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ON NEUMAN'S PROBLEM FOR A CLASS OF DEGENERATE
QUASI-LINEAR PARABOLIC EQUATIONS

NICKOLAI D. KUTEV

In this paper the existence and uniqueness of the classical solution of Neuman's pro-
blem for a class of degenerate quasi-linear parabolic equations is proved. The method of pa-
rabolic regularization and successive approximations is used.

1. The aim of this paper is to investigate Neuman’s problem for a class
of degenerate quasi-parabolic equations

n n .
(1) Pu= »_.‘.‘la“/’(x, X u)u_,‘__‘.i%— :1 bi(x, xo wht, —c(X, X UMy,
ij= i=

+d(x, xo wu=0

in the cylinder Gy - Dpx(—M, M) Qx(0, T)x(—M, M). Here Q is a bounded:
domain in IR", which is C¥*+** smoothly diffeomorphic to a ball, /=3 is an
integer and 0 <A< 1.

We consider the boundary value operator

n

(2) Bu = ,‘ 1 o*(x, x, M, +0(x, Xt = o(x, x,)

on Fp=0Qx(0, 7). 1 (v', v, ...v") is the inner unit normal to Iy, presup-
pose that

(3) Y ok(x, x,)VE>0
e=1

k=

and o(x, x,) -0 on I';. Moreover, the coefficicnts of the boundary value ope-
rator B and ¢ and their derivatives DD% of order lal+2p-<2+3 are Holder
continuous with exponent A on [;. Further we make the following assumptions
regarding the operators P, B, ¢ and Q:

(i) 2 @ix, xo PIEE =n(x, X p)/§? =0 in the domain G G, E€IR™
a’/¢CYG"), o(x, xo p) 0 in G, CECAT), clx, xp p)+ R(X X0 p) >0,
d(x, xy p)==0 inG;

(ii) The coefficients of the operator P and their derivatives D¢ Db of
order |u|+2B- 20 +2 are Holder continuous with exponent A in Gi;

(iii) The boundary S;=T;x(—M, M) is non-characteristic i.c.

(4 Y oal(x, X, pPVV>0 on Sp;

=1

(iv) (0*¢)/(dxk)x, 0) 0 for k=0, 1,...1+3, x¢oQ
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354 N. D. KUTEV

For convenience we introduce the set Q,={x¢Q; ¢(x, 0, 0)=0}. Following
Fichera [8), we consider for the equation (1) the boundary value condition

(5) u(x, 0)=0 on Q\ Q,.

Remark L. In case Q,(10Q =@ the condition (iv) is the compatibility
condition of the data up to the order [+ 3.

Under these assumptions we have the following results:

Theorem 1. Suppose (i)—(iv) hold. If there exists a point Q.¢ DrN{xo

t), 0 “t— 7 and the operator P is strictly parabolic in Q.><[—M. M], then
the boundary wvalue problem (1), (2), (5) has a unique classical solution
u(x, x,)€C{Ds). where & is sufficiently small.

Some real processes can be described by means of the equation (1). For
instance the equation describing the temperature distribution in the case of a
quasi-stationary regime with a moving thermal source is (see [1, p. 178])

(6) divy, (A grad T)—c,,vg-C- -0,

where v is the velocity of the source, A is the heatconduction coefficient and
¢,=C,(T) is the limiting volumetric thermal capacity. Here =0 and 2-=0
only on the boundary of the tube.

In conclusion it should be mentioned that when c(x, x, #)-=1 the exis-
tence and uniqueness of the classical solution of the second boundary value
problem for the equation (1) has been proved by G. M. Fateeva [7] for
0< x,<6 (& is sufficiently small).

Let us state that our results are not centained in [7], whose extension
this paper is and unlike [7] the present work includes the equation (6).

2. We will use the following inequalities and identities (see [2, 5]

n
P(v,v5)— v, Pyt v, Py +2 Z . a"("'l)x,(z’a)xl —dv, Ty
=

for any two functions v,, v,€ C?;

n o\2 [ n o n _ A
(7) ( p ailé‘n/> < ( p) a'/E,'F,/X by a‘/n'n/)
ij=1 i1 ij=1

for any &, n¢IR";

n 2 n
y ‘o N i, ;
(H) (il_-_“ azunl-\rl-) MI k;‘ Ia ”rkr‘-”.rkx,'
when 2~ x, X, ...X, p. under the assumption (I) in 1. Here the constant

M, depends on the maximum of the second derivatives of a”. The proof of
(8) for z xo p follows with slight changes of Oleinik’s proof for z=x,,
X, ... X, (see [2, p. 71])

Further we will use the short notation w, ~u,. b, -~ “"’k'/ etc., and the

summation convention is understood.

