L==2nik forall k¢ 2,

Im (D— Ay =ln (D—2Y = {{fexr Flk)=0) if r=2nik, keZ

and that
{0} if A==2nik for allke¢Z,

Coker (D—1) “’{ Lim {e®# )} if A —2nik, k¢ 2.

4. Polynomial operator p(D). With (1) we form the densely defined li-
near operator p(D): Dom D" — X. By assumption this operator has the
kernel

Ker I’(D)={ Lin { ™, p=1,.... m} it K=Q,
(0} it K=
Then P: X — Ker p(D) defined by
\ T F (ke i Ke.
(25) (Pf)()= ) w1
0 it K=@

for all f¢.X, is a projector of X onto Ker p(D). By (6) this projector has the
property

(26) P(f+g)=(Pf)~g=/~(Pg)
for any f, g€.X. Then we obtain the support of p(D)

{f¢ Dom D" e =0,u=1,...,m}if K=@.

S D)= Ke [ Dom D"=
upp (0 © P {Qom D" if K=
The domain Dom D" can be represented as direct sum

Dom D"-Ker p(D) + Supp p(D).
The operator p(D) maps Ker p(D) into {0} and Supp p(D)one-to-one onto the
image Im p(D). Note that P commutes with 75 by (20) and (26).

Theorem 3. The operator
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(27) R= T::- T (U—P): X — X

is a generalized inverse of p(D) with following properties :
PDYR=1-P on X,
R p(D)=1—P on Dom D",

(28) p(D)Rp(D)=p(D) on Dom D",
Rp(D)R=R on X.

Furthermore
(29) R-—% % a,TL (—F)

j=1 r=1 i
holds, i.e.
(30) Rf—( ¥ a,,e;’.;)*(1~P)f

=1 r=1
tor all feX. -

Proof. Let f¢X. Then g=f—FPr is an element of X with o(k)=10
(n=1, ..., m). By (23) it follows that
(D) T:;gzg (j=1,..., 3)

Since all operators T;" commute, this implies
!

PIDRf=pD) T, T}’ g=g=1—P)f

and hence Rp(D)R f—Rf—RPf=Rf. Now let f¢Dom D" Then g=f—PfeDom
D" with g(k)=0 (n=1,..., m). By (24) it follows that T,/ (D—21)g=g
1

(j=1,..., s) Since T:’ commutes with (/—P), this implies
' i

Rp(D) f=Rp(Dyg=U—P)T;* - T7* p(D)g=(I-P)g=I—P)f

and hence n(D)Rp(D) f=p(D) f—p(D) pf=p(D)f.
Now we prove formula (29). Let p,(%) be the polynomials pA2)
- (x_x,)_"f,)(l) (j=1,..., 5). Then (2) implies that

R n;

J
@31) 1= X X a,p () O—m)"
J=1 r=

r

for all complex A Hence

s Il/ i
/=2E lzla/,p/(D) (D—A,)"' ’ on Dom D",
J=1 r==
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For arbitrary fe¢ X is Rf¢Dom D" such that by (22), (23) and (27) we
obtain

s n/ n.—r n 'lg
Rf=E X aup,D)(D-2)" ol T, .(I=P)f
= r=

"y s n;

N r / #r
- X X a;, T,([**P)f ~'~( Iz G/,F;,)*(I—P)f
J=1 r=1 J j=1 r=1 4
s !l/

: z

J=1 r=1

a, (I--P)es «f.

By Theorem 3 it follows that p(D) is normally solvable. The image I
p(D) is closed. Since p(D)R is a projector of X onto Im p(D), it follows by
25) and (28) that

{feX /}(ku)'—:ﬂ. pu=1,.... m}y it K=Q@.
and hence
. _’niku: B ) N
Coker ,D(D)::{Lm {e cp=1,... m} |‘f K=Q,
{O} if K=®.

Therefore P is a projector of X onto. Coker p(D) parallel to Im p(D) and
X=Im p(D) + Coker p(D) holds.

