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COMPACT SUBSPACE OF R" AND FIXED POINTS
S. ILIADIS

In this note we study the compact subspaces K of the Euclidean space Rn, in relation
with the fixed point property. We state some conditions in order to, for every continuous map
fof K into K with Aj+0, either / has a fixed point or some “spiral” continuum is mapped
by f into itself. It is also introduced the concept of the so-called isotopic pseudo-retracts.
These compact retracts, as also the Sieclucki's deformation quasi-retracts, have an “aspiral”
structure and the fixed point property.

Let J=[0, 1) and J,=[¢, 1), for every f¢J. We denote by 4 the metric
of the Euclidean space R".

In the space R" let K be a compact subspace and U an open neighbour-
hood of K. The frontier of a set M R" is denoted by Er M.

A homeomorphism y of FrUxJonto UNK is called an isotopic con-
traction of Frl/ to K in U if 1) y(a, 0)=a, for every a¢ErU and 2) for
every open neighbourhood V' of K, there exists £¢J suchthat y (FrU, J)=V.

For an arbitrary subset A of J we set Dy={wy(a, £): a¢FrU, t¢A}. We
also set Dy, =D, UK. Obviously Days=D,UDp. Let peU~ Kand w(a, ¢,)
=p. We set L,={w(a, £): te[V, t]}, P={w(a, t):te[te, D]}, and (p)=1, 117
For an arbitrary subset 7 of U\ K we set tr T==,(rl, Every set { of the
form I( p) is called a fibre of U\ K with respect to the homecomorphism y.
Obviously by every point of U K passes one and only one fibre. It is also
obvious that every fibre i intersects every set Dy,=D, t¢J/. in a unique
point. _
We observe that: 1) if ;),,(U\l\’. n=1,2..., pe—U\\K and lim,,. p,=p
then lim,.. Ip, =1, and limuge =08, 2) il p,=v(a, t) n=1 2, ...
limy,.a,=a and lim,.. ¢,=1 then l—ilﬁlpn:l(a) (Here, as also in what follows,

the upper limit is considered in the space U\ K).

A subset 7 of U~ K is called a cut with respect to y if 1) the set 7 is
a closed of U™ K, 2) for every fibre [ the set [T either is empty or is
consisted of a unique point, 3) the set (UNK) T is union of two non-empty
open subsets G, and G, with empty intersection and for which FrG, =FrG,=T
(the frontier is considered with respect to U\ K).

The cut 7 is called complete if every fibre has non-empty intersection
with the set 7.

Obviously for every ¢/, the set D, is a complete cut.

We say that the compact K is of finite type if 1) for all n=0, 1, 2,...
but a finite number, the homology groups H,(K) (Alexandroff-Cech homology)
are null and 2) if for some n the group H,(K) is non-null then H,(K) has a
finite number of generators.
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We say that a compact K of finite type has the fixed point property if
for every continuous map f: K — K for which the Lefschetz’s number A, is
different than zero, there exists x¢ K such that f(x)=x.

Lemma 1. Let T be a cut and G,, G, the open sets mentioned in the
definition of a cut. Then, for every p¢T either 1,= G, and I? —Gjorl,= G,
and 1 = G,.

Proof. If g¢G, then either [, G, or 19 G, for if not, then the set
I(g)N T should contain more than one point. Similarly, for the points of the
set C,.

Since FrG,=FrG,=T (the frontier is considered with respect to U™ K)
we have that every point p¢7 must be the limit of a sequence of points of
G, and G, Hence either /, = G, and ¥ < Gy or I, =G, and I’ G,.

Let 7 be a cut. We define on the set FrU a function ¢r as follows: if
ae¢FrU and (a)N T=C0, we set o¢r(a)=1, and if l(a)N T==@ then l(a)N T

~{y(a, )}, teJ. We set or(a)=t.

Obviously, for every cut 7, we have 0<e@r(a)=1 for every a¢FrU.

Lemma 2. For every cut T the function ¢r is continuous.

Proof. Let p,=wa, t)eT, n=1,2,..., limpea,=a and lim,,.1¢,
—=lim_. ¢qa,) =t In order to prove the lemma, it suffices to prove that

ofa)=t.

If £<1, then, since 7 is closed in O K, we have that y(a, £)¢7 and
hence ¢ (a)=t.

If £=1, then lim,.../, =l(a). By lemma 1, for every n=1,2 ..., we
have either [, = G, or Ly, = G- Consequently either {(a) < G, or l(a) = G, .
But, by Lemma 1, this means that /(@) T=() hence ¢ra)=1.

Lemma 3. If T is a complete cut, then T is compact.

Proof. In order to prove that 7 is compact it suffices to prove that
7""n¢;K:®. For if this is not true then there exists a sequence p,, p,, ...,
Py - .. of points of 7 such that if p,=w(a,, #,) then limy,.a,=a¢FrU and
lim,,.. f,=1. We can suppose that for all 21, 2,..., zpkcé. (or 1, =G,).