Without loss of generality, in order to prove Theorem 1, we assume that
D,,. Ty~T is a cylinder with a base Q, which is a ball, its centre and radius
being respectively 0 and K. Besides, the operator P is strictly parabolic in
the points (0, xo p), O~x,=T,, [p|=M, To=T.
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Let u=v.w, where w=[2—exp(—a x?)]exp(Bx,)>0 in DTO and let us
consider the operators (see [4])

- n » n )
Pv—=(P(vw))w= 2 a’(x, xo v@)v,;+ I [b(x, x, vw@)
ij=1 i=1

n
+ 2( T avwy)wlr,—o(x, X, v@)v, +|Plw)w]v=0,
Jj=1

i n 5 n
Bv=(B(vw))w= = o*v,,+{c+($ c"wk)/'zc"v:(p,’w.
k=1 k=1
When «, P are sufficiently large the inequalities Pw<0, X7 _, o*w,<<0 hold
in GTO and on Frv- The operators A, B satisfy the conditions (i)—(iv) in the
domain Qx(0,7,)X(—M,, M,), where T,=min(7, 1/B), M,=M)/(2e). Conse-
quently, if we preserve the previous notations without loss of generality we
may assume that d(x, x, p)<O0 in Gr, o(x, x,)<<Oon T, .
Of basic significance for the proof of Theorem 1 is the following regularized
boundary value problem

n n
(g) pc.‘\-(u...N) = 3 a;.i/(x‘ Xo» u‘u"—‘)uf/:” + p b'(x. at u‘-“’—‘)uf-”
ij=1 i=1

—le(x, xo0 usN)+gusN +-d(x, xou=N"NusV¥=0 in Dr;

n
BusN — E‘ o"‘(x. xo)ur;‘v_*_ o(x, xo)ut.Nz o(x, x,) on rTl;

u=Mx, 0)=0 on Q.

We choose u~%(x, xo)=0 for e>0 and besides, we use the short notation
a=x, x, p)=aix., x, p)+ed/, where 8/=0 for i+ and & =1 for i=1,
9
If u=V—'(x, x,) has derivatives DgD_‘j" of order |a|+2B=2[+2, which are
Holder continuous with exponent A in Dr, and | u=V-'(x, x,) | =M, then (see [3])
the boundary value problem (9) has a unique solution #*(x, x,), which deri-
vatives D*D% of order |a|+2B-=2/+2 are Holder continuous with exponent
A in Dy,

We will show that the sequence of successive approximations u#*" can be
formed.

Lemma 1. Under the assumptions of Theorem 1 the following esti-
mates sup—,—,r lu=¥(x, x,)|=M hold, where 0<T,<T,, €>0, N=1, 2,...

Proof. We will show something more, that the estimates

(10) sup  usNx, x,)|<e/C
Q% [0,2/57

hold. They will be necessary for us later on. _
We consider the auxiliary function 70(x, x,)=(@*V)+ xjexp(§(R?*—|x?))
~(1/82) exp (£®x,). A simple computation gives
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» I3 n
Bv° =2usNg —o(u*V)2— 2§x'l~;k}_‘l okx,+ox;—(o/C?) exp (§7x,)
n
9?0 +285Rx; X ofvi4+ox]—o/C2
k=1

Since lim &&= @L0) i %%, Xo) ¢, (x,0)it follows that |@(x, xo)/x, C,
Yy —0 Xo—0 X0 Ko 0
X (o x (o2

for x€0Q, 0--x,-=7,. Analogously, using (iv) we have the estimates
(1n (Dro(x, x0))/ %0 | =Cp

for @ =m, 1--m~1+3, x€0Q,0="x,=T,, tis a tangential direction to I'z, the
estimates being necessary for us later on.

Consequently, from (3), when & is sufficiently large (depending on C° norm
of the coefficients of B and C! norm of ¢) we have

(12) Bv =x;—0c/s? on Iy .
The estimate
(13)  poNeo = 2aupNusN — d(usN P + x4 x? —0(&)) exp (E(R?— x?))