5. Homogeneous boundary value problems. Now we consider the
equation

(32) P(D)x = f

for given f¢.\. This equation is solvable if and only if f¢lm p(D), this means
Pf=0 or f(k)~0 (n=1,..., m) if K. Then we obtain following theo-
rem from the properties (28) and (30) of R:

Theorem 4. The equation (32) is solvable if and only if Pf=0. Under
the assumption Pf=0, any solution of (32) possesses the form

m nik t
- e Y if K=,
(33) wo=] RO L, f K@

(Rf)(@) if K=@,
where vy, are arbitrarv complex numbers and
s ’Ij

Rf- £ % a,e «(I—P)f.
J=1 r=1 J

Since R is the orthogonal generalized inverse of p¢(D)in the case X=L3?
we obtain under the assumption Pf--0 that

(34) x*Rf
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is the unique solution of (32) with minimal norm, i. e., | x 3> X%, for any
solution x=x* of (32). More general, an element x¢ Dom D" is called a least
squares solution of (32), if

' p(D) X— f lg=1inf {1 p(D)x—f ;| x¢ Dom D"}

Evidently, every solution is a least squares solution too. From the properties

(28) of the orthogonal generalized inverse R of p(D) follows:
Theorem 5. Let X=L} and f¢ X. Then any least squares solution of

(32) can be represented in the form (33). The element (34) is the unique
least squares solution of minimal norm, i.e., | x!,> x*|, for any least squ-
ares solution x-=x*.

6. Inhomogeneous boundary value problems. Now we consider the inho-
mogeneous boundary value problem

d
(g ) y)=gt) (£e[0,1]),
(35) YW l=n, (j=0,..., n—1),
with given continuous function g unknown r-times continuously differentiable
function y and given complex numbers n; where y!l= v(1)—y(0). By (1)
and (35) follows that

n—I1
) 11— I
";(n !O_g10

A (1/']],‘-': nn N
=0
Then by Lemma | we obtain that
(36) x=y—b¢Dom D"
with
n 1
b(t)= ki_ Nk (k+1)! By ().
Furthermore
d
(37) f (&)= gt)—p (4 ) b()€C,.

Hence (35) is equivalent to p(D)x--f. Thus any solution y of (35) corresponds
with a solution x=y—b of (32), and vice versa. By Theorem 4, the problem
(32) can be solved if and only if Pf=0. Under the assumption Pf=0, any
solution x of (32) possesses the form (33). Let

3 ny

J
S=X X

i=1 r=1

Note that R=S(/—P) by (27) and hence Rf=Sf by Pf=0. Then by (33), (36)
and (37), any solution of (35) is given by

r
a;, TAI'
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(SR (1) + b —Sp(—) bty + L 7™ it K=,
(38) W)= o=t

(S2) (1)+b(t) — Sp (5 )b(D) it K=,

where y, are arbitrary complex numbers.

Now we shall make use of the simple

Lemma 6 (Taylor’s formula). /f z is a r-times continuously differen-
tiable function, then

—2(k)e™™* for ). -2mik (k€ Z)

" 0 otherwise.

r—1
(39) T (- —hyz—z—E (F—N2)}} e;'-%“:{
=0

Proof. We proceed by induction. The equation

0 (4 _az ! —z(k)e3¥* for L —=2nik (ke€Z)

(- —A)z—z—2z|len=
(49 it e 0 otherwise
shows that Taylor’s formula (39) holds for r—1. Suppose that (39) holds for
rz1.1f z is (r+ 1)-times continuously differentiable, then by (5) and (17) we
have e * € =0 and hence by (20), (39) and (40) we obtain for A =2nik
(ke2Z)
d
dt

T (S —hy lz=en s [T1( g =W =22)]

d N r=bd
=Th(gr—h)i+ EO (g —=M"*'2) [ eft=2
-2+ X (( ,‘;,it,——k’z) [} t’i‘”“—-;(k)e'-’“’“ .