Let /—={wy(a, t): 0=t<1} and p¢!N T. Then, obviously, /=I(p) = G,(orl=I(p)
= G,) which, because of Lemma 1, is impossible,

Obviously, the cut 7 is complete if and only if 0<e@a)<1 for every
a¢FrU.

LLemma 4. If ¢ is a continuons function of FrU, ¢==1, such that for
every a€¢FrU, 0<eola)=1, then there exists one and only one cut T =T,
such that ¢;=9. '

Proof. We set To-—{w(a, o(a)): a¢FrU, ¢(a)<1}. Obviously, T = U \K.
We prove that this set is a cut with respect to y.

Let peUNK, pi€Te, i=1,2, ... and limmep,=p. If p=wy(a, t) and
p;=vl(a, t;) then, obviously, 0<i<1, limi,wa,=a, o(a;)=¢; and lim;,.t,—t.
Since ¢ is a continous function, we have that ¢(a)=¢. Hence p¢ T, Thus,
the set 7, is a closed subset of U\ K. Obviously, for every fibre / the set
(N T, either is empty or is consisted of a unique point.

We set G"=0G,=(Up¢r, ")\ Te. Obviously, G"={y(a, t) ¢ U K: t>9(a)},
Hence the set G7 is an open subset of U\ K. Similarly, the set G, = G, ={w(a,"t)
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¢U~ K: t<o(a)} is an open subset of U~ K. We have G, Gy=(U K) T,
G, G, T and G, =G, T (the closure is considered with respect to U\K).

All the above mean that the set 7, is a cut with respect to w. Obviously,
if for some cut 7 we have ¢, ¢, then 7= T,.

Obviously, for every complete cut 7, the set Q=(U~trT) T is a com-
pact set and the set {/ is an open neighbourhood of Q in the space R" If
T - DA,, t¢/, then Q (U\\tr T)“ T- Dl‘-ll'

lLemma 5. If T is a complete cut then the set Q=(U~tctT)UT is a
deformation retract of the set U.

Proof. We define the map F9¢: Ux[0, 1]—-U by 1) if peUNQ,
p—vwyla, t) and s¢[0, 1] then FQ (p, s)=wa, t+(or(a)—1).s), 2) if peQ and
s€[0, 1] then FQ(p, s)=p. Obviously the map F¥ is a deformation retraction
of U onto Q.

Corollary 1. The compact set Q is an absolute neighbourhood ret-
ract. Therefore, the set Q is compact of finite type and has the fixed point
property.

Obviously, if 7Dy, 0<t<1, then FQDy,n < [0, 1D Dye,1y. The map
from Dy 1) <[0, 1] to Dy,1; which on every point of Dy, x[0, 1] coincides
with the map F9 we, also, dr ote by F? Hence, F? is a deformation retraction
of D[[_l] onto Q

Corollary 2. If t,t ¢J and t<t' then the set Dy is a deforma-
tion retract of the set Dy, ).

Lemma 6. Let K be a compact subspace of R" and U an open neigh-
bourkood of K such that there exists an isotopic contraction v of FrU to
K in U. Then K is compact of finite type.

Proof. It suffices to prove that for every k=1,2,... there exists an

open neighbourhood V, of K such that: 1) V,, SV,&U. 2) ﬂ V=K 3
k=21

the compact V,., is compact of finite type, 4) the homomorphism (7;*!), is
an isomorphism onto, where /! is the embedding of V,+, in the set ‘7*.
We set V, -Dgroiay, £ 1, 2,.... Obviously, Ve ©SV,cU and Nt

V,=K.

By Corollary 1, of Lemma 5, the subspace V= Dy x41.1) is compact of
finite type. By Corollary 2, of Lema 5, the compact V), is a deformation
retract of the set V. Therefore, the homomorphism (é*'), is an isomorphism onto.

Theorem. Let K be acompact subspace of R* and U an open neighbour-
hood of K such that there exists an isotopic contraction y of FrU to K
in U. Let, further, that for every €>0 there exists 8>0 such that for every
kel - K with d(p, K)<8 there exists a cut T of U~ K with respect to
homeomorphism v and having the following properties: 1) T NI(p)+QD. 2)
diam T'<e, 3) d(p. T)<e and 4) if getrT then d(q, l,)<e. Then for every
continuous map f: K — K whose Lefschetz’'s number is different than zero
either there exists a fixed point or there exists a fibre | such that
FARN0) TR L.

Proof. Let f/ be a continuous map of K in K, whose A,+0 and for
which does not exist a fixed point. We prove that there exists a fibre { such

that f(IR™ 1)y— 1°" L.
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Let V,, k=1, 2,... be neighbourhoods of A constructed as in Lemma 6.
There exists k£,>1 such that the map f can be extended in a map fof \7,,”
into V; and for which, also does not exist a fixed point.