—cx, exp(E(R?—1x2)) +cg exp(sixe) —(d/5%)exp(Cix,) ”'/”f"vll;-w\’,;—.\’.’;}1 Foe—dig?

holds, when &, ¢ arc sufficiently large (depending on C” norm of the coeffi-
cients of P).

Since ©Y(x,0) = —1/83<0 from (12), (13) and from the maximum principle
it follows that 77(x, x,) can not attain a positive maximum in D7 . i.e. 7°(x, xo) =0
in Dy . Consequently (u=¥)-=(1/5% exp (s3x,)-—€%/s% when 0-=x,~2/¢% Lemma
1 follows immediatly from (10), when 0-"x,<7, Ty=min[7, (2/5*) in(Mq)).

In our further calculations, for convenience, we omit the index & and
with M,, K, C, i—1, 2, .. . we denote constants which depend on the coeffi-
cients of the equation, the boundary value operator and the domain €, but
not on ¢ N and q.

In the following Lemmas 2-—5 our aim will be to prove the uniformly
boundedness of the derivatives up to the order [+ 1 of the solution u*¥(x, x,)
with constants independent of & and N.

Let r, be a small enough positive constant, so that the operator P is
strictly parabolic for {(x, xo p); [x|==r,. 0=x,<Ty |p|=M} and r,>r>
. Farpa —r. We choose the functions x™(x)€ C***X(R") for m -1, 2,...20+2
with the following properties: O—yx™-" 1, x™==1 for lx/-~7, and x"(x)=0 for
X Py XA -y 2+,

Lemma 2. Under the assumptions of Theorem I the following estimates

sup [D*DP u=Mx, x,) ~k, /s hold for la|+2B ~m, 1 -m=20+2, £€>0, N1,
(|20 ¥

2. . .. where the constants k', do not depend on &, N and <.

m
Proof. Since the following estimates are similar to those in Lemmas 3—35,
their proofs will only be sketched here. ‘
Without loss of generalityy we, assume that o(x, x, p)==1 for [x| "7y
0 xp= Ty |pl==M because c(x, xo p)+0.
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We introduce the functions
w@ix, xo) = (uN)?—(go/S*) exp (57x,).
n
w'(x, xo)=x"(x) X (u))2+q,w°(x, x,).
k=1
The positive constant ¢, is sufficiently large so that the inequalities
n
PN = ¥ a/uNuN +1,
ij=1 =7
(14) w0
for |x|-<r, O0-<x, =T, where Ty=min(7, 2/¢% hold.
We assume inductively that

(15) X 2 () <(g19,07)/5°

for |x|==r, O-—<x,~T,
A simple computation gives

PYw=y! X augiudl+[qimo—(Magigoe?)/<?

n n
—M;] X (uP+q, — M=y T auuy +1,
k=1 k=1
when p(x, xo p) =1, >0 for |x =r, 0<x,<7, [pl=M and ¢* =g} =(2M.q,e%)/1,,
= (2Ms/pg) + M, + 1.
From the maximum principle and (14) it follows that

(16) wi(x, x,)=0

and (15) holds for N.
Let us consider the auxiliary function w¥(x, xo)=x? X7 ,_ (@) + g.w'(x, x;,)
and let us assume that

(17) T (P =(ga9,900%)/<?

k. =

~

for x-r, 0 -x,=-T4 Then we have
PNw? = X";\': l""’”ﬁ.“‘l’,,-*r (210~ (M:929.906%)/¢?

n
\ - N N
*'Mulul l(uﬁ)ﬂ+ ga—M; .,xak;\_ lazlug,a,,,+ 1,

when ¢, - max [(2Mg)/Ho, M;+1] and ¢* ¢35 = (2¢,9.Mz€?)/1,.

Consequently from (16) and the maximum principle it follows that
wYx, x,)=0 and (17) holds for N. From (15), (17) and the equation we_ have
the needed estimates for .
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By induction we prove %"=y = m(D%UN ' 2 <(q@nGm—1 --- go€?)/? for x|<r,_,,
0 = x, = T3 with the auxiliary functions @w”(x,x,) = %" X - m (DN + g, 0" ' x, x,)-

FFrom the equation and the denvatives of the equation up to the necessary
order we estimate D*D®u¥ for [a|+2B=m, B +0.

