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ON THE STABILITY OF SOLUTIONS OF FIRST ORDER PARTIAL
DIFFERENTIAL-FUNCTIONAL EQUATIONS

ZDZISLAW KAMONT

Let C(E,|/E, R) be a class of continuous functions from £, E into R,
where R-=(— -, 4+ ) and

Ey={(x, ¥): Xp—Tp=X=Xy To 0, y=(yu..- ¥
rx) =y, =sfx), i=l..,n)
E~{(x, 9): X€[xp +0), 7{x) =y, =s{x), i=1,...,n}.

Let C(E,U E, R™) be a set of all vector functions wu(-)=(u™(-),...,u™Y-)),
where u9(-)¢C(E, | E, R).

Assume that
(i) r; and Sp i=N. .4 n, are continuous functions on [x,—1, Xx,] and
rl(x) ‘:S,-LX). XGJX“ h T,,. xul' d .

(i) r, and s, i=1,.. ., n, are of class C' on [x, +2) and r{x) <s(x)
for x€[x, +9), rixg)=rdx,), s{x,) = sdx,).

Suppose that functions f, i=1,..., m, of the variables (x, y, 2, u(-), ¢),
where z=(zM, ..., 2myu()y=@v), ..., u™)), ¢-=(q,....,q, are defined
on EXR™ <C(E, | E, R™)<R" In this paper we consider the initial differen-
tial-functional problem

(1) 20(x, ) =fO(x, v, 206, ¥) 200 2006 ) (% V)€ E, iwkaii,m,
29 (x, y)= 0 (x, ) (x, MEE,

where ¢ -(o™, ..., ¢™) is a given function defined on £, and 2z(-)=(2")(-),
cey 2M0), 2(x, ) = (2%, Y), -y 29X, V) zf‘f’(x, y)--:(z‘;l’(x,y), 315 zg’:(x.y)).
We assume that the function f-(fY, ..., fi™) satisfies the following Volterra
condition: if (x, y, 2, (), @), (x, ¥, 2, ¥(*), )€ EXR"XC(E,VE, R™)XR"
and w(&, n)=wE&, n) for (& n)€H, where H, ={(& n)€¢E,UE: §=x}, then
flx, v, 2, u(-), ¢)=f(x, y, 2, ), ¢). We assume that the problem (1) for
o(x, y) -0 on E, possesses a solution 2(x, y)=0 on EjlJ E.

We give here some theorems on stability and asymptotic stability of the
trivial solution of (1). This will be a generalization of the results published in
[6, Chapter 9).

In this paper, we study the stability and asymptotic stability of solutions
of (1) by means of Lapunov functions and the theory of differential-functional
inequalities.

We assume the existence of solutions of (1) on £,1J E. Some results con-
cerning the existence and uniqueness of solutions can be found in [1--5; 7; 9},
For a more detailed information and references see [5].
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336 Z. KAMONT

We adopt the following definitions of stability and asymptotic stability of
the trivial solution of (1).

The trivial solution z(x, v) -0, (x, v)€ £, £, of (1) is said to b> stable
if for everv £>0 there exists a 8>0 such that [ z(x, y) <é on £, implies

2(x,v) <e on E. (We denote by -1 the norm in R™)

The trivial \nlutmn X, ) 0, (x, wWeE,E of (1) is said to be asym-
ptotically stable if

(i) it is stable,

(ii) there exists a positive number 8, such, that for every £>0 there cor-
rupnnd\ 7(e) such that " z2(x, v) <3, on E, implies [2(x, v) <& for x X,

FT(E) AX) =y - S(X).

We intmduu the Tollowing class of solutions of (). Let & [(x, v)€ £
there exists /. 1~/ —n, such that v, r(x) or v, -sAx)f.

A real function « of the variables (x, y) will be called the function of
class D in E, E if u is continuous on £, E, possesses partial derivatives
Uy ly Uy uy ). in an interior of £ and total derivative on S.

In this paper we consider solutions z(-) =(zM(-), . ... 2" (-)) of (1) such
that z0(-) are of class D in £, E.