1=0

Similarly, the Lemma 6 can be proved in the case A+2rik for all k¢ Z. Note
that by using of (11) and (18) the formula (39) is the polynomial expansion
of Bernoulli in the special case A=0:

~ Tt 1 1
A)=z(0) + T 20 1)) B =77 (B, 27) ().

Applying (31) and (39), we obtain
d ) ’ d ’ d s d
(41 Sp(4 )= X X a, Ty Cogp =2 (g =27 pi(5)0]
J=1 r=l

5 n;, r—1 l4n;

d Y d .l
:b-&-lfl ’;l [Z” ay, (g =) PiCar) 0 e*(;[ " tu

with certain function w¢Ker p(D) By Lemma | we have 6V |}= y"|l=n,
(j=0,..., n) and hence
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C/f-‘[(—%—}v)’l’/(%)y}L’)=l(-di,-—)»/)’m(,,—d,)b]l.% (j=1,..., s;
r=0,.... ﬂj—l).

Consequently by (38) and (41), any solution of (35) is given by

syl ‘(41 " omik .
Se— zl zl IZO “j’gj"'j"‘*'l €, v z, we M it K+=Q.
J=1 r= = 7 n=
(42) V= s n; r—1 H(U41) )
Sg— z Tz a/rCivuj—-r-H e, if K= @,
J=1 r=1 1=0

where y, are arbitrary complex numbers.
Assume that K==@. Then by (25) and (37),

2nik ¢
M

(PO~ £ @l —(p ()07 (k)™

Since x¢Dom D" and (D*x)” (0)=x*=b|!=0 (k=1,..., n) holds, we obtain
by (5), (15) and (36)

(P b)Y (k) € =(p(Sp)y—p (35 )0 =e

mik ¢
"

=(l;( .‘;jT )",) . e')!ukul —(p(D) ,\‘) . P.‘mkut :( p ( adt_)"’ ) . e;‘mkut —-[V(D) (X . e2nlhur)
d ik ¢
=(p (g =e v
Obviously, a continuously differentiable function % satisfies
(=M x e <hises
with A;=2nik,. Choosing
h=( ) p (L
ar — M) gy
we obtain

(P)(t)= 5:"‘ (@ (Ru)—Cjn 1) e with A= 2nmik,.
H=
Consequently, Pf=0 holds if and only if

(43) g(k‘.)=§,_,,l_l for all p=1,..., m and A;=2nik,. N

We summarize :

Theorem 7. /f K=, then the inhomogeneous boundary value problem
(35) is solvable if and only if the condition (43) is fulfilled. Under the as-
sumption (43), any solution of (35) possesses the form (42). If K=, then
the problem (35) is uniquely solvable and the solution is given by (42).
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7. Examples. Let us consider the special boundary value problem

(44) (L —a) (=) ()= gt) (L€[0.1]),

dt
.‘, “l|: No» y’ l'l) = "h

and apply Theorem 7.
If « B+2nik for all k¢Z and a=-Pp, then the unique solution of (44) is
given by

1
y=ut; o, B)=—a(eax g—t’n*g+(|3'1n—m)t’u+(m~*unn)€a)~
a—B

If a=2mil ({¢Z) and B+2mik for all k¢Z and if the condition g (k)
=n,—Bn, is fulfilled, then any solution of (44) is given by v(t)=y(t; 2nil,p)
+ve™i with arbitrary complex number y.

I «=2mil, B=2mik (ke Z with [-=k) and il the conditions

2(k)=n,— 2niln,,
g(0)=n,—2mikn,
are fulfilled, then any solution of (44) can be represented by
W)=t 2nil, 2rik)+-v,€ + yer
with arbitrary complex numbers v, and v,.
If a=Pp-2nik for all k¢Z, then the unique solution of (44) is given by
y=ut; a)=e?+g—(n —ang) e;’-‘ Mo, .
Finally, if « =B--2rik (k¢ Z) and if the condition g(k) - n, - 2nikn, is
satisfied, then any solution of (44) is given by
W(t)= y(t; 2mik)+yer™ ik

with arbitrary complex number 7.
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