In order to prove the uniformly boundedness of the derivatives of #*V in
Ur, UT:' Hlx, x0); r<|x|<R, 0<x,<T3; we make a polar change of the x-
variables and for convenience, we preserve the previous notations considering,
that x,, x, ... x, , are angular variables and x, is a radial variable. In the
new variables (3) denotes that ¢”"<<0 on Iz

lLemma 3. Under the assumptions of Theorem [ the estimates
SUpg.. | D u=NMx, x,)| =K,/ hold for T,< T, lal=1, >0, N=1, 2, .., where

the constant K, does not depend on e, N and g
Proof. Let us introduce the auxiliary functions:

oix, xo)=n,|m, > (N2 +2uN P+ uXT(uN )+ kX
k=1
+ K/ exp (8y(R— x,)— M1 Xo) + (@) eXp (— Myx,) +p U7X, Xo)
n—1
T(uV)= X 0%x, xoud+0(x, xo)uV + ®(x, x,),
k=1

where 0% x, x,), 0(x, x,) are smooth extensions into Ura, respectively of the
functions (— 4c*)/6”, (-~ 40)/c” which are defined on T, so, that their derivatives
in (7,3. DeD8 of order |a|+2B=2(+3 are Holder continuous with exponent

A. Analogously we introduce the function ®(x, x,), for example @(x, x,)
=(- 4x,9)/((Rc"). The positive constants m,, k, are chosen as it follows
m,—2+(4nH,)?, where H, is the maximum of the coefficients before the first
order derivatives of the operator 7" and k,/s. k,x, are upper bounds, respec-
tively for the zero order operator in 7 and ® (see(ll)).

From the choice of m,, &, we have

n—1 n
m, El (W@ P+ 2(u P+ ulN T(uN) + kixi+ k32 = E l(uj;’)='-+—x§+ 1/c2,

n—

(18) Om, ¥ a'/a‘Vu‘V + 4auuly - a(TuN)uy,
k =

;3 .‘.I u'/aNuN+da”u — My 2 (u‘V)‘~ Mex2—Mg/c2.

n
2 & ni /

We will show that ©'(x, x,) can not attain a positive maximum on Iz
A simple computations gives

n n—1
Bd' - n {—0c"E,( El(u‘,)')’+x;-;+ 1/¢®)+m, k.‘.)l 2ul (@,
& =
+ B, 0/0x,)(u™))+ 4uN Bul + T(a™)Buy + ud(T(9)

B, T(N)+ kox? + kio/G2 exp (- nyxo) + (2o,
+[B, 0/0x,|(u™))— o(u)*} exp (—nyx,) + p, BY°.



NFUMAN'S PROBLEM FOR DEGENERATE QUASI-L.NEAR PARABOLIC EQUATIONS 359

Since [B, 0/0x ) u”) is an operator of the first order and does not depend
on d/dx, when &, is sufficiently large (depending on the C' norm of the
coefficients of B and C? norm of ¢). we have the estimate

(19) Bv'>0 on T
Analogously for P¥o' we have
PNo' =n (1, +1,) exp (§,(R—x,)- N1Xe) + I3+ 1,) exp (—n,x,)+p, PN’

where
n—1
1= X 2mu +0kal) — (@) — (b)Y + ()t
k=1 ik

(@)t |+ [T (@™ )+ 4uy || — (@) gutl) — (0F) gty + (€) iy — (&) tt™].

We assume thot
n—1
(20) @ =(p.e)/(n:6%),

(1P =(p.e?)/s*
Then from (8) and (20) we have

n

—1
I, = L"_ZL k;. l auyuy + auliuy,+ [(Myp,e®)/(n,s2)

+ Mm]kE‘ (u )2+ M, 1"("?:)2 + [M /6 + Myax|[ 1+ (pre®)/(n,5?)]

Similarly for /; we obtain
’[‘1' - zu;\l[ — (a‘.j)xnu%_(bi )xuu‘,"v + (“ ),nu“‘_i—(d),,,u”]

_d(ui\:)z = —[(My,p.€%)/c* + M) *“il a"uﬁux—[(Mlep,eﬂ)/;?

Mz E I(”'*v)z - [d"'—)+(M|n/’|"eg)/§’](“ﬁ)2 — M,/ —Mgp e¥/st.