We introduce

Assumption H, Suppose that

1V 6 is a continuous function of the variables (4, 2z, @(-)) defined on R,
KR <C] T + ) R.), where Cy[—7t, + =) Ry) is a sct of all conti-
nuous, bounded and non-negative functions on [ -1, + =),

20 o is non-decreasing with respect to the functional argument and sa-
tisfies the following Volterra condition: if @(-), @(-)e C([ — 1, -+ =2), Ry) and
w(t)- w(t) for 1€[—1, £, then o(f, 2, w(-)) o(f, z, @(-)). We define §,={y:

(xott, VIEE,UEY, te] 1, + ). We shall denote a function w of the va-
riable ¢ for ¢ belonging to some interval (a, ) by the symbol @(-) or (@(1))wp).

If u( ) e CELE, R) and wuy(x, y)- (uyl(,\‘. A1 N u),"(,\-. v)) exists, then we
define wy(x, y)| (luy(x, ¥) ...t uy (X, ¥) ).

Assumption H, Suppose that

10 o is a function of the variables (x, v, 2, u(-), g) defined on E<XR,
CCE)E, R < R" where C(E, 11 E, Ry) is a set of all continuous and non-
negative functions on £, 1) £,

29 o satisfies the Volterra condition, i.e. if u(-), ©()CC(E, U E R, ) and
u(E, m) - & ) for (5, m)€er, then glx, v, 2o u(-), q)= &x, v. 2, ¢(-). q

3% for each point (x, y)(F there cxnst sets of integers /.. L. I‘ \uch that
[0y L L, .. on) and vy, - r,(.\) for jel,, v/—s,{\) for jel, ri(x)<y,

<.:,v(x) for je/,, we assume that

o(x, yo 2, u(), q)+ X rj(x)q,- X .:'}(x)q,'
(N i1,

<~ o(x—x, 2, ( max w(x,+t, YM-r. v—x)
yes

t

where ¢=(q,,...,4q,). ¢,=0 for jel,, q;~0 for jel, q;=0 Tor je/y and
ul-)e C(E, 1) E, Ry).

We start with the following comparison lemma. This lemma is a some modi-
fication of Theorem 1.1 of [5].

Lemma 1. Suppose, that
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10 Assumptions H, and H, are satisfied,
20 the function u(-)¢C(E,\JE, R,) of the variables (x, v) is of class D
in E, | E,

3% the differential-functional inequality
(2) ufx. v) ~glx, v, u (x, v), u(ulx, v), (x, ¥)EE,
and tne initial inequality
(3) wx, v)=n(x-— x,), (x, ¥)€E,.

are satisfied.
4° the function n is continuous on | -1, 0] and the maximum solution
o(t; n) of the initial problem
(4) w'(f)=o(t, wit), @(-))
w(t)=n(t) for te[—1p O]

is defined on [—t, -+ -<).
Under these assumptions
(5) u(x, v)—o(x -xo: )

for (x, V)€ E.
Proof. Let us define

()= max u(xo+*t, y). t€[—1o + )

yes,

The function @(-) is continuous on |—t, + >=) (see [8, Chapter 6]) and the
estimation (5) on £ is equivalent with
(6) ()=t n)
for £€[0, + <)

We prove (6) for £¢[0, a), where a>0. For £>0, denote by o(f; n, &),
the maximum solution of the problem

w'(t) = o(t, w(t), @(-))+¢&, Wt)=n(t)+¢e for te[—1, O]
For £>0 sufficiently small, o(¢; n, €) is defined on [ -1, a) and
limow(; n, g)=wo(t; n) on [—1, a).

E—s00

To prove (6). it is sufficient to show that

(7) w(t)y<olt; . &)
for t¢[0, a). Now we will prove (7) asing Lemma 1.1 of [5].