A set @ of V, N\ K is said to be marked if it has the following proper-
ties: 1) if x¢® then f(x)€l,. 2) the set ® is closed in the space V, ™ K, 3)
for every complete cut 7 which is contained in 17,‘.“, the set 7 ® is non-
empty. B

The set @ of all the points x¢ V, ~ K for which f(x)€l,. is marked. In
fact, if aq;¢®, i=1, 2,... and lim_..a; - aGVko\\K then obviously f(a) !/, hen-
ce a¢® and the set @ is a closed subspace of V,‘.‘}\K.

Let 7 be a complete cut and 7= Vko' The map FY is a deformation re-
traction of V, onto the set Q=(U\tr7)U 7. By Corollary 1 of Lemma 5,
the compact Q is a compact of finite type and has the fixed point property.
Let FR be the map from V, to Q for which FAp)=Fp, 1), for every
point p¢V,. We observe that the Lefschetz’s number Ag of the map g=FY
o f o is equal to the Lefschetz’'s number A, of the map f. Therefore, the map
g has a fixed point. Since FAV, "\ Q)=T, if (F?of—eq)(p)::p. then it holds
that pe¢ T and f(p)€l,. Hence p¢® and ® ) 7. All the above mean that
the set @ is marked set.

A marked set @ is called minimal marked 1if every marked subset @ of
® coincides with ®. By the definition of a marked set and Lemma 3, it follows
that the intersection of a transfinite decreasing sequence of marked sets,is a

marked set. Therefore the existence of a marked set implies the existence of
a minimal marked set.

Let ®, be a minimal marked set and P P2 --. a sequence of @, such
that lim,.. p,=p€¢K. We can suppose that if p,=w(a, ;) then the sequence
a,. ay ... converges to a point a¢FrU and lim.,.¢=1.

We prove that the fibre {={wy(a, f): 0=f<1} is the required one, that is
FAR™N 1) < IR™UL.

Let p€l®™\ 1 and p,, ps-.. be a sequence of points of / such that
lim;,. p;=p.

We prove that f(p)¢l%"\[. Let €>0 be an arbitrary number and $>0
the number corresponding to the hypothesis of the theorem. There exists an
integer #, such that d(p,, K)<$. For the point i, there exists a cut 7 satis-
fying all the conditions mentioned in the theorem. We will prove that
7‘ l’\' d)oiﬁ@.

Suppose the contrary, that is, 77 d, - . Let D be a complete cut such
that DV, . Consider the complete cut min(7, D).By the definition of the
set ®, we have that min(7, D) ®,+. Since 71 ®,=@ and min(7, D)
< T1UDNGT) we will have (D G ®, =D (P, CT)=D. Let & =d, GT.

By the construction of / and 7 there exists a number i such that p,¢G7.
Hence the set @’ is a proper subset of @, closed in U~ K and as we, above, prov-
ed DN®-+=@ for cvery complete cut 0. This means that ® is a marked
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set. But this is impossible because we supposed that &, is a minimal mark-
ed set.
Therefore, there exists a point ¢, ¢ T'[1®,. Let ¢,"= f(g,).0bviously ¢, ¢tr7"
By the suppositions of the theorem there exists ¢, €/ such that d(q,, ¢, )<e.
Thus, we are able to construct: 1) a subsequence Pop Piyy oo Pigs -+ of
the sequence py, py, ..., 2) a sequence of points ¢, ¢ ..., ¢, ... with the
property d(p;. q,)<1/k k=1.2,...and 3)asequenceg,,¢,...., g, of points of the

fibre / such that d(q, f(g,))<1/k k=1, 2, .... Obviously limi. p, — p:
litmse = iMesce @ =y N £(g,) =i g =limesf( p, ) = f(p).  Since

7. €1 we have f(p)€IR"\ L. This proves the theorem.

A compact K is called an isotopic neighbourhood pseudo-retract if there
exist 1) an embedding of K in R", for some n, 2) an open neighbourhood U
of K for which there exists an isotopic contraction y of FrU to K in U such
that y satisfies «) all the conditions mentioned in the theorem and P) for

every fibre [ we have that the set [®"\ [ consists of a single point.

Corollary. Every isotopic neighbourhood pseudo-retract K has the
“ixed point property.

Remark. We can prove that:

I. In the plane R? every compact K of finite type has a neighbourhood
U for which all the conditions of the theorem are satisfied.

2. Every compact K—R? of finite type is an isotopic neighbourhood
pseudo-retract if every prime end (see, for example [1]) is of first or second
type.

3. The examples 3, 4, 5 and 7 cf [2] are isotopic neighbourhood pseudo-
retracts.

Probleu. Which is the relation between the acyclic isotopic neighbour-
hood pseudo-retracts and the deformation quasi-retracts? (sce [2])
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