The estimates of /, /, follow from (7), (8), (11), (18) as in [13], so
we have

n
PNpt - e=2n,—(M,p,€%)/* —M,5] k: . aiju‘\,’uz__,_ai/uN ),

ixy JXo

+nleny +(p)/n,—(Mgp,e?)/(n,62) — My k-\il(“f)"*'['h“

—d[2—(M,scp e®)/G2— Myyn,c J(uR)? + (—prd— Magn,)/c*
+ P (0X] ) — Maysx] — (M3, pre?) /et —(Myxipe?)/e?.
Let n,>M,;. Then if p, - max|[2(Mypn, + 1)/(—d). 2(Mg + 1)/(n+0)];
N >Mgyny i ony (PR = 2Meos® =63 63— max (M p,e®)/(n, —M,s), (Migp,€?),
(1, M)l (Myop €2)/(ny—Mayn,), (2M.,.e*)/(—d), (2M;,e*)/(h+c)]
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the estimate
n
PNpl = e kl‘ . aluful)+xip+c+1/¢?

for 0 =x, =T, Ty min(7T, 2/(m,+¢?%), holds.

From Lemma 2, when p, is sufficiently large (depending on k&, n,, m,, &),
i (x, x,) =0 for x =r, O~x, =T,

Since o'(x, 0)= -p,/c2<0 it follows that '(x, x,) can not attain a posi-
tive maximum in Uy, iec. 2'(x. x,)~ 0 and (20) hold for M

Lemma 4. Under the assumptions of Theorem [ the estimates
supg D9 usNx, x,) |- Ky/s hold for T, =T, la =2, >0, N=1,2, ... where

the constant K, does not depend on e, N and q.
Proof. We consider the auxiliary functions

n—1 n n

THx, X)) = na[my X (w2 X (u¥ )P+ X ud THuv)
k=0 k=0 k=0
=1

+ k'}x(:‘, + k{::/qg] ¢Xp (&_n([\)’— X,,) - 71-_)4\’0) + (u_‘:,/,“,)g exp ( o '1-.»‘”0) '*‘I’-ﬂ'l,

n—1
THuN)=( X 0(x, x)uN+0(x, x JuN+®),, k=0, 1,...n-1,
1

i

n—1 n—1 n—1
TuN)—= X AM( X 0kuN+0uN + @)+ X A"/uf,).'
i1 k1 ij=1

n—I1 n—1 .
+ X BuN+ B X 0kuN+0uN+ @)+ Cu + Dun.
, 2T .

i1

The functions 0% 0, ® are introduced in Lemma 3. The functions A¥/, B
C, D are smooth extensions respectively of (—4aya™, (—4b')/a™, (4c)a™
(- 4d)a™ from Ty <[ M. M| into Uy <[ M. M|, so that their derivatives
DD of order |a +2B--20 +2 are Holder continuous with exponent A.

The positive constants m.,, k, are chosen as follows m, - 2-1 (4n)*H], where,

H, is the maximum of the coefficients before the second order derivatives of
the operators 7% k=0, 1,... n, and ky/s, kyx, are upper bounds respectively
for the operators of order —-1 in 7% £=0, 1,... n, and the loose members
in 7% k=0, 1,..., n

From the choice of m, k, we have

n—1 n n
» N ¥ N ) Y N TRV p
mny kl.ﬂ(u,,,)%—? E.o(u"'))+ k}.“umT (™) + k3/C?
=1

n
whxg nr e,

R==0
=1
% N N " idgN N N aidyN (TR
o L - K .~
2mg ‘-'““””m“u,-* 4 X auy, uy +2 X auy (THu")),
= k=0 k=0
=1
-1 n
I "GN N 13 S b N — Mag S (U — Mae/C— Mypx?
"2 a0 e U A=0 xnirny ® = Fn 24, 0.

k0
l=1

=1
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We will show that ©3(x, x,) can not attain a positive maximum on I'y
For Buv? we have

B2 =n,{ —o"Ey( S 0(11 2+ 1/2+x2)+2my = ) ul (o,
i %20

+[B, 02/dx,0x,|(u™))+ 4 R ~ BuY + " B(u ) TH*u™)
k=0

(TH@)+[B, TF)(uN))+ kiox}+kic/? exp (—Max,)

+ KoY
= uy,

126 (0, +1B. 0%0x3)(N)) oY, )] exp(Myx%))+paBot.