It follows from (3) that w(t)<o)(t n, &) for £¢[—1, 0]. Suppose, that for
some 7¢(0, a) we have w(@)=o(f; n, &) and w(t)<w(t; n, &) for £€[0, . It
follows from the definition of w( ) that m(~5>0 and that there is an y=(¥,.
..., ¥,) such that w(f)=u(x, v), where x=x, +t. Suppose_that 1, I, I, are
sets of integers such that 7, U/ZyU/ly={1,... ,n} and y; = r(x) for jel, y;=
s,(x) for jel, r,(t)<y,<s,(t) for j€/; Then we have
22 Cn. Cepanxa, xu. 14
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(8)  uy, (e, )=0 tfor i€l uy (x. V=0 for i€h, uy (x, y)=0 for i¢/s
Let W(x)=(yy(xX) - s V,.(x)), where
r(x) for i¢l,
vix) =1 s(x) for i€l
v, for i€l

and consider the composite function u(x, ¥(x)), x€[xg x,+a). We have u (x,
+f Wx,+ D)= @) and u(x,+ 1. ¥(x, + )=w@(x) for T € [0, f] and, therefore
D w () = D_[u(xy+1t, y(x, +O)] ,_7- (D_o(#) is the left-hand lower Dini’s
derivative of ¢ at the point £).

From Assumption A, it follows that

D w@®=ulx ¥+ = u, (e, ) n(x)+ :’H_VA(}. V) /%)
icrn T icr !t

g () al) ufx V) LS 4y M S uy (x s ()
) ! e !

T
<o(;. zcv(?), @(-)) + &

It therefore follows that the assumption w(f) =w(f: n. ) and w(f) == o(t;
n. ©) for £¢[0, ¢] implies the differential inequality 1) _w(f) < o(t, w(t), w(-))
! g Since w(f)<o(t: n, &) for te[ —t, 0], it follows that all the assumptions
of Lemma 1.1 [5] are satisfied. From this Lemma we obtain (7) in [0, @). Since
a is arbitrary. inequality (7) holds true in [0, -+ =2). From (7) we obtain in
the limit (letting € tend to 0) inequality (6). This completes the proof.

Theorem 1. Suppose that

1V Assumptions H, and H, are satisfied,

20V is a function of the wvariables (x, u), u=(U, ..., Uy detined on
[.Yp. T /J)XRM)

30 V possesses continuous partial derivatives with respect to (x, u) and

for u(-)=(u"(), ..., um™(-)) such that w(-) are of class D in E,)E we
have
oVi(x,u(x, - oV(x, u(x,
“0": L1 —rr“—:;t YD) fx, y, u(x, ¥), ul), wlx, v))
oV, y)

< glx. y. Verx, p), Vo), Fm ) (n )eE,

where

oVix, ulx, y))

3 o fe, s w(x, ), u(), uylx, )

T aV(x, u(x, v))

= - ouy

[, v, u(x, y), u-), @ (x, ),

V@ s a function defined by

(9 V(x, v)y= V(ix, u(x, y))
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and

oV (x, y) ( V'ix, y) V' (x, y) )
oy - oy T OVn '
040 the maximum solution o(-; n) of the initial problem (4) exists for
t=0,
5° ()= (TV(), ..., ")) is a solution of (1) defined in E,|] E such
that () are of class D on E,|JE and V(x, v(x, y))=n(x-—x,) for (x,y)€E,.
Under these assumptions V(x, v(x, y)<=o(x—x,; n) for (x, v)¢€E.
Proof. Consider the function z(x, v)=V(x,v(x, v)) for (x, y)€¢E,UE.
By assumption 3° we have z,(x, ¥)=g(x, ¥, 2(x, ¥). 2(-). 2/x, V), (x, )€ E,
and z(x, y)=—=n(x—x,) for (x, y)€E, It is evident that the hypotheses of
Lemma 1 are fulfilled and, as a result z(x, y)<o(x— x,; n) on E. The proof
is therefore completed.
Now we give theorems on stability of the trivial solution of (1).
Theorem 2. Suppose that
1" Assumptions H, and H, are satisfied,
20 the conditions 2° and 3" of Theorem |1 hold and the differential-
functional equation

(10) w'(ty=o(t, w(t). w(-)), ¢te[0, + =),

has the trivial solution on [—1, + =),

3% u and B are continuous, strictly increasing ani non-negative func-
tions on [0, + o),

4 a(0)=p(0)=0 and for u¢ R™ we have P(lu )<Vt wysa(lul). Under
these assumptions the stability or asymptotic stability of the trivial solution
of (10) implies the stability or asymptotic stability of the trivial solution of
the system (1).

Proof. Suppose that the trivial solution of (10) is stable. Then for every
£ >0 there exists a >0 such that inequality 0<@(f)<d on [—1, O] implies
w(t)<P(e) for ¢ =0, where w@(-) is any solution of (10). Choose a positive
number &, such that a(3,)=38 and assume that |u(x, v <3, on £, where u(-)
is a solution of (1). This implies that Vix, u x, y))<allu x, y)I)<a(d,)=3for
(x, y)€E,. Choose

n(¢) = mu:( Vix,+t u(xo+t v) te[—t, O]
yES,

It then follows by Theorem I that W(x, u(x, y)=o(x—x,; n) for (x, y)¢'E
where o(-; n) is the maximum solution of the initial problem (4). Since n(£)<3.
then o(x—x,; n)<P(e) for x=x, and B(Il u(x, v)I)=V(x, u(x, y))=o(x—x,; n)
<PB(e) on E, which leads to the inequality |u(x, y)li<e on E, provided that
lu(x, y)II-=8, on E, This proves the stability of the trivial solution of (1).

Now suppose that the trivial solution of (10) is asymptotically stable.
Then there exists 8, such that for each >0 there corresponds 7(g) such that
(w(t) <8, for £€[ 7, O] implies [w(f)|<B(e) for £€[T(e), + <2)]. We choose
n(#)=max, (s, V(x, + £ u(x,+£ ), t€[—1, 0]. Let a(8,)=35, and assume that

Lu(x, v)1--0, for (x. v)€E, These considerations show that, as previously,

Bl u(x, v) )= WVix, u(x, y)=o(x—x,; N)<P(E) for x=x+ 7T,
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r(x)-—y--s(x), provided that lu(x, ¥)i =9, for (x, v)€ E, This assures the
asymptotic stability of the trivial solution of (1).

In the above theorem we obtain the stability (or asymptotic stability) of
the solution z(x, v)=0 on E,1J £ of (1)as a consequence of the stability (or
asymptotic stability) of the trivial solution of some ordinary differential-func-
tional equation. In" the next theorem the stability of solutions of (1) will be a
consequence of the stability of some partial differential-functional equations.

We introduce

Assumption H; Suppose that

10 g is a function of the variables (x, y, 2, u(-), ¢) defined on £ <R,
‘\'C‘(En J Ev /\)4) < R"v

20 g satisfies the Volterra condition and is non decreasing with respect

to the functional argument,
3% for each point (x, ¥)€S there exist sets of integers /,, /,, /3 such that

10Ul Ul={1,...,n} and y,=r(x) for i€l y,=5(x) for i€, 7, (x) <y,
<s/{x) for i¢l; we assume that

glx, y.zou(-)q)—gx, y, 2, u(-) q)

~ _:f,’(x)w,—q,.) - X sk, -q),
I N £ 7

where g=1(qg,..... q,) 7= .. q,) and q,~q, Tor i¢l,. g, ~q, fTor i€ /[y
q,=q, for i€l
409 02z and O<-w(&, n)<=«& n) on /7. then
g, v, 2, 0 q) glx, v, 2 ) q) =

—o(x— X, 22, ( max [o(x, L V) —u(xotb Y. i)
v S’

The following lemma is a simple generalization of Theorem 3.2 of [5]
Lemma 2. Suppose that
1° Assumption H, is satisfied,
20 the function o satisfies Assumption H, and the right-hand maximum
solution of the initial problem