Since [B, 02/0x%)(u¥) is an operator of second order, which does not
depend on ¥ . from (11), (19), when &, is sufficiently large (depending on
C? norm of the coefficients of B and C? norm of ¢), we have the estimate
Bv*>0 on Ty

Similarly we obtain for PVo?

P02 = {ny(1, + 1,) exp (Eo(R—x,) + s+ 1.} exp (—nax,) + po PV

where

n
1,=2m, ,,E.,"ﬁ‘v (a)ull, —(a)ul | + klzlu(4u‘;’"
=1

+ THu™N ) — (@), —(ai?),uy, ).
Let us assume that
(2D }:.,(”‘k\/_l)j\ (papr€?)/(n.c?),
-1
@Y = (papie?)/s?
Then from (8), (21) we have '

P
msy ~

[ 1, =72 X au
2 k-0
(=1

N \ JuN N
u:"u,'*_ o n“‘ "nn,u.",+[Mz.

H(Myup pye®)) (n.c“)lk (@) + [ Mso/c? + M3y xT(1 +(py pae®)/(nas?))-
] I
Analogously we estimate /3 /53— —4uY (@) ul . As for Iy, I, we estimate

them in the same way as in [13]. Consequently

n
PO e 3y —(Mup, pae®)/s?— Mu} = atu u,
=1

+ ﬂ'/ll‘ yr..l'ux.r../ " ”9""‘? + (piu)/(e’,'ﬂ) (MMPI pﬂes)/nig’)
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M| £ (@) + Mo —d/2— Magnac— (M:'n.l’zl'l"g)’y(”sc.»’)](u?,la..)e
k-0
11

F(Pa—1eMz) G2+ po(pxi+ ) — My Xl — Mop, po/ct— Mo Xop, pa/c2.

Let n,>M,, Then, when p, max [2n,M;; +2,2(Mss+ 1)/(n+ c)na>>n,May,;
Mo+ (pap)/(€ny) — 2My; 5 G2 S ¢t — max [(Mygp,p2e?)/(ny — Mzs), (Ms,p,pse?)
(naMygs), (M pypae?)/(na(ng—n,Mag)), 2M o p,. (2Myp))/(n+ o)),
the estimate
+xiu+c+1/g?

n
PNo? o2 X alud u,
k=0 it

holds, for 0= x,~ 7, 7,-—-min(7,, 2/(na+¢c*)). .

FFrom Lemma 2, when p, is sufficiently large (depending on ky 7, ms, &),
vH(x, x,)-0 for (x| 7, O -x, =T, Since v¥x, 0)= —(pp,)/c2<0 it follows
that 2(x, x,) can not attain a positive maximum in U, i.e. ?2(x. x,)=0.
Therefore (21) holds for V. ’

Lemma 5. Under the assumptions of Theorem | the estimates
supy. "Df:_"ll“'(x. xXo) | = Ky hold, for T,i3=Tyio |a|=p, 3<p —I1+1,

p+3
e>0, N--1, 2,. ., where the constants K, do not depend on e, N and c.
Proof. We prove inductively the estimates

-\-i! (DLDP uN=1x, X)) = (PopPo—, - - - P1€2)/(n6?),
Btp

(OF u™N—Yox, x )P~ (popo—y - - . pr€2)/c?
in U,‘,M,, Tosg—min [T, 2/(n,+c%)) by means of the auxiliary functions

v(x, xXo)={nplm, X (DeDPuN)y*+2 X (D‘;,DQVD}nu‘V)’

la+B|=p ja+B+v|=p
Bt=p, v+0

+ z DD Dy uN T8 (u™) + k2/? + k2xZ) exp (Eo(R—x ,)
VAl g
t ([)""_‘.U‘V)’} exp (- Mpxy)+ Pt (X xy).

The coefficients of 79(x, x,u, u,, ... ux,_.) are determined on l“‘,-‘H_2
by means of the condition 78 (uN)=  4D3.Df Dy u™, where tl . derivatives
Dy vV are substituted for by their equivalent expressions on I, using the
operators B, P¥ and the derivatives of PV up to the necessary order. In
Uy, . <[ M, M| the coefficients of 7" are smoothly extended so that their
derivatives D[, of order |a| +2b-.2(+4 -p are Holder continuous with
exponent A. The positive constants m, k, are chosen as follows m, -2
»(4n)9“H;’. where /7, is the maximum of the coefficients in front of the p-th

derivatives of the operators 7% and R,/ kpx, are upper bounds, respecti-
vely, for the operators of order ——p—1 in 7" and the loose members in 7abr,
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Proof of Theorem 1. By means of a priori estimates proved in Lem-
mas 1—5, we have the result that #5™x, x,)and their derivatives D:x.. of

order |a/-</+1 are uniformly bounded by the constants which do not depend
on & and N. Using the Ascoli -Arzela theorem and a diagonalization argument