(11) w(£)=o(t, w(t), w(-)), te[0, + =), w(t)=0 for te[—10 O],
is w(t) -0,
3% u(-), v()€C(E, | E, R,) are of class D in EyJE and for (x, y)€E
ux, V)= glx., vy, u(x, ¥), (), w(x, y))
v, V) glx, ¥, ox ¥ o) Tyl p)).
4v for (x, v)€ E, we have u(x. y) =o(x, v). Under these assumptions

(12) u(x, v)= v(x, ¥) for (x. y)¢E.
Proof. At first we prove (12) for (x, ¥)€{(x, V)EE: x,=x<X,+a, a >0}
For £>0 denote by (f; &) the right-hand side maximum solution of the

problem
w'(t)=o(t, w(t), w(-))+e wt)=c for te[ -1, O]

For &0 sufficiently small o(¢; €) is defined on [0, @) and
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(13) limw((; €)=0 on [0, al.
el
Consider now the function
(14) Ax, Y)=x, y)+o(x—x; €).
We shall prove that
(15) u(x, y)<Ax, v) on {(x, Y)€E: xo=x<xo+a}.

By assumption 3° and (14) we have
VX V) g(x, v mx ¥ ) T ¥))e(x X, E)
Flale v, ox ), AW Tyl v)—g(x, v, Hx y), W) vl v))]

~g(x, Y, Ux, ¥ W), Tylx, V) —O(x =X AX, V) -ﬂ.x.y),(TgXI;'(on- y)
'v ,

— ;’(Xo + 1, _V)])[ —Te X—. rul)
+o(x—Xxg O(x—x,; €), (T, €))—x, v—x,)+E

=gx, v, Ax, ¥). W), vlx, Y)+e.
It follows from the above estimations that

v (x, ¥)>gx. v Ax, ¥). W) X, ¥))

on_{(x, y)€E: x€[x, xo+a)}. By the definition of o(.) we have u(x, y)
<¥x, y) for (x, y)€£E, From the strong partial differential-functional inequa-
lities theorem (see [5, Th. 1.2]) we obtain (15). By (13) we obtain in the limit
(letting € tend to O in (15)) inequality (12) on {(x, ¥)€E: x¢[x, x,+a)}.
Since >0 is arbitrary, inequality (12) holds true in £

Theorem 3. Suppose that

1Y Assumptions H, and Y1, are satisfied,

20 the right-hand maximum solution of the initial problem (11) is w(f)
=0, 1€[0, + =), and the initial problem

2 (x, v)=g(x. y, 2(x, ), 2(-), 2x. ), (x, VICE,
2(x, v)=0 for (x, V)EE,,

possesses the trivial solution.

3° conditions 2° and 3° of Theorem 1 are satisfied,

4°a and P are continuous, strictly increasing and non-negative functions
on [0, + <0),

5 w(0)=PB(0)=0 and for ue¢ R™ we have B(lu )<= V(t, u)y=a(llul).

Under these assumptions stability or asymptotic stability of the trivial
solution ot the comparison problem (16) implies the stability or asymptotic
stability of the trivial solution of the system (1).

Proof. Suppose that the trivial solution of (16) is stable. Then for £¢>0
there exists a >0 such that inequality 0<w(x, y)<B(e) on £, implies 0<w(x, y)
<PB(e) on E, where w(-) is a solution of (16). Choose 8,>0 such that a(8,)=295
and assume that | u(x, y)|<8, on £, where u is a solution of (1). This im-
plies that for @(x, y)= Vix, u(x, y)) we have w(x, y)<a(lu(x, y)I)=a(d,)=3.
From the assumption 3° of our theorem we have on £

(16)
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u) )
W(o.(r—x'y) —g(x, ¥, Vi(x, y), V() _"V(_d‘VLJQ),

where V@(.) is defined by (9). It follows from Lemma 2 that V(x, u(x, y))
“w(x, y) for (x, )€ E. Then

B(ru(x, v)1)=Vix, u(x, y))=w(x, y)<B(e) on E,

which leads to the inequality | «(x, v)ll<e on E, provided that /u(x, v) <9,
on £, This proves the stability of the trivial solution of (1).
We omit the simple proof of the second part of Theorem 3.
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