. N —
we can find a subsequences g,—0, N, —+-o, such that D* u""k(x, x,)=D* u

for la|=L.
[Let us now consider

PNMuN—uN—Y) =[a(x, x,, uN72)—a/(u, x,, u‘V")]uf.‘I(“

+[bi(x, xo uNT2)— bi(x, x4 uN AN —[o(x, x4 uNT2)
—o(x, xg uNT]EN N+ [d(x, X0 wNT)d(x, xp,uN )] aN T =g(x, xq uN7, uN2)
From the mean value theorems, since (see also (11)) |z](x, xo)l=A,x,,

udNx, xg) | = Aixg [ uN(x, x,)| < Axe, | aM(x, xo)| = Ayx, for N=1, 2,..., where
the constant A, depend on & and N, we have

L g@(x, Xo UV, uN72) | Agx, sup | aN—t —uN-2 ).
As in Lemma 1 we consider the auxiliary function
Z(X, Xo)=(u¥—uN—"P 4 y[x2exp (&(R?— | x[2))—(1/5?) exp ($x,)].

A simple computations gives

n
BZ = —o(uVN— uN"'2 + y[—2Ex2 £ o*x,+ox2—(o/c?) exp(six)]>0 on Ty,
k=1

PNZ = 2uN— uN Vg —d(uN — uN 1)+ y[482x2 | x|
— O(&) +cg] = g*/d + y[482xp | X — O(8) + cg).

When &, ¢ are sufficiently large and y=Alsup oV '—u¥N"22d, d= —d,<0,
the estimates P¥Z>0 hold. Since Z(x, 0)=—1/5*<0 it follows that Z=0 in
Us', & =min [T 5,, 2/¢%] ie.

sup | uVy —uN 1< (Ag/c?) sup | uN Tt —uN2|
’

U5’ Ug

When ¢* = Ay/2 it follows that uMx, x,)=u(x, x,). Therefore, when g,—0,
N,~»-o from (9), we have that a(x, x,) is a solution of (1), (2), (5).

Uniqueness. Let us assume that besides u(x, x,), v(x, x,)€ C{(Qx[0,8'])
is a solution of (1), (2), (5) and let us consider

al(x, xg vNv—u)+b(x, xo VNT--u),—c(x, xo V)V—u),,
rd(x, Xg v Nv—u)=[a(x, x, w)—ai(x, x, V) ;+[04(x, xo, )
-bi(x. xg V), [c(x, Xoo w)—c(x, Xoo V)uy, +[d(x, Xo. 1)
d(x, x, v)|u=h(x, x, u, v).
As in the proof above the estimate

sup|lu—v|=(A,/s?*)sup |u—v|
Dy Dy
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hold, where &= min(§’, 2/¢?). When g2 ;—A‘ we have u=v.

Remark 2. Theorem 1 holds also in case of non-homogenious equation
(1) i.e. the boundary value problem

Pu=f(x, x,) in D;,
Bu=¢(x, x,) on T},
u(x, 0)=0 on O\ Q,
under the assumptions of Theorem 1 and the additional condition (9*f)/(dx*) x, 0)

=0 for k=0, 1,...,/+3, x€Q has a unique classical solution u(x, x,) € C(Ds).
Remark 3. Since the constants K5 in Lemmas 3 -5 depend on C'*! norm
of the coefficients of B and P and C'*2 norm of ¢, Theorem 1 holds, when

the coefficients of B and P are of the class C'*Y(G) and ¢ ¢ C**+*(D).
Remark 4. If

n

S a(x, xp pEE=p[ER, p>0

ij=1

or (x, X /’)GG_' S€IR" and c(x, x4 p)=ci(x, X,).Co(x, Xg ), Cox, Xg p)>0,
it is not necessary for the condition c(x, x, p)=0 in G', o(x, x,, p)€CYG)
to be fulfilled. It is enough for ¢(x, x, p)=0 to be valid in G"=QXx[0, T"|
X[—=M, M), ceCXG"), T">T